elemwise.cpp 11.0 KB
Newer Older
1 2 3 4
/**
 * \file imperative/src/impl/ops/elemwise.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8 9 10 11
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

12 13
#include "megbrain/imperative/ops/autogen.h"
#include "megbrain/opr/basic_arith.h"
14 15
#include "megbrain/imperative/opr_utility.h"
#include "megbrain/opr/utility.h"
16

17
#include "../op_trait.h"
18
#include "../dnn_op_helper.h"
19
#include "../blob_manager_impl.h"
20 21 22 23 24 25 26 27 28 29 30

namespace mgb {
namespace imperative {

namespace {

std::shared_ptr<OpDef> make_from_op_node(cg::OperatorNodeBase* node_) {
    auto* node = &node_->cast_final_safe<opr::Elemwise>();
    return Elemwise::make(node->param().mode);
}

31
auto apply_on_var_node(
32 33 34
        const OpDef& def,
        const VarNodeArray& inputs) {
    auto&& elemwise_opr = def.cast_final_safe<Elemwise>();
35
    OperatorNodeConfig config{elemwise_opr.make_name()};
36
    return opr::Elemwise::make(inputs, elemwise_opr.mode, config);
37 38
}

39
std::tuple<SmallVector<LogicalTensorDesc>, bool> infer_output_attrs_fallible(
40 41 42
        const OpDef& def,
        const SmallVector<LogicalTensorDesc>& inputs) {
    auto&& op_def = def.cast_final_safe<Elemwise>();
43
    auto trait = megdnn::Elemwise::ModeTrait::from_mode(op_def.mode);
44 45 46 47 48 49
    mgb_assert(inputs.size() == trait.arity,
               "%s expects %u inputs; got %zu actually", trait.name,
               trait.arity, inputs.size());
    TensorShapeArray inp_shapes;
    DType out_dt;
    CompNode out_cn;
50
    for (size_t i = 0; i < inputs.size(); ++ i) {
51 52 53 54 55 56 57 58 59 60 61 62 63 64
        auto &&t = inputs[i];
        if (!i) {
            out_cn = t.comp_node;
            out_dt = t.layout.dtype;
        } else {
            mgb_assert(t.comp_node == out_cn);
            mgb_assert(t.layout.dtype == out_dt);
        }
        if (t.layout.ndim > 0) {
            inp_shapes.push_back(t.layout);
        } else {
            TensorLayout out_layout;
            out_layout.ndim = 0;
            out_layout.dtype = out_dt;
65
            return {{{out_layout, out_cn}}, false};
66 67
        }
    }
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
    // copy from megdnn::ElemwiseForward::check_dtype
    switch (out_dt.category()) {
        case DTypeCategory::FLOAT:
            mgb_assert(trait.allow_float, "unsupport mode %s for float\n",
                          trait.name);
            break;
        case DTypeCategory::INT:
            mgb_assert(trait.allow_int, "unsupport mode %s for int\n",
                          trait.name);
            break;
        case DTypeCategory::BOOL:
            mgb_assert(trait.allow_bool, "unsupport mode %s for bool\n",
                          trait.name);
            break;
        default:
            // Quantized Dtype could also be handled by this op,
            // but scales need to be the same.
            break;
    }
87 88

    auto&& out_shape = opr::Elemwise::get_output_var_shape(op_def.mode, inp_shapes);
89
    return {{{TensorLayout(out_shape, out_dt, inputs[0].layout.format), out_cn}}, true};
90 91
}

92
DispatchMode decide_dispatch_mode(
93
        const OpDef& def,
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
        const SmallVector<LogicalTensorDesc>& inputs) {
    bool host_computable = true;
    constexpr int size_threshhold = TensorShape::MAX_NDIM;
    for (auto&& inp : inputs) {
        if (inp.value.empty() || inp.value.layout().ndim == 0
                || inp.value.layout().total_nr_elems() > size_threshhold) {
            host_computable = false;
            break;
        }
    }
    return host_computable ? DEFAULT_CPU : KERNEL;
}


void apply_on_device_tensornd(
        const OpDef& def,
        const SmallVector<DeviceTensorND>& inputs,
        SmallVector<DeviceTensorND>* outputs) {
112 113 114 115 116
    auto&& op_def = def.cast_final_safe<Elemwise>();
    auto trait = megdnn::Elemwise::ModeTrait::from_mode(op_def.mode);
    mgb_assert(inputs.size() == trait.arity,
               "%s expects %u inputs; got %zu actually", trait.name,
               trait.arity, inputs.size());
117 118 119 120 121 122 123
    auto&& dnn_opr = opr::intl::create_megdnn_opr<megdnn::Elemwise>(inputs[0].comp_node());
    opr::Elemwise::perform(op_def.mode, (*outputs)[0], inputs, dnn_opr);
}

SmallVector<TensorPtr> apply_on_physical_tensor(
        const OpDef& def,
        const SmallVector<TensorPtr>& inputs) {
124

125
    auto&& op_def = def.cast_final_safe<Elemwise>();
126
    SmallVector<DeviceTensorND> inp_tensornds(inputs.size());
127
    TensorShapeArray inp_shapes(inputs.size());
128
    for (unsigned i = 0; i < inputs.size(); ++i){
129
        inp_tensornds[i] = inputs[i]->dev_tensor();
130
        inp_shapes[i] = inputs[i]->layout();
131
    }
132 133 134
    TensorShape shape = opr::Elemwise::get_output_var_shape(op_def.mode, inp_shapes); 
    DeviceTensorND out = BlobManager::inst()->alloc_workspace_with_defrag(inp_tensornds[0].comp_node(), {shape, inp_tensornds[0].layout().dtype});
    SmallVector<DeviceTensorND> oup_tensornds = {out};
135 136
    apply_on_device_tensornd(def, inp_tensornds, &oup_tensornds);
    return {Tensor::make(oup_tensornds[0])};
137 138
}

139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
MGB_DEFINE_OPR_CLASS(ForceInplaceElemwise, cg::SingleCNOperatorNodeBaseT<opr::mixin::MegDNNOprHolder>) //{
public:
    struct Param{
        using Mode = megdnn::Elemwise::Param::Mode;
        Mode mode;
        size_t inplace_index;
    };
    using Mode = Param::Mode;
    ForceInplaceElemwise(const VarNodeArray& inputs, Param param,
            OperatorNodeConfig config = {})
    : Super(inputs[0]->owner_graph(), config, "device_add_update", inputs), m_param{param} {
        for (auto* input: inputs) {
            add_input({input});
        }
        add_output(None)->
            set_fwd_in2out_writable_force(input(param.inplace_index)).
            add_flag(VarNode::Flag::NO_MEM_RECLAIM);
    }
    static SymbolVar make(const VarNodeArray& inputs, Param param) {
        return SymbolVar{inputs[0]}.insert_single_output_opr<ForceInplaceElemwise>(
                inputs, param);
    }
    static cg::OperatorNodeBase* shallow_copy(
        const serialization::OprShallowCopyContext &ctx,
        const cg::OperatorNodeBase &opr_, const VarNodeArray &inputs,
        const OperatorNodeConfig &config);
protected:
    NodeProp* do_make_node_prop() const override {
        auto ret = Super::do_make_node_prop();
        ret->add_flag(NodeProp::Flag::FORCE_UPDATE_INPUT_VAR);
        return ret;
    }
    void create_megdnn_opr() override {
        auto opr = DnnOprCaller<megdnn::Elemwise>::create_operator(comp_node());
        opr->param().mode = m_param.mode;
        set_megdnn_opr(std::move(opr));
    }
    void scn_do_execute() override {
        auto to_dnnnd = [&](auto* var){ return var->dev_tensor().as_megdnn(); };
        megdnn::TensorNDArray inputs_dnnnd;
        for (auto* input: input()) {
            inputs_dnnnd.push_back(to_dnnnd(input));
        }
        mgb_assert(input(m_param.inplace_index)->contain_flag(VarNode::Flag::NO_SYS_MEM_ALLOC),
                "ForceInplaceElemwise cannot be applied in internal tensor");
        auto* out_dest = output(0);
        auto* opr = static_cast<megdnn::Elemwise*>(megdnn_opr());
        opr->exec(std::move(inputs_dnnnd),
                to_dnnnd(out_dest));
    }
    void init_output_static_infer_desc() override {
        using namespace cg::static_infer;

        owner_graph()->static_infer_manager().register_shape_infer(
                output(0), ShapeInferDesc::make_identity(input(m_param.inplace_index)));
    }
private:
    Param m_param;
    void record_execute_deps(ExecDependencyArray& deps) override {
        record_megdnn_opr(deps);
    }
};

MGB_DYN_TYPE_OBJ_FINAL_IMPL(ForceInplaceElemwise);

cg::OperatorNodeBase* ForceInplaceElemwise::shallow_copy(
        const serialization::OprShallowCopyContext &ctx,
        const cg::OperatorNodeBase &opr_, const VarNodeArray &inputs,
        const OperatorNodeConfig &config) {
    auto &&opr = opr_.cast_final_safe<ForceInplaceElemwise>();
    auto* graph = ctx.owner_graph(opr, inputs);
    return graph->insert_opr(std::make_unique<ForceInplaceElemwise>(inputs, opr.m_param, config));
}

MGB_REG_OPR_SHALLOW_COPY(ForceInplaceElemwise, ForceInplaceElemwise::shallow_copy);

cg::OperatorNodeBase* apply_inplace_add_on_var_node(
        const OpDef& def,
        const VarNodeArray& inputs) {
    auto dest = inputs[0], delta = inputs[1],
         alpha = inputs[2], beta = inputs[3];
    auto mode = ForceInplaceElemwise::Param::Mode::FUSE_MUL_ADD4;
    return ForceInplaceElemwise::make({alpha, dest, beta, delta}, {mode, 1}).node()->owner_opr();
}

SmallVector<TensorPtr> apply_inplace_add_on_physical_tensor(
        const OpDef& def,
        const SmallVector<TensorPtr>& inputs){
    auto dest = inputs[0], delta = inputs[1],
         alpha = inputs[2], beta = inputs[3];
    auto tensor_to_scalar = [](const TensorPtr& tensor) -> float {
        return *tensor->get_value().ptr<float>();
    };
    DnnOprCaller<megdnn::AddUpdate> caller{dest->comp_node()};
    caller.op->param() = { tensor_to_scalar(alpha), tensor_to_scalar(beta) };
    caller.op->exec(dest->dev_tensor().as_megdnn(), delta->dev_tensor().as_megdnn());
    return { std::make_shared<Tensor>(dest->blob(), dest->offset(), dest->layout()) };
}

std::tuple<SmallVector<LogicalTensorDesc>, bool> infer_inplace_add_output_attrs_fallible(
        const OpDef& def,
        const SmallVector<LogicalTensorDesc>& inputs) {
    mgb_assert(inputs.size() == 4, "invalid input number for inplace_add");
    CompNode cn;
    for (auto&& input: inputs) {
        if (!cn.valid()) {
            cn = input.comp_node;
        } else {
            mgb_assert(input.comp_node == cn, "inputs should be in same comp_node");
        }
    }
    auto dest = inputs[0], delta = inputs[1],
         alpha = inputs[2], beta = inputs[3];
    bool succeed = dest.layout.ndim != 0;
    if (succeed) {
        mgb_assert(delta.layout.ndim == 0 || dest.layout.eq_shape(delta.layout), "dest and delta must have same shape");
        mgb_assert(alpha.layout.ndim == 0 || alpha.layout.eq_shape({1}), "alpha should be scalar");
        mgb_assert(beta.layout.ndim == 0 || beta.layout.eq_shape({1}), "beta should be scalar");
    }
    mgb_assert(alpha.layout.dtype == dtype::Float32(), "alpha should be float32");
    mgb_assert(beta.layout.dtype == dtype::Float32(), "beta should be float32");
260 261
    // inplace op result's desc value is changed
    return {{{dest.layout, dest.comp_node}}, succeed};
262 263
}

264 265
OP_TRAIT_REG(Elemwise, Elemwise, opr::Elemwise)
    .make_from_op_node(make_from_op_node)
266
    .decide_dispatch_mode(decide_dispatch_mode)
267 268
    .apply_on_var_node(apply_on_var_node)
    .infer_output_attrs_fallible(infer_output_attrs_fallible)
269
    .apply_on_device_tensornd(apply_on_device_tensornd)
270
    .apply_on_physical_tensor(apply_on_physical_tensor)
271
    .fallback();
272 273 274 275 276 277

OP_TRAIT_REG(InplaceAdd, InplaceAdd, opr::AddUpdate)
    .apply_on_var_node(apply_inplace_add_on_var_node)
    .apply_on_physical_tensor(apply_inplace_add_on_physical_tensor)
    .infer_output_attrs_fallible(infer_inplace_add_output_attrs_fallible)
    .fallback();
278 279 280 281 282 283
} // anonymous namespace

}  // namespace imperative
}  // namespace mgb

// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}