yolov3_loss_kernel.cc 12.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <algorithm>
#include <vector>

#include "paddle/phi/kernels/yolov3_loss_kernel.h"

#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/cpu/yolov3_loss_functor.h"
#include "paddle/phi/kernels/funcs/math_function.h"

namespace phi {

template <typename T>
static inline bool LessEqualZero(T x) {
  return x < 1e-6;
}

template <typename T>
static T SigmoidCrossEntropy(T x, T label) {
  return (x > 0 ? x : 0.0) - x * label + std::log(1.0 + std::exp(-std::abs(x)));
}

template <typename T>
static T L1Loss(T x, T y) {
  return std::abs(y - x);
}

static int GetMaskIndex(std::vector<int> mask, int val) {
  for (size_t i = 0; i < mask.size(); i++) {
    if (mask[i] == val) {
      return i;
    }
  }
  return -1;
}

template <typename T>
static inline Box<T> GetYoloBox(const T* x,
                                std::vector<int> anchors,
                                int i,
                                int j,
                                int an_idx,
                                int grid_size,
                                int input_size,
                                int index,
                                int stride,
                                float scale,
                                float bias) {
  Box<T> b;
  b.x = (i + sigmoid<T>(x[index]) * scale + bias) / grid_size;
  b.y = (j + sigmoid<T>(x[index + stride]) * scale + bias) / grid_size;
  b.w = std::exp(x[index + 2 * stride]) * anchors[2 * an_idx] / input_size;
  b.h = std::exp(x[index + 3 * stride]) * anchors[2 * an_idx + 1] / input_size;
  return b;
}

template <typename T>
static inline T BoxOverlap(T c1, T w1, T c2, T w2) {
  T l1 = c1 - w1 / 2.0;
  T l2 = c2 - w2 / 2.0;
  T left = l1 > l2 ? l1 : l2;
  T r1 = c1 + w1 / 2.0;
  T r2 = c2 + w2 / 2.0;
  T right = r1 < r2 ? r1 : r2;
  return right - left;
}

template <typename T>
static inline T CalcBoxIoU(Box<T> b1, Box<T> b2) {
  T w = BoxOverlap(b1.x, b1.w, b2.x, b2.w);
  T h = BoxOverlap(b1.y, b1.h, b2.y, b2.h);
  T inter_area = (w < 0 || h < 0) ? 0.0 : w * h;
  T union_area = b1.w * b1.h + b2.w * b2.h - inter_area;
  return inter_area / union_area;
}

template <typename T>
static void CalcBoxLocationLoss(T* loss,
                                const T* input,
                                Box<T> gt,
                                std::vector<int> anchors,
                                int an_idx,
                                int box_idx,
                                int gi,
                                int gj,
                                int grid_size,
                                int input_size,
                                int stride,
                                T score) {
  T tx = gt.x * grid_size - gi;
  T ty = gt.y * grid_size - gj;
  T tw = std::log(gt.w * input_size / anchors[2 * an_idx]);
  T th = std::log(gt.h * input_size / anchors[2 * an_idx + 1]);

  T scale = (2.0 - gt.w * gt.h) * score;
  loss[0] += SigmoidCrossEntropy<T>(input[box_idx], tx) * scale;
  loss[0] += SigmoidCrossEntropy<T>(input[box_idx + stride], ty) * scale;
  loss[0] += L1Loss<T>(input[box_idx + 2 * stride], tw) * scale;
  loss[0] += L1Loss<T>(input[box_idx + 3 * stride], th) * scale;
}

template <typename T>
static inline void CalcLabelLoss(T* loss,
                                 const T* input,
                                 const int index,
                                 const int label,
                                 const int class_num,
                                 const int stride,
                                 const T pos,
                                 const T neg,
                                 T score) {
  for (int i = 0; i < class_num; i++) {
    T pred = input[index + i * stride];
    loss[0] += SigmoidCrossEntropy<T>(pred, (i == label) ? pos : neg) * score;
  }
}

template <typename T>
static inline void CalcObjnessLoss(T* loss,
                                   const T* input,
                                   const T* objness,
                                   const int n,
                                   const int an_num,
                                   const int h,
                                   const int w,
                                   const int stride,
                                   const int an_stride) {
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < an_num; j++) {
      for (int k = 0; k < h; k++) {
        for (int l = 0; l < w; l++) {
          T obj = objness[k * w + l];
          if (obj > 1e-5) {
            // positive sample: obj = mixup score
            loss[i] += SigmoidCrossEntropy<T>(input[k * w + l], 1.0) * obj;
          } else if (obj > -0.5) {
            // negetive sample: obj = 0
            loss[i] += SigmoidCrossEntropy<T>(input[k * w + l], 0.0);
          }
        }
      }
      objness += stride;
      input += an_stride;
    }
  }
}

template <typename T>
static void inline GtValid(bool* valid,
                           const T* gtbox,
                           const int n,
                           const int b) {
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < b; j++) {
      if (LessEqualZero(gtbox[j * 4 + 2]) || LessEqualZero(gtbox[j * 4 + 3])) {
        valid[j] = false;
      } else {
        valid[j] = true;
      }
    }
    valid += b;
    gtbox += b * 4;
  }
}

template <typename T, typename Context>
void Yolov3LossKernel(const Context& dev_ctx,
                      const DenseTensor& x,
                      const DenseTensor& gt_box,
                      const DenseTensor& gt_label,
                      paddle::optional<const DenseTensor&> gt_score,
                      const std::vector<int>& anchors,
                      const std::vector<int>& anchor_mask,
                      int class_num,
                      float ignore_thresh,
                      int downsample_ratio,
                      bool use_label_smooth,
                      float scale_x_y,
                      DenseTensor* loss,
                      DenseTensor* objectness_mask,
                      DenseTensor* gt_match_mask) {
  auto* input = &x;
  auto objness_mask = objectness_mask;
  float scale = scale_x_y;
  float bias = -0.5 * (scale - 1.);

  const int n = input->dims()[0];
  const int h = input->dims()[2];
  const int w = input->dims()[3];
  const int an_num = anchors.size() / 2;
  const int mask_num = anchor_mask.size();
  const int b = gt_box.dims()[1];
  int input_size = downsample_ratio * h;

  const int stride = h * w;
  const int an_stride = (class_num + 5) * stride;

  T label_pos = 1.0;
  T label_neg = 0.0;
  if (use_label_smooth) {
    T smooth_weight = std::min(1.0 / static_cast<T>(class_num), 1.0 / 40);
    label_pos = 1.0 - smooth_weight;
    label_neg = smooth_weight;
  }

  const T* input_data = input->data<T>();
  const T* gt_box_data = gt_box.data<T>();
  const int* gt_label_data = gt_label.data<int>();
  loss->Resize({n});
  T* loss_data = dev_ctx.template Alloc<T>(loss);
  memset(loss_data, 0, loss->numel() * sizeof(T));
  objness_mask->Resize({n, mask_num, h, w});
  T* obj_mask_data = dev_ctx.template Alloc<T>(objness_mask);
  memset(obj_mask_data, 0, objness_mask->numel() * sizeof(T));
  gt_match_mask->Resize({n, b});
  int* gt_match_mask_data = dev_ctx.template Alloc<int>(gt_match_mask);

  const T* gt_score_data;
  DenseTensor gtscore;
  if (!(gt_score.is_initialized())) {
    gtscore.Resize({n, b});
    dev_ctx.template Alloc<T>(&gtscore);
    phi::funcs::SetConstant<Context, T>()(
        dev_ctx, &gtscore, static_cast<T>(1.0));
    gt_score_data = gtscore.data<T>();
  } else {
    gt_score_data = gt_score.get_ptr()->data<T>();
  }

  // calc valid gt box mask, avoid calc duplicately in following code
  DenseTensor gt_valid_mask;
  gt_valid_mask.Resize({n, b});
  bool* gt_valid_mask_data = dev_ctx.template Alloc<bool>(&gt_valid_mask);
  GtValid<T>(gt_valid_mask_data, gt_box_data, n, b);

  for (int i = 0; i < n; i++) {
    for (int j = 0; j < mask_num; j++) {
      for (int k = 0; k < h; k++) {
        for (int l = 0; l < w; l++) {
          // each predict box find a best match gt box, if overlap is bigger
          // then ignore_thresh, ignore the objectness loss.
          int box_idx =
              GetEntryIndex(i, j, k * w + l, mask_num, an_stride, stride, 0);
          Box<T> pred = GetYoloBox(input_data,
                                   anchors,
                                   l,
                                   k,
                                   anchor_mask[j],
                                   h,
                                   input_size,
                                   box_idx,
                                   stride,
                                   scale,
                                   bias);
          T best_iou = 0;
          for (int t = 0; t < b; t++) {
            if (!gt_valid_mask_data[i * b + t]) {
              continue;
            }
            Box<T> gt = GetGtBox(gt_box_data, i, b, t);
            T iou = CalcBoxIoU(pred, gt);
            if (iou > best_iou) {
              best_iou = iou;
            }
          }

          // If best IoU is bigger then ignore_thresh,
          // ignore the objectness loss.
          if (best_iou > ignore_thresh) {
            int obj_idx = (i * mask_num + j) * stride + k * w + l;
            obj_mask_data[obj_idx] = static_cast<T>(-1);
          }
          // all losses should be calculated if best IoU
          // is bigger then truth thresh, but currently,
          // truth thresh is an unreachable value as 1.0.
        }
      }
    }
    for (int t = 0; t < b; t++) {
      if (!gt_valid_mask_data[i * b + t]) {
        gt_match_mask_data[i * b + t] = -1;
        continue;
      }
      Box<T> gt = GetGtBox(gt_box_data, i, b, t);
      int gi = static_cast<int>(gt.x * w);
      int gj = static_cast<int>(gt.y * h);
      Box<T> gt_shift = gt;
      gt_shift.x = 0.0;
      gt_shift.y = 0.0;
      T best_iou = 0.0;
      int best_n = 0;
      // each gt box find a best match anchor box as positive sample,
      // for positive sample, all losses should be calculated, and for
      // other samples, only objectness loss is required.
      for (int an_idx = 0; an_idx < an_num; an_idx++) {
        Box<T> an_box;
        an_box.x = 0.0;
        an_box.y = 0.0;
        an_box.w = anchors[2 * an_idx] / static_cast<T>(input_size);
        an_box.h = anchors[2 * an_idx + 1] / static_cast<T>(input_size);
        float iou = CalcBoxIoU<T>(an_box, gt_shift);
        if (iou > best_iou) {
          best_iou = iou;
          best_n = an_idx;
        }
      }

      int mask_idx = GetMaskIndex(anchor_mask, best_n);
      gt_match_mask_data[i * b + t] = mask_idx;
      if (mask_idx >= 0) {
        T score = gt_score_data[i * b + t];
        int box_idx = GetEntryIndex(
            i, mask_idx, gj * w + gi, mask_num, an_stride, stride, 0);
        CalcBoxLocationLoss<T>(loss_data + i,
                               input_data,
                               gt,
                               anchors,
                               best_n,
                               box_idx,
                               gi,
                               gj,
                               h,
                               input_size,
                               stride,
                               score);

        int obj_idx = (i * mask_num + mask_idx) * stride + gj * w + gi;
        obj_mask_data[obj_idx] = score;

        int label = gt_label_data[i * b + t];
        int label_idx = GetEntryIndex(
            i, mask_idx, gj * w + gi, mask_num, an_stride, stride, 5);
        CalcLabelLoss<T>(loss_data + i,
                         input_data,
                         label_idx,
                         label,
                         class_num,
                         stride,
                         label_pos,
                         label_neg,
                         score);
      }
    }
  }

  CalcObjnessLoss<T>(loss_data,
                     input_data + 4 * stride,
                     obj_mask_data,
                     n,
                     mask_num,
                     h,
                     w,
                     stride,
                     an_stride);
}

}  // namespace phi

PD_REGISTER_KERNEL(
    yolov3_loss, CPU, ALL_LAYOUT, phi::Yolov3LossKernel, float, double) {}