1. 04 1月, 2012 2 次提交
    • J
      Btrfs: add waitqueue instead of doing busy waiting for more delayed refs · a168650c
      Jan Schmidt 提交于
      Now that we may be holding back delayed refs for a limited period, we
      might end up having no runnable delayed refs. Without this commit, we'd
      do busy waiting in that thread until another (runnable) ref arives.
      Instead, we're detecting this situation and use a waitqueue, such that
      we only try to run more refs after
      	a) another runnable ref was added  or
      	b) delayed refs are no longer held back
      Signed-off-by: NJan Schmidt <list.btrfs@jan-o-sch.net>
      a168650c
    • A
      Btrfs: add sequence numbers to delayed refs · 00f04b88
      Arne Jansen 提交于
      Sequence numbers are needed to reconstruct the backrefs of a given extent to
      a certain point in time. The total set of backrefs consist of the set of
      backrefs recorded on disk plus the enqueued delayed refs for it that existed
      at that moment.
      
      This patch also adds a list that records all delayed refs which are
      currently in the process of being added.
      
      When walking all refs of an extent in btrfs_find_all_roots(), we freeze the
      current state of delayed refs, honor anythinh up to this point and prevent
      processing newer delayed refs to assert consistency.
      Signed-off-by: NArne Jansen <sensille@gmx.net>
      Signed-off-by: NJan Schmidt <list.btrfs@jan-o-sch.net>
      00f04b88
  2. 22 12月, 2011 1 次提交
    • A
      Btrfs: mark delayed refs as for cow · 66d7e7f0
      Arne Jansen 提交于
      Add a for_cow parameter to add_delayed_*_ref and pass the appropriate value
      from every call site. The for_cow parameter will later on be used to
      determine if a ref will change anything with respect to qgroups.
      
      Delayed refs coming from relocation are always counted as for_cow, as they
      don't change subvol quota.
      
      Also pass in the fs_info for later use.
      
      btrfs_find_all_roots() will use this as an optimization, as changes that are
      for_cow will not change anything with respect to which root points to a
      certain leaf. Thus, we don't need to add the current sequence number to
      those delayed refs.
      Signed-off-by: NArne Jansen <sensille@gmx.net>
      Signed-off-by: NJan Schmidt <list.btrfs@jan-o-sch.net>
      66d7e7f0
  3. 15 11月, 2011 1 次提交
    • L
      Btrfs: fix tree corruption after multi-thread snapshots and inode_cache flush · f1ebcc74
      Liu Bo 提交于
      The btrfs snapshotting code requires that once a root has been
      snapshotted, we don't change it during a commit.
      
      But there are two cases to lead to tree corruptions:
      
      1) multi-thread snapshots can commit serveral snapshots in a transaction,
         and this may change the src root when processing the following pending
         snapshots, which lead to the former snapshots corruptions;
      
      2) the free inode cache was changing the roots when it root the cache,
         which lead to corruptions.
      
      This fixes things by making sure we force COW the block after we create a
      snapshot during commiting a transaction, then any changes to the roots
      will result in COW, and we get all the fs roots and snapshot roots to be
      consistent.
      Signed-off-by: NLiu Bo <liubo2009@cn.fujitsu.com>
      Signed-off-by: NMiao Xie <miaox@cn.fujitsu.com>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      f1ebcc74
  4. 11 11月, 2011 1 次提交
  5. 06 11月, 2011 3 次提交
    • C
      Btrfs: fix race during transaction joins · d43317dc
      Chris Mason 提交于
      While we're allocating ram for a new transaction, we drop our spinlock.
      When we get the lock back, we do check to see if a transaction started
      while we slept, but we don't check to make sure it isn't blocked
      because a commit has already started.
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      d43317dc
    • C
      Btrfs: ClearPageError during writepage and clean_tree_block · bf0da8c1
      Chris Mason 提交于
      Failure testing was tripping up over stale PageError bits in
      metadata pages.  If we have an io error on a block, and later on
      end up reusing it, nobody ever clears PageError on those pages.
      
      During commit, we'll find PageError and think we had trouble writing
      the block, which will lead to aborts and other problems.
      
      This changes clean_tree_block and the btrfs writepage code to
      clear the PageError bit.  In both cases we're either completely
      done with the page or the page has good stuff and the error bit
      is no longer valid.
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      bf0da8c1
    • D
      btrfs: separate superblock items out of fs_info · 6c41761f
      David Sterba 提交于
      fs_info has now ~9kb, more than fits into one page. This will cause
      mount failure when memory is too fragmented. Top space consumers are
      super block structures super_copy and super_for_commit, ~2.8kb each.
      Allocate them dynamically. fs_info will be ~3.5kb. (measured on x86_64)
      
      Add a wrapper for freeing fs_info and all of it's dynamically allocated
      members.
      Signed-off-by: NDavid Sterba <dsterba@suse.cz>
      6c41761f
  6. 20 10月, 2011 9 次提交
    • J
      Btrfs: seperate out btrfs_block_rsv_check out into 2 different functions · 36ba022a
      Josef Bacik 提交于
      Currently btrfs_block_rsv_check does 2 things, it will either refill a block
      reserve like in the truncate or refill case, or it will check to see if there is
      enough space in the global reserve and possibly refill it.  However because of
      overcommit we could be well overcommitting ourselves just to try and refill the
      global reserve, when really we should just be committing the transaction.  So
      breack this out into btrfs_block_rsv_refill and btrfs_block_rsv_check.  Refill
      will try to reserve more metadata if it can and btrfs_block_rsv_check will not,
      it will only tell you if the factor of the total space is still reserved.
      Thanks,
      Signed-off-by: NJosef Bacik <josef@redhat.com>
      36ba022a
    • J
      Btrfs: release trans metadata bytes before flushing delayed refs · b24e03db
      Josef Bacik 提交于
      We started setting trans->block_rsv = NULL to allow the delayed refs flushing
      stuff to use the right block_rsv and then just made
      btrfs_trans_release_metadata() unconditionally use the trans block rsv.  The
      problem with this is we need to reserve some space in the transaction and then
      migrate it to the global block rsv, so we need to be able to free that out
      properly.  So instead just move btrfs_trans_release_metadata() before the
      delayed ref flushing and use trans->block_rsv for the freeing.  Thanks,
      Signed-off-by: NJosef Bacik <josef@redhat.com>
      b24e03db
    • J
      Btrfs: introduce mount option no_space_cache · 73bc1876
      Josef Bacik 提交于
      Some users have requested this and I've found I needed a way to disable cache
      loading without actually clearing the cache, so introduce the no_space_cache
      option.  Before we check the super blocks cache generation field and if it was
      populated we always turned space caching on.  Now we check this and set the
      space cache option on, and then parse the mount options so that if we want it
      off it get's turned off.  Then we check the mount option all the places we do
      the caching work instead of checking the super's cache generation.  This makes
      things more consistent and lets us turn space caching off.  Thanks,
      Signed-off-by: NJosef Bacik <josef@redhat.com>
      73bc1876
    • J
      Btrfs: stop using write_one_page · 1728366e
      Josef Bacik 提交于
      While looking for a performance regression a user was complaining about, I
      noticed that we had a regression with the varmail test of filebench.  This was
      introduced by
      
      0d10ee2e
      
      which keeps us from calling writepages in writepage.  This is a correct change,
      however it happens to help the varmail test because we write out in larger
      chunks.  This is largly to do with how we write out dirty pages for each
      transaction.  If you run filebench with
      
      load varmail
      set $dir=/mnt/btrfs-test
      run 60
      
      prior to this patch you would get ~1420 ops/second, but with the patch you get
      ~1200 ops/second.  This is a 16% decrease.  So since we know the range of dirty
      pages we want to write out, don't write out in one page chunks, write out in
      ranges.  So to do this we call filemap_fdatawrite_range() on the range of bytes.
      Then we convert the DIRTY extents to NEED_WAIT extents.  When we then call
      btrfs_wait_marked_extents() we only have to filemap_fdatawait_range() on that
      range and clear the NEED_WAIT extents.  This doesn't get us back to our original
      speeds, but I've been seeing ~1380 ops/second, which is a <5% regression as
      opposed to a >15% regression.  That is acceptable given that the original commit
      greatly reduces our latency to begin with.  Thanks,
      Signed-off-by: NJosef Bacik <josef@redhat.com>
      1728366e
    • J
      Btrfs: make sure to unset trans->block_rsv before running delayed refs · 9c8d86db
      Josef Bacik 提交于
      Checksums are charged in 2 different ways.  The first case is when we're writing
      to the disk, we account for the new checksums with the delalloc block rsv.  In
      order for this to work we check if we're allocating a block for the csum root
      and if trans->block_rsv == the delalloc block rsv.  But when we're deleting the
      csums because of cow, this is charged to the global block rsv, and is done when
      we run the delayed refs.  So we need to make sure that trans->block_rsv == NULL
      when running the delayed refs.  So set it to NULL and reset it in
      should_end_transaction, and set it to NULL in commit_transaction.  This got rid
      of the ridiculous amount of warnings I was seeing when trying to do a balance.
      Thanks,
      Signed-off-by: NJosef Bacik <josef@redhat.com>
      9c8d86db
    • J
      Btrfs: stop passing a trans handle all around the reservation code · 4a92b1b8
      Josef Bacik 提交于
      The only thing that we need to have a trans handle for is in
      reserve_metadata_bytes and thats to know how much flushing we can do.  So
      instead of passing it around, just check current->journal_info for a
      trans_handle so we know if we can commit a transaction to try and free up space
      or not.  Thanks,
      Signed-off-by: NJosef Bacik <josef@redhat.com>
      4a92b1b8
    • J
      Btrfs: use the transactions block_rsv for the csum root · 4c13d758
      Josef Bacik 提交于
      The alloc warnings everybody has been seeing is because we have been reserving
      space for csums, but we weren't actually using that space.  So make
      get_block_rsv() return the trans->block_rsv if we're modifying the csum root.
      Also set the trans->block_rsv to NULL so that if we modify the csum root when
      running delayed ref's that comes out of the global reserve like it's supposed
      to.  With this patch I'm not seeing those alloc warnings anymore.  Thanks,
      Signed-off-by: NJosef Bacik <josef@redhat.com>
      4c13d758
    • J
      Btrfs: allow callers to specify if flushing can occur for btrfs_block_rsv_check · 482e6dc5
      Josef Bacik 提交于
      If you run xfstest 224 it you will get lots of messages about not being able to
      delete inodes and that they will be cleaned up next mount.  This is because
      btrfs_block_rsv_check was not calling reserve_metadata_bytes with the ability to
      flush, so if there was not enough space, it simply failed.  But in truncate and
      evict case we could easily flush space to try and get enough space to do our
      work, so make btrfs_block_rsv_check take a flush argument to pass down to
      reserve_metadata_bytes.  Now xfstests 224 runs fine without all those
      complaints.  Thanks,
      Signed-off-by: NJosef Bacik <josef@redhat.com>
      482e6dc5
    • J
      Btrfs: kill the orphan space calculation for snapshots · dba68306
      Josef Bacik 提交于
      This patch kills off the calculation for the amount of space needed for the
      orphan operations during a snapshot.  The thing is we only do snapshots on
      commit, so any space that is in the block_rsv->freed[] isn't going to be in the
      new snapshot anyway, so there isn't any reason to require that space to be
      reserved for the snapshot to occur.  Thanks,
      Signed-off-by: NJosef Bacik <josef@redhat.com>
      dba68306
  7. 11 9月, 2011 1 次提交
  8. 02 8月, 2011 2 次提交
  9. 28 7月, 2011 1 次提交
    • J
      Btrfs: fix deadlock when throttling transactions · 81317fde
      Josef Bacik 提交于
      Hit this nice little deadlock.  What happens is this
      
      __btrfs_end_transaction with throttle set, --use_count so it equals 0
        btrfs_commit_transaction
          <somebody else actually manages to start the commit>
          btrfs_end_transaction --use_count so now its -1 <== BAD
            we just return and wait on the transaction
      
      This is bad because we just return after our use_count is -1 and don't let go
      of our num_writer count on the transaction, so the guy committing the
      transaction just sits there forever.  Fix this by inc'ing our use_count if we're
      going to call commit_transaction so that if we call btrfs_end_transaction it's
      valid.  Thanks,
      Signed-off-by: NJosef Bacik <josef@redhat.com>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      81317fde
  10. 11 7月, 2011 1 次提交
    • J
      Btrfs: do transaction space reservation before joining the transaction · b5009945
      Josef Bacik 提交于
      We have to do weird things when handling enospc in the transaction joining code.
      Because we've already joined the transaction we cannot commit the transaction
      within the reservation code since it will deadlock, so we have to return EAGAIN
      and then make sure we don't retry too many times.  Instead of doing this, just
      do the reservation the normal way before we join the transaction, that way we
      can do whatever we want to try and reclaim space, and then if it fails we know
      for sure we are out of space and we can return ENOSPC.  Thanks,
      Signed-off-by: NJosef Bacik <josef@redhat.com>
      b5009945
  11. 18 6月, 2011 2 次提交
    • C
      Btrfs: avoid delayed metadata items during commits · e999376f
      Chris Mason 提交于
      Snapshot creation has two phases.  One is the initial snapshot setup,
      and the second is done during commit, while nobody is allowed to modify
      the root we are snapshotting.
      
      The delayed metadata insertion code can break that rule, it does a
      delayed inode update on the inode of the parent of the snapshot,
      and delayed directory item insertion.
      
      This makes sure to run the pending delayed operations before we
      record the snapshot root, which avoids corruptions.
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      e999376f
    • C
      Btrfs: fix relocation races · 7585717f
      Chris Mason 提交于
      The recent commit to get rid of our trans_mutex introduced
      some races with block group relocation.  The problem is that relocation
      needs to do some record keeping about each root, and it was relying
      on the transaction mutex to coordinate things in subtle ways.
      
      This fix adds a mutex just for the relocation code and makes sure
      it doesn't have a big impact on normal operations.  The race is
      really fixed in btrfs_record_root_in_trans, which is where we
      step back and wait for the relocation code to finish accounting
      setup.
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      7585717f
  12. 16 6月, 2011 1 次提交
    • J
      Btrfs: set no_trans_join after trying to expand the transaction · ed0ca140
      Josef Bacik 提交于
      We can lockup if we try to allow new writers join the transaction and we have
      flushoncommit set or have a pending snapshot.  This is because we set
      no_trans_join and then loop around and try to wait for ordered extents again.
      The problem is the ordered endio stuff needs to join the transaction, which it
      can't do because no_trans_join is set.  So instead wait until after this loop to
      set no_trans_join and then make sure to wait for num_writers == 1 in case
      anybody got started in between us exiting the loop and setting no_trans_join.
      This could easily be reproduced by mounting -o flushoncommit and running xfstest
      13.  It cannot be reproduced with this patch.  Thanks,
      Reported-by: NJim Schutt <jaschut@sandia.gov>
      Signed-off-by: NJosef Bacik <josef@redhat.com>
      ed0ca140
  13. 11 6月, 2011 1 次提交
  14. 09 6月, 2011 1 次提交
  15. 04 6月, 2011 1 次提交
  16. 24 5月, 2011 4 次提交
    • J
      Btrfs: kill BTRFS_I(inode)->block_group · d82a6f1d
      Josef Bacik 提交于
      Originally this was going to be used as a way to give hints to the allocator,
      but frankly we can get much better hints elsewhere and it's not even used at all
      for anything usefull.  In addition to be completely useless, when we initialize
      an inode we try and find a freeish block group to set as the inodes block group,
      and with a completely full 40gb fs this takes _forever_, so I imagine with say
      1tb fs this is just unbearable.  So just axe the thing altoghether, we don't
      need it and it saves us 8 bytes in the inode and saves us 500 microseconds per
      inode lookup in my testcase.  Thanks,
      Signed-off-by: NJosef Bacik <josef@redhat.com>
      d82a6f1d
    • J
      Btrfs: kill trans_mutex · a4abeea4
      Josef Bacik 提交于
      We use trans_mutex for lots of things, here's a basic list
      
      1) To serialize trans_handles joining the currently running transaction
      2) To make sure that no new trans handles are started while we are committing
      3) To protect the dead_roots list and the transaction lists
      
      Really the serializing trans_handles joining is not too hard, and can really get
      bogged down in acquiring a reference to the transaction.  So replace the
      trans_mutex with a trans_lock spinlock and use it to do the following
      
      1) Protect fs_info->running_transaction.  All trans handles have to do is check
      this, and then take a reference of the transaction and keep on going.
      2) Protect the fs_info->trans_list.  This doesn't get used too much, basically
      it just holds the current transactions, which will usually just be the currently
      committing transaction and the currently running transaction at most.
      3) Protect the dead roots list.  This is only ever processed by splicing the
      list so this is relatively simple.
      4) Protect the fs_info->reloc_ctl stuff.  This is very lightweight and was using
      the trans_mutex before, so this is a pretty straightforward change.
      5) Protect fs_info->no_trans_join.  Because we don't hold the trans_lock over
      the entirety of the commit we need to have a way to block new people from
      creating a new transaction while we're doing our work.  So we set no_trans_join
      and in join_transaction we test to see if that is set, and if it is we do a
      wait_on_commit.
      6) Make the transaction use count atomic so we don't need to take locks to
      modify it when we're dropping references.
      7) Add a commit_lock to the transaction to make sure multiple people trying to
      commit the same transaction don't race and commit at the same time.
      8) Make open_ioctl_trans an atomic so we don't have to take any locks for ioctl
      trans.
      
      I have tested this with xfstests, but obviously it is a pretty hairy change so
      lots of testing is greatly appreciated.  Thanks,
      Signed-off-by: NJosef Bacik <josef@redhat.com>
      a4abeea4
    • J
      Btrfs: if we've already started a trans handle, use that one · 2a1eb461
      Josef Bacik 提交于
      We currently track trans handles in current->journal_info, but we don't actually
      use it.  This patch fixes it.  This will cover the case where we have multiple
      people starting transactions down the call chain.  This keeps us from having to
      allocate a new handle and all of that, we just increase the use count of the
      current handle, save the old block_rsv, and return.  I tested this with xfstests
      and it worked out fine.  Thanks,
      Signed-off-by: NJosef Bacik <josef@redhat.com>
      2a1eb461
    • J
      Btrfs: take away the num_items argument from btrfs_join_transaction · 7a7eaa40
      Josef Bacik 提交于
      I keep forgetting that btrfs_join_transaction() just ignores the num_items
      argument, which leads me to sending pointless patches and looking stupid :).  So
      just kill the num_items argument from btrfs_join_transaction and
      btrfs_start_ioctl_transaction, since neither of them use it.  Thanks,
      Signed-off-by: NJosef Bacik <josef@redhat.com>
      7a7eaa40
  17. 21 5月, 2011 1 次提交
    • M
      btrfs: implement delayed inode items operation · 16cdcec7
      Miao Xie 提交于
      Changelog V5 -> V6:
      - Fix oom when the memory load is high, by storing the delayed nodes into the
        root's radix tree, and letting btrfs inodes go.
      
      Changelog V4 -> V5:
      - Fix the race on adding the delayed node to the inode, which is spotted by
        Chris Mason.
      - Merge Chris Mason's incremental patch into this patch.
      - Fix deadlock between readdir() and memory fault, which is reported by
        Itaru Kitayama.
      
      Changelog V3 -> V4:
      - Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
        inode in time.
      
      Changelog V2 -> V3:
      - Fix the race between the delayed worker and the task which does delayed items
        balance, which is reported by Tsutomu Itoh.
      - Modify the patch address David Sterba's comment.
      - Fix the bug of the cpu recursion spinlock, reported by Chris Mason
      
      Changelog V1 -> V2:
      - break up the global rb-tree, use a list to manage the delayed nodes,
        which is created for every directory and file, and used to manage the
        delayed directory name index items and the delayed inode item.
      - introduce a worker to deal with the delayed nodes.
      
      Compare with Ext3/4, the performance of file creation and deletion on btrfs
      is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
      such as inode item, directory name item, directory name index and so on.
      
      If we can do some delayed b+ tree insertion or deletion, we can improve the
      performance, so we made this patch which implemented delayed directory name
      index insertion/deletion and delayed inode update.
      
      Implementation:
      - introduce a delayed root object into the filesystem, that use two lists to
        manage the delayed nodes which are created for every file/directory.
        One is used to manage all the delayed nodes that have delayed items. And the
        other is used to manage the delayed nodes which is waiting to be dealt with
        by the work thread.
      - Every delayed node has two rb-tree, one is used to manage the directory name
        index which is going to be inserted into b+ tree, and the other is used to
        manage the directory name index which is going to be deleted from b+ tree.
      - introduce a worker to deal with the delayed operation. This worker is used
        to deal with the works of the delayed directory name index items insertion
        and deletion and the delayed inode update.
        When the delayed items is beyond the lower limit, we create works for some
        delayed nodes and insert them into the work queue of the worker, and then
        go back.
        When the delayed items is beyond the upper bound, we create works for all
        the delayed nodes that haven't been dealt with, and insert them into the work
        queue of the worker, and then wait for that the untreated items is below some
        threshold value.
      - When we want to insert a directory name index into b+ tree, we just add the
        information into the delayed inserting rb-tree.
        And then we check the number of the delayed items and do delayed items
        balance. (The balance policy is above.)
      - When we want to delete a directory name index from the b+ tree, we search it
        in the inserting rb-tree at first. If we look it up, just drop it. If not,
        add the key of it into the delayed deleting rb-tree.
        Similar to the delayed inserting rb-tree, we also check the number of the
        delayed items and do delayed items balance.
        (The same to inserting manipulation)
      - When we want to update the metadata of some inode, we cached the data of the
        inode into the delayed node. the worker will flush it into the b+ tree after
        dealing with the delayed insertion and deletion.
      - We will move the delayed node to the tail of the list after we access the
        delayed node, By this way, we can cache more delayed items and merge more
        inode updates.
      - If we want to commit transaction, we will deal with all the delayed node.
      - the delayed node will be freed when we free the btrfs inode.
      - Before we log the inode items, we commit all the directory name index items
        and the delayed inode update.
      
      I did a quick test by the benchmark tool[1] and found we can improve the
      performance of file creation by ~15%, and file deletion by ~20%.
      
      Before applying this patch:
      Create files:
              Total files: 50000
              Total time: 1.096108
              Average time: 0.000022
      Delete files:
              Total files: 50000
              Total time: 1.510403
              Average time: 0.000030
      
      After applying this patch:
      Create files:
              Total files: 50000
              Total time: 0.932899
              Average time: 0.000019
      Delete files:
              Total files: 50000
              Total time: 1.215732
              Average time: 0.000024
      
      [1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
      
      Many thanks for Kitayama-san's help!
      Signed-off-by: NMiao Xie <miaox@cn.fujitsu.com>
      Reviewed-by: NDavid Sterba <dave@jikos.cz>
      Tested-by: NTsutomu Itoh <t-itoh@jp.fujitsu.com>
      Tested-by: NItaru Kitayama <kitayama@cl.bb4u.ne.jp>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      16cdcec7
  18. 12 5月, 2011 1 次提交
    • A
      btrfs: scrub · a2de733c
      Arne Jansen 提交于
      This adds an initial implementation for scrub. It works quite
      straightforward. The usermode issues an ioctl for each device in the
      fs. For each device, it enumerates the allocated device chunks. For
      each chunk, the contained extents are enumerated and the data checksums
      fetched. The extents are read sequentially and the checksums verified.
      If an error occurs (checksum or EIO), a good copy is searched for. If
      one is found, the bad copy will be rewritten.
      All enumerations happen from the commit roots. During a transaction
      commit, the scrubs get paused and afterwards continue from the new
      roots.
      
      This commit is based on the series originally posted to linux-btrfs
      with some improvements that resulted from comments from David Sterba,
      Ilya Dryomov and Jan Schmidt.
      Signed-off-by: NArne Jansen <sensille@gmx.net>
      a2de733c
  19. 06 5月, 2011 1 次提交
  20. 02 5月, 2011 1 次提交
    • D
      btrfs: drop unused argument from extent_io_tree_init · f993c883
      David Sterba 提交于
      all callers pass GFP_NOFS, but the GFP mask argument is not used in the
      function; GFP_ATOMIC is passed to radix tree initialization and it's the
      only correct one, since we're using the preload/insert mechanism of
      radix tree.
      Let's drop the gfp mask from btrfs function, this will not change
      behaviour.
      Signed-off-by: NDavid Sterba <dsterba@suse.cz>
      f993c883
  21. 25 4月, 2011 3 次提交
    • L
      Btrfs: Support reading/writing on disk free ino cache · 82d5902d
      Li Zefan 提交于
      This is similar to block group caching.
      
      We dedicate a special inode in fs tree to save free ino cache.
      
      At the very first time we create/delete a file after mount, the free ino
      cache will be loaded from disk into memory. When the fs tree is commited,
      the cache will be written back to disk.
      
      To keep compatibility, we check the root generation against the generation
      of the special inode when loading the cache, so the loading will fail
      if the btrfs filesystem was mounted in an older kernel before.
      Signed-off-by: NLi Zefan <lizf@cn.fujitsu.com>
      82d5902d
    • L
      Btrfs: Always use 64bit inode number · 33345d01
      Li Zefan 提交于
      There's a potential problem in 32bit system when we exhaust 32bit inode
      numbers and start to allocate big inode numbers, because btrfs uses
      inode->i_ino in many places.
      
      So here we always use BTRFS_I(inode)->location.objectid, which is an
      u64 variable.
      
      There are 2 exceptions that BTRFS_I(inode)->location.objectid !=
      inode->i_ino: the btree inode (0 vs 1) and empty subvol dirs (256 vs 2),
      and inode->i_ino will be used in those cases.
      
      Another reason to make this change is I'm going to use a special inode
      to save free ino cache, and the inode number must be > (u64)-256.
      Signed-off-by: NLi Zefan <lizf@cn.fujitsu.com>
      33345d01
    • L
      Btrfs: Cache free inode numbers in memory · 581bb050
      Li Zefan 提交于
      Currently btrfs stores the highest objectid of the fs tree, and it always
      returns (highest+1) inode number when we create a file, so inode numbers
      won't be reclaimed when we delete files, so we'll run out of inode numbers
      as we keep create/delete files in 32bits machines.
      
      This fixes it, and it works similarly to how we cache free space in block
      cgroups.
      
      We start a kernel thread to read the file tree. By scanning inode items,
      we know which chunks of inode numbers are free, and we cache them in
      an rb-tree.
      
      Because we are searching the commit root, we have to carefully handle the
      cross-transaction case.
      
      The rb-tree is a hybrid extent+bitmap tree, so if we have too many small
      chunks of inode numbers, we'll use bitmaps. Initially we allow 16K ram
      of extents, and a bitmap will be used if we exceed this threshold. The
      extents threshold is adjusted in runtime.
      Signed-off-by: NLi Zefan <lizf@cn.fujitsu.com>
      581bb050
  22. 12 4月, 2011 1 次提交
    • J
      Btrfs: avoid taking the trans_mutex in btrfs_end_transaction · 13c5a93e
      Josef Bacik 提交于
      I've been working on making our O_DIRECT latency not suck and I noticed we were
      taking the trans_mutex in btrfs_end_transaction.  So to do this we convert
      num_writers and use_count to atomic_t's and just decrement them in
      btrfs_end_transaction.  Instead of deleting the transaction from the trans list
      in put_transaction we do that in btrfs_commit_transaction() since that's the
      only time it actually needs to be removed from the list.  Thanks,
      Signed-off-by: NJosef Bacik <josef@redhat.com>
      13c5a93e