1. 12 4月, 2011 1 次提交
    • J
      Btrfs: avoid taking the trans_mutex in btrfs_end_transaction · 13c5a93e
      Josef Bacik 提交于
      I've been working on making our O_DIRECT latency not suck and I noticed we were
      taking the trans_mutex in btrfs_end_transaction.  So to do this we convert
      num_writers and use_count to atomic_t's and just decrement them in
      btrfs_end_transaction.  Instead of deleting the transaction from the trans list
      in put_transaction we do that in btrfs_commit_transaction() since that's the
      only time it actually needs to be removed from the list.  Thanks,
      Signed-off-by: NJosef Bacik <josef@redhat.com>
      13c5a93e
  2. 09 4月, 2011 1 次提交
    • J
      Btrfs: only retry transaction reservation once · 06d5a589
      Josef Bacik 提交于
      I saw a lockup where we kept getting into this start transaction->commit
      transaction loop because of enospce.  The fact is if we fail to make our
      reservation, we've tried _everything_ several times, so we only need to try and
      commit the transaction once, and if that doesn't work then we really are out of
      space and need to just exit.  Thanks,
      Signed-off-by: NJosef Bacik <josef@redhat.com>
      06d5a589
  3. 05 4月, 2011 2 次提交
  4. 28 3月, 2011 2 次提交
    • T
      Btrfs: cleanup some BUG_ON() · db5b493a
      Tsutomu Itoh 提交于
      This patch changes some BUG_ON() to the error return.
      (but, most callers still use BUG_ON())
      Signed-off-by: NTsutomu Itoh <t-itoh@jp.fujitsu.com>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      db5b493a
    • L
      Btrfs: add initial tracepoint support for btrfs · 1abe9b8a
      liubo 提交于
      Tracepoints can provide insight into why btrfs hits bugs and be greatly
      helpful for debugging, e.g
                    dd-7822  [000]  2121.641088: btrfs_inode_request: root = 5(FS_TREE), gen = 4, ino = 256, blocks = 8, disk_i_size = 0, last_trans = 8, logged_trans = 0
                    dd-7822  [000]  2121.641100: btrfs_inode_new: root = 5(FS_TREE), gen = 8, ino = 257, blocks = 0, disk_i_size = 0, last_trans = 0, logged_trans = 0
       btrfs-transacti-7804  [001]  2146.935420: btrfs_cow_block: root = 2(EXTENT_TREE), refs = 2, orig_buf = 29368320 (orig_level = 0), cow_buf = 29388800 (cow_level = 0)
       btrfs-transacti-7804  [001]  2146.935473: btrfs_cow_block: root = 1(ROOT_TREE), refs = 2, orig_buf = 29364224 (orig_level = 0), cow_buf = 29392896 (cow_level = 0)
       btrfs-transacti-7804  [001]  2146.972221: btrfs_transaction_commit: root = 1(ROOT_TREE), gen = 8
         flush-btrfs-2-7821  [001]  2155.824210: btrfs_chunk_alloc: root = 3(CHUNK_TREE), offset = 1103101952, size = 1073741824, num_stripes = 1, sub_stripes = 0, type = DATA
         flush-btrfs-2-7821  [001]  2155.824241: btrfs_cow_block: root = 2(EXTENT_TREE), refs = 2, orig_buf = 29388800 (orig_level = 0), cow_buf = 29396992 (cow_level = 0)
         flush-btrfs-2-7821  [001]  2155.824255: btrfs_cow_block: root = 4(DEV_TREE), refs = 2, orig_buf = 29372416 (orig_level = 0), cow_buf = 29401088 (cow_level = 0)
         flush-btrfs-2-7821  [000]  2155.824329: btrfs_cow_block: root = 3(CHUNK_TREE), refs = 2, orig_buf = 20971520 (orig_level = 0), cow_buf = 20975616 (cow_level = 0)
       btrfs-endio-wri-7800  [001]  2155.898019: btrfs_cow_block: root = 5(FS_TREE), refs = 2, orig_buf = 29384704 (orig_level = 0), cow_buf = 29405184 (cow_level = 0)
       btrfs-endio-wri-7800  [001]  2155.898043: btrfs_cow_block: root = 7(CSUM_TREE), refs = 2, orig_buf = 29376512 (orig_level = 0), cow_buf = 29409280 (cow_level = 0)
      
      Here is what I have added:
      
      1) ordere_extent:
              btrfs_ordered_extent_add
              btrfs_ordered_extent_remove
              btrfs_ordered_extent_start
              btrfs_ordered_extent_put
      
      These provide critical information to understand how ordered_extents are
      updated.
      
      2) extent_map:
              btrfs_get_extent
      
      extent_map is used in both read and write cases, and it is useful for tracking
      how btrfs specific IO is running.
      
      3) writepage:
              __extent_writepage
              btrfs_writepage_end_io_hook
      
      Pages are cirtical resourses and produce a lot of corner cases during writeback,
      so it is valuable to know how page is written to disk.
      
      4) inode:
              btrfs_inode_new
              btrfs_inode_request
              btrfs_inode_evict
      
      These can show where and when a inode is created, when a inode is evicted.
      
      5) sync:
              btrfs_sync_file
              btrfs_sync_fs
      
      These show sync arguments.
      
      6) transaction:
              btrfs_transaction_commit
      
      In transaction based filesystem, it will be useful to know the generation and
      who does commit.
      
      7) back reference and cow:
      	btrfs_delayed_tree_ref
      	btrfs_delayed_data_ref
      	btrfs_delayed_ref_head
      	btrfs_cow_block
      
      Btrfs natively supports back references, these tracepoints are helpful on
      understanding btrfs's COW mechanism.
      
      8) chunk:
      	btrfs_chunk_alloc
      	btrfs_chunk_free
      
      Chunk is a link between physical offset and logical offset, and stands for space
      infomation in btrfs, and these are helpful on tracing space things.
      
      9) reserved_extent:
      	btrfs_reserved_extent_alloc
      	btrfs_reserved_extent_free
      
      These can show how btrfs uses its space.
      Signed-off-by: NLiu Bo <liubo2009@cn.fujitsu.com>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      1abe9b8a
  5. 29 1月, 2011 1 次提交
    • T
      btrfs: fix return value check of btrfs_join_transaction() · 3612b495
      Tsutomu Itoh 提交于
      The error check of btrfs_join_transaction()/btrfs_join_transaction_nolock()
      is added, and the mistake of the error check in several places is
      corrected.
      
      For more stable Btrfs, I think that we should reduce BUG_ON().
      But, I think that long time is necessary for this.
      So, I propose this patch as a short-term solution.
      
      With this patch:
       - To more stable Btrfs, the part that should be corrected is clarified.
       - The panic isn't done by the NULL pointer reference etc. (even if
         BUG_ON() is increased temporarily)
       - The error code is returned in the place where the error can be easily
         returned.
      
      As a long-term plan:
       - BUG_ON() is reduced by using the forced-readonly framework, etc.
      Signed-off-by: NTsutomu Itoh <t-itoh@jp.fujitsu.com>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      3612b495
  6. 18 1月, 2011 1 次提交
    • L
      Btrfs: forced readonly mounts on errors · acce952b
      liubo 提交于
      This patch comes from "Forced readonly mounts on errors" ideas.
      
      As we know, this is the first step in being more fault tolerant of disk
      corruptions instead of just using BUG() statements.
      
      The major content:
      - add a framework for generating errors that should result in filesystems
        going readonly.
      - keep FS state in disk super block.
      - make sure that all of resource will be freed and released at umount time.
      - make sure that fter FS is forced readonly on error, there will be no more
        disk change before FS is corrected. For this, we should stop write operation.
      
      After this patch is applied, the conversion from BUG() to such a framework can
      happen incrementally.
      Signed-off-by: NLiu Bo <liubo2009@cn.fujitsu.com>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      acce952b
  7. 23 12月, 2010 1 次提交
    • L
      Btrfs: Add readonly snapshots support · b83cc969
      Li Zefan 提交于
      Usage:
      
      Set BTRFS_SUBVOL_RDONLY of btrfs_ioctl_vol_arg_v2->flags, and call
      ioctl(BTRFS_I0CTL_SNAP_CREATE_V2).
      
      Implementation:
      
      - Set readonly bit of btrfs_root_item->flags.
      - Add readonly checks in btrfs_permission (inode_permission),
      btrfs_setattr, btrfs_set/remove_xattr and some ioctls.
      
      Changelog for v3:
      
      - Eliminate btrfs_root->readonly, but check btrfs_root->root_item.flags.
      - Rename BTRFS_ROOT_SNAP_RDONLY to BTRFS_ROOT_SUBVOL_RDONLY.
      Signed-off-by: NLi Zefan <lizf@cn.fujitsu.com>
      b83cc969
  8. 22 11月, 2010 1 次提交
  9. 30 10月, 2010 3 次提交
    • S
      Btrfs: add START_SYNC, WAIT_SYNC ioctls · 46204592
      Sage Weil 提交于
      START_SYNC will start a sync/commit, but not wait for it to
      complete.  Any modification started after the ioctl returns is
      guaranteed not to be included in the commit.  If a non-NULL
      pointer is passed, the transaction id will be returned to
      userspace.
      
      WAIT_SYNC will wait for any in-progress commit to complete.  If a
      transaction id is specified, the ioctl will block and then
      return (success) when the specified transaction has committed.
      If it has already committed when we call the ioctl, it returns
      immediately.  If the specified transaction doesn't exist, it
      returns EINVAL.
      
      If no transaction id is specified, WAIT_SYNC will wait for the
      currently committing transaction to finish it's commit to disk.
      If there is no currently committing transaction, it returns
      success.
      
      These ioctls are useful for applications which want to impose an
      ordering on when fs modifications reach disk, but do not want to
      wait for the full (slow) commit process to do so.
      
      Picky callers can take the transid returned by START_SYNC and
      feed it to WAIT_SYNC, and be certain to wait only as long as
      necessary for the transaction _they_ started to reach disk.
      
      Sloppy callers can START_SYNC and WAIT_SYNC without a transid,
      and provided they didn't wait too long between the calls, they
      will get the same result.  However, if a second commit starts
      before they call WAIT_SYNC, they may end up waiting longer for
      it to commit as well.  Even so, a START_SYNC+WAIT_SYNC still
      guarantees that any operation completed before the START_SYNC
      reaches disk.
      Signed-off-by: NSage Weil <sage@newdream.net>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      46204592
    • S
      Btrfs: async transaction commit · bb9c12c9
      Sage Weil 提交于
      Add support for an async transaction commit that is ordered such that any
      subsequent operations will join the following transaction, but does not
      wait until the current commit is fully on disk.  This avoids much of the
      latency associated with the btrfs_commit_transaction for callers concerned
      with serialization and not safety.
      
      The wait_for_unblock flag controls whether we wait for the 'middle' portion
      of commit_transaction to complete, which is necessary if the caller expects
      some of the modifications contained in the commit to be available (this is
      the case for subvol/snapshot creation).
      Signed-off-by: NSage Weil <sage@newdream.net>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      bb9c12c9
    • S
      Btrfs: fix deadlock in btrfs_commit_transaction · 99d16cbc
      Sage Weil 提交于
      We calculate timeout (either 1 or MAX_SCHEDULE_TIMEOUT) based on whether
      num_writers > 1 or should_grow at the top of the loop.  Then, much much
      later, we wait for that timeout if either num_writers or should_grow is
      true.  However, it's possible for a racing process (calling
      btrfs_end_transaction()) to decrement num_writers such that we wait
      forever instead of for 1.
      
      Fix this by deciding how long to wait when we wait.  Include a smp_mb()
      before checking if the waitqueue is active to ensure the num_writers
      is visible.
      Signed-off-by: NSage Weil <sage@newdream.net>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      99d16cbc
  10. 29 10月, 2010 1 次提交
    • J
      Btrfs: create special free space cache inode · 0af3d00b
      Josef Bacik 提交于
      In order to save free space cache, we need an inode to hold the data, and we
      need a special item to point at the right inode for the right block group.  So
      first, create a special item that will point to the right inode, and the number
      of extent entries we will have and the number of bitmaps we will have.  We
      truncate and pre-allocate space everytime to make sure it's uptodate.
      
      This feature will be turned on as soon as you mount with -o space_cache, however
      it is safe to boot into old kernels, they will just generate the cache the old
      fashion way.  When you boot back into a newer kernel we will notice that we
      modified and not the cache and automatically discard the cache.
      Signed-off-by: NJosef Bacik <josef@redhat.com>
      0af3d00b
  11. 23 10月, 2010 1 次提交
    • J
      Btrfs: rework how we reserve metadata bytes · 8bb8ab2e
      Josef Bacik 提交于
      With multi-threaded writes we were getting ENOSPC early because somebody would
      come in, start flushing delalloc because they couldn't make their reservation,
      and in the meantime other threads would come in and use the space that was
      getting freed up, so when the original thread went to check to see if they had
      space they didn't and they'd return ENOSPC.  So instead if we have some free
      space but not enough for our reservation, take the reservation and then start
      doing the flushing.  The only time we don't take reservations is when we've
      already overcommitted our space, that way we don't have people who come late to
      the party way overcommitting ourselves.  This also moves all of the retrying and
      flushing code into reserve_metdata_bytes so it's all uniform.  This keeps my
      fs_mark test from returning -ENOSPC as soon as it starts and actually lets me
      fill up the disk.  Thanks,
      Signed-off-by: NJosef Bacik <josef@redhat.com>
      8bb8ab2e
  12. 25 5月, 2010 6 次提交
  13. 06 4月, 2010 1 次提交
    • S
      Btrfs: create snapshot references in same commit as snapshot · 6bdb72de
      Sage Weil 提交于
      This creates the reference to a new snapshot in the same commit as the
      snapshot itself.  This avoids the need for a second commit in order for a
      snapshot to be persistent, and also avoids the problem of "leaking" a
      new snapshot tree root if the host crashes before the second commit takes
      place.
      
      It is not at all clear to me why it wasn't always done this way.  If there
      is still a reason for the two-stage {create,finish}_pending_snapshots()
      approach I'm missing something!  :)
      
      I've been running this for a couple weeks under pretty heavy usage (a few
      snapshots per minute) without obvious problems.
      Signed-off-by: NSage Weil <sage@newdream.net>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      6bdb72de
  14. 31 3月, 2010 1 次提交
  15. 30 3月, 2010 1 次提交
    • T
      include cleanup: Update gfp.h and slab.h includes to prepare for breaking... · 5a0e3ad6
      Tejun Heo 提交于
      include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
      
      percpu.h is included by sched.h and module.h and thus ends up being
      included when building most .c files.  percpu.h includes slab.h which
      in turn includes gfp.h making everything defined by the two files
      universally available and complicating inclusion dependencies.
      
      percpu.h -> slab.h dependency is about to be removed.  Prepare for
      this change by updating users of gfp and slab facilities include those
      headers directly instead of assuming availability.  As this conversion
      needs to touch large number of source files, the following script is
      used as the basis of conversion.
      
        http://userweb.kernel.org/~tj/misc/slabh-sweep.py
      
      The script does the followings.
      
      * Scan files for gfp and slab usages and update includes such that
        only the necessary includes are there.  ie. if only gfp is used,
        gfp.h, if slab is used, slab.h.
      
      * When the script inserts a new include, it looks at the include
        blocks and try to put the new include such that its order conforms
        to its surrounding.  It's put in the include block which contains
        core kernel includes, in the same order that the rest are ordered -
        alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
        doesn't seem to be any matching order.
      
      * If the script can't find a place to put a new include (mostly
        because the file doesn't have fitting include block), it prints out
        an error message indicating which .h file needs to be added to the
        file.
      
      The conversion was done in the following steps.
      
      1. The initial automatic conversion of all .c files updated slightly
         over 4000 files, deleting around 700 includes and adding ~480 gfp.h
         and ~3000 slab.h inclusions.  The script emitted errors for ~400
         files.
      
      2. Each error was manually checked.  Some didn't need the inclusion,
         some needed manual addition while adding it to implementation .h or
         embedding .c file was more appropriate for others.  This step added
         inclusions to around 150 files.
      
      3. The script was run again and the output was compared to the edits
         from #2 to make sure no file was left behind.
      
      4. Several build tests were done and a couple of problems were fixed.
         e.g. lib/decompress_*.c used malloc/free() wrappers around slab
         APIs requiring slab.h to be added manually.
      
      5. The script was run on all .h files but without automatically
         editing them as sprinkling gfp.h and slab.h inclusions around .h
         files could easily lead to inclusion dependency hell.  Most gfp.h
         inclusion directives were ignored as stuff from gfp.h was usually
         wildly available and often used in preprocessor macros.  Each
         slab.h inclusion directive was examined and added manually as
         necessary.
      
      6. percpu.h was updated not to include slab.h.
      
      7. Build test were done on the following configurations and failures
         were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
         distributed build env didn't work with gcov compiles) and a few
         more options had to be turned off depending on archs to make things
         build (like ipr on powerpc/64 which failed due to missing writeq).
      
         * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
         * powerpc and powerpc64 SMP allmodconfig
         * sparc and sparc64 SMP allmodconfig
         * ia64 SMP allmodconfig
         * s390 SMP allmodconfig
         * alpha SMP allmodconfig
         * um on x86_64 SMP allmodconfig
      
      8. percpu.h modifications were reverted so that it could be applied as
         a separate patch and serve as bisection point.
      
      Given the fact that I had only a couple of failures from tests on step
      6, I'm fairly confident about the coverage of this conversion patch.
      If there is a breakage, it's likely to be something in one of the arch
      headers which should be easily discoverable easily on most builds of
      the specific arch.
      Signed-off-by: NTejun Heo <tj@kernel.org>
      Guess-its-ok-by: NChristoph Lameter <cl@linux-foundation.org>
      Cc: Ingo Molnar <mingo@redhat.com>
      Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
      5a0e3ad6
  16. 15 3月, 2010 1 次提交
  17. 09 3月, 2010 1 次提交
  18. 18 12月, 2009 3 次提交
  19. 16 12月, 2009 1 次提交
  20. 12 11月, 2009 1 次提交
  21. 14 10月, 2009 1 次提交
    • C
      Btrfs: streamline tree-log btree block writeout · 690587d1
      Chris Mason 提交于
      Syncing the tree log is a 3 phase operation.
      
      1) write and wait for all the tree log blocks for a given root.
      
      2) write and wait for all the tree log blocks for the
      tree of tree log roots.
      
      3) write and wait for the super blocks (barriers here)
      
      This isn't as efficient as it could be because there is
      no requirement to wait for the blocks from step one to hit the disk
      before we start writing the blocks from step two.  This commit
      changes the sequence so that we don't start waiting until
      all the tree blocks from both steps one and two have been sent
      to disk.
      
      We do this by breaking up btrfs_write_wait_marked_extents into
      two functions, which is trivial because it was already broken
      up into two parts.
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      690587d1
  22. 29 9月, 2009 1 次提交
    • J
      Btrfs: proper -ENOSPC handling · 9ed74f2d
      Josef Bacik 提交于
      At the start of a transaction we do a btrfs_reserve_metadata_space() and
      specify how many items we plan on modifying.  Then once we've done our
      modifications and such, just call btrfs_unreserve_metadata_space() for
      the same number of items we reserved.
      
      For keeping track of metadata needed for data I've had to add an extent_io op
      for when we merge extents.  This lets us track space properly when we are doing
      sequential writes, so we don't end up reserving way more metadata space than
      what we need.
      
      The only place where the metadata space accounting is not done is in the
      relocation code.  This is because Yan is going to be reworking that code in the
      near future, so running btrfs-vol -b could still possibly result in a ENOSPC
      related panic.  This patch also turns off the metadata_ratio stuff in order to
      allow users to more efficiently use their disk space.
      
      This patch makes it so we track how much metadata we need for an inode's
      delayed allocation extents by tracking how many extents are currently
      waiting for allocation.  It introduces two new callbacks for the
      extent_io tree's, merge_extent_hook and split_extent_hook.  These help
      us keep track of when we merge delalloc extents together and split them
      up.  Reservations are handled prior to any actually dirty'ing occurs,
      and then we unreserve after we dirty.
      
      btrfs_unreserve_metadata_for_delalloc() will make the appropriate
      unreservations as needed based on the number of reservations we
      currently have and the number of extents we currently have.  Doing the
      reservation outside of doing any of the actual dirty'ing lets us do
      things like filemap_flush() the inode to try and force delalloc to
      happen, or as a last resort actually start allocation on all delalloc
      inodes in the fs.  This has survived dbench, fs_mark and an fsx torture
      test.
      Signed-off-by: NJosef Bacik <jbacik@redhat.com>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      9ed74f2d
  23. 22 9月, 2009 3 次提交
    • Y
      Btrfs: add snapshot/subvolume destroy ioctl · 76dda93c
      Yan, Zheng 提交于
      This patch adds snapshot/subvolume destroy ioctl.  A subvolume that isn't being
      used and doesn't contains links to other subvolumes can be destroyed.
      Signed-off-by: NYan Zheng <zheng.yan@oracle.com>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      76dda93c
    • Y
      Btrfs: change how subvolumes are organized · 4df27c4d
      Yan, Zheng 提交于
      btrfs allows subvolumes and snapshots anywhere in the directory tree.
      If we snapshot a subvolume that contains a link to other subvolume
      called subvolA, subvolA can be accessed through both the original
      subvolume and the snapshot. This is similar to creating hard link to
      directory, and has the very similar problems.
      
      The aim of this patch is enforcing there is only one access point to
      each subvolume. Only the first directory entry (the one added when
      the subvolume/snapshot was created) is treated as valid access point.
      The first directory entry is distinguished by checking root forward
      reference. If the corresponding root forward reference is missing,
      we know the entry is not the first one.
      
      This patch also adds snapshot/subvolume rename support, the code
      allows rename subvolume link across subvolumes.
      Signed-off-by: NYan Zheng <zheng.yan@oracle.com>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      4df27c4d
    • Y
      Btrfs: speed up snapshot dropping · 1c4850e2
      Yan, Zheng 提交于
      This patch contains two changes to avoid unnecessary tree block reads during
      snapshot dropping.
      
      First, check tree block's reference count and flags before reading the tree
      block. if reference count > 1 and there is no need to update backrefs, we can
      avoid reading the tree block.
      
      Second, save when snapshot was created in root_key.offset. we can compare block
      pointer's generation with snapshot's creation generation during updating
      backrefs. If a given block was created before snapshot was created, the
      snapshot can't be the tree block's owner. So we can avoid reading the block.
      Signed-off-by: NYan Zheng <zheng.yan@oracle.com>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      1c4850e2
  24. 18 9月, 2009 1 次提交
    • Y
      Btrfs: improve async block group caching · 11833d66
      Yan Zheng 提交于
      This patch gets rid of two limitations of async block group caching.
      The old code delays handling pinned extents when block group is in
      caching. To allocate logged file extents, the old code need wait
      until block group is fully cached. To get rid of the limitations,
      This patch introduces a data structure to track the progress of
      caching. Base on the caching progress, we know which extents should
      be added to the free space cache when handling the pinned extents.
      The logged file extents are also handled in a similar way.
      
      This patch also changes how pinned extents are tracked. The old
      code uses one tree to track pinned extents, and copy the pinned
      extents tree at transaction commit time. This patch makes it use
      two trees to track pinned extents. One tree for extents that are
      pinned in the running transaction, one tree for extents that can
      be unpinned. At transaction commit time, we swap the two trees.
      Signed-off-by: NYan Zheng <zheng.yan@oracle.com>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      11833d66
  25. 30 7月, 2009 2 次提交
    • C
      Btrfs: be more polite in the async caching threads · f36f3042
      Chris Mason 提交于
      The semaphore used by the async caching threads can prevent a
      transaction commit, which can make the FS appear to stall.  This
      releases the semaphore more often when a transaction commit is
      in progress.
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      f36f3042
    • Y
      Btrfs: preserve commit_root for async caching · 276e680d
      Yan Zheng 提交于
      The async block group caching code uses the commit_root pointer
      to get a stable version of the extent allocation tree for scanning.
      This copy of the tree root isn't going to change and it significantly
      reduces the complexity of the scanning code.
      
      During a commit, we have a loop where we update the extent allocation
      tree root.  We need to loop because updating the root pointer in
      the tree of tree roots may allocate blocks which may change the
      extent allocation tree.
      
      Right now the commit_root pointer is changed inside this loop.  It
      is more correct to change the commit_root pointer only after all the
      looping is done.
      Signed-off-by: NYan Zheng <zheng.yan@oracle.com>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      276e680d
  26. 25 7月, 2009 1 次提交