reg.c 51.0 KB
Newer Older
1 2 3 4
/*
 * Copyright 2002-2005, Instant802 Networks, Inc.
 * Copyright 2005-2006, Devicescape Software, Inc.
 * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5
 * Copyright 2008	Luis R. Rodriguez <lrodriguz@atheros.com>
6 7 8 9 10 11
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

12 13
/**
 * DOC: Wireless regulatory infrastructure
14 15 16 17 18 19
 *
 * The usual implementation is for a driver to read a device EEPROM to
 * determine which regulatory domain it should be operating under, then
 * looking up the allowable channels in a driver-local table and finally
 * registering those channels in the wiphy structure.
 *
20 21 22 23 24 25 26 27 28 29 30 31 32 33
 * Another set of compliance enforcement is for drivers to use their
 * own compliance limits which can be stored on the EEPROM. The host
 * driver or firmware may ensure these are used.
 *
 * In addition to all this we provide an extra layer of regulatory
 * conformance. For drivers which do not have any regulatory
 * information CRDA provides the complete regulatory solution.
 * For others it provides a community effort on further restrictions
 * to enhance compliance.
 *
 * Note: When number of rules --> infinity we will not be able to
 * index on alpha2 any more, instead we'll probably have to
 * rely on some SHA1 checksum of the regdomain for example.
 *
34 35
 */
#include <linux/kernel.h>
36 37 38 39
#include <linux/list.h>
#include <linux/random.h>
#include <linux/nl80211.h>
#include <linux/platform_device.h>
40
#include <net/wireless.h>
41
#include <net/cfg80211.h>
42
#include "core.h"
43
#include "reg.h"
44

45
/* Receipt of information from last regulatory request */
46
static struct regulatory_request *last_request;
47

48 49
/* To trigger userspace events */
static struct platform_device *reg_pdev;
50

51 52 53 54
/* Keep the ordering from large to small */
static u32 supported_bandwidths[] = {
	MHZ_TO_KHZ(40),
	MHZ_TO_KHZ(20),
55 56
};

57 58
/*
 * Central wireless core regulatory domains, we only need two,
59
 * the current one and a world regulatory domain in case we have no
60 61
 * information to give us an alpha2
 */
62
const struct ieee80211_regdomain *cfg80211_regdomain;
63

64 65
/*
 * We use this as a place for the rd structure built from the
66
 * last parsed country IE to rest until CRDA gets back to us with
67 68
 * what it thinks should apply for the same country
 */
69 70
static const struct ieee80211_regdomain *country_ie_regdomain;

71 72 73
static LIST_HEAD(reg_requests_list);
static spinlock_t reg_requests_lock;

74 75 76 77 78 79 80 81 82 83 84
/* We keep a static world regulatory domain in case of the absence of CRDA */
static const struct ieee80211_regdomain world_regdom = {
	.n_reg_rules = 1,
	.alpha2 =  "00",
	.reg_rules = {
		REG_RULE(2412-10, 2462+10, 40, 6, 20,
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
	}
};

85 86
static const struct ieee80211_regdomain *cfg80211_world_regdom =
	&world_regdom;
87 88 89 90 91 92

#ifdef CONFIG_WIRELESS_OLD_REGULATORY
static char *ieee80211_regdom = "US";
module_param(ieee80211_regdom, charp, 0444);
MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");

93 94
/*
 * We assume 40 MHz bandwidth for the old regulatory work.
95
 * We make emphasis we are using the exact same frequencies
96 97
 * as before
 */
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135

static const struct ieee80211_regdomain us_regdom = {
	.n_reg_rules = 6,
	.alpha2 =  "US",
	.reg_rules = {
		/* IEEE 802.11b/g, channels 1..11 */
		REG_RULE(2412-10, 2462+10, 40, 6, 27, 0),
		/* IEEE 802.11a, channel 36 */
		REG_RULE(5180-10, 5180+10, 40, 6, 23, 0),
		/* IEEE 802.11a, channel 40 */
		REG_RULE(5200-10, 5200+10, 40, 6, 23, 0),
		/* IEEE 802.11a, channel 44 */
		REG_RULE(5220-10, 5220+10, 40, 6, 23, 0),
		/* IEEE 802.11a, channels 48..64 */
		REG_RULE(5240-10, 5320+10, 40, 6, 23, 0),
		/* IEEE 802.11a, channels 149..165, outdoor */
		REG_RULE(5745-10, 5825+10, 40, 6, 30, 0),
	}
};

static const struct ieee80211_regdomain jp_regdom = {
	.n_reg_rules = 3,
	.alpha2 =  "JP",
	.reg_rules = {
		/* IEEE 802.11b/g, channels 1..14 */
		REG_RULE(2412-10, 2484+10, 40, 6, 20, 0),
		/* IEEE 802.11a, channels 34..48 */
		REG_RULE(5170-10, 5240+10, 40, 6, 20,
			NL80211_RRF_PASSIVE_SCAN),
		/* IEEE 802.11a, channels 52..64 */
		REG_RULE(5260-10, 5320+10, 40, 6, 20,
			NL80211_RRF_NO_IBSS |
			NL80211_RRF_DFS),
	}
};

static const struct ieee80211_regdomain eu_regdom = {
	.n_reg_rules = 6,
136 137 138 139
	/*
	 * This alpha2 is bogus, we leave it here just for stupid
	 * backward compatibility
	 */
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
	.alpha2 =  "EU",
	.reg_rules = {
		/* IEEE 802.11b/g, channels 1..13 */
		REG_RULE(2412-10, 2472+10, 40, 6, 20, 0),
		/* IEEE 802.11a, channel 36 */
		REG_RULE(5180-10, 5180+10, 40, 6, 23,
			NL80211_RRF_PASSIVE_SCAN),
		/* IEEE 802.11a, channel 40 */
		REG_RULE(5200-10, 5200+10, 40, 6, 23,
			NL80211_RRF_PASSIVE_SCAN),
		/* IEEE 802.11a, channel 44 */
		REG_RULE(5220-10, 5220+10, 40, 6, 23,
			NL80211_RRF_PASSIVE_SCAN),
		/* IEEE 802.11a, channels 48..64 */
		REG_RULE(5240-10, 5320+10, 40, 6, 20,
			NL80211_RRF_NO_IBSS |
			NL80211_RRF_DFS),
		/* IEEE 802.11a, channels 100..140 */
		REG_RULE(5500-10, 5700+10, 40, 6, 30,
			NL80211_RRF_NO_IBSS |
			NL80211_RRF_DFS),
	}
};

static const struct ieee80211_regdomain *static_regdom(char *alpha2)
{
	if (alpha2[0] == 'U' && alpha2[1] == 'S')
		return &us_regdom;
	if (alpha2[0] == 'J' && alpha2[1] == 'P')
		return &jp_regdom;
	if (alpha2[0] == 'E' && alpha2[1] == 'U')
		return &eu_regdom;
	/* Default, as per the old rules */
	return &us_regdom;
}

176
static bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
177 178 179 180 181
{
	if (rd == &us_regdom || rd == &jp_regdom || rd == &eu_regdom)
		return true;
	return false;
}
182 183
#else
static inline bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
184
{
185
	return false;
186
}
187 188
#endif

189 190
static void reset_regdomains(void)
{
191 192 193 194 195 196 197 198 199 200 201 202
	/* avoid freeing static information or freeing something twice */
	if (cfg80211_regdomain == cfg80211_world_regdom)
		cfg80211_regdomain = NULL;
	if (cfg80211_world_regdom == &world_regdom)
		cfg80211_world_regdom = NULL;
	if (cfg80211_regdomain == &world_regdom)
		cfg80211_regdomain = NULL;
	if (is_old_static_regdom(cfg80211_regdomain))
		cfg80211_regdomain = NULL;

	kfree(cfg80211_regdomain);
	kfree(cfg80211_world_regdom);
203

204
	cfg80211_world_regdom = &world_regdom;
205 206 207
	cfg80211_regdomain = NULL;
}

208 209 210 211
/*
 * Dynamic world regulatory domain requested by the wireless
 * core upon initialization
 */
212
static void update_world_regdomain(const struct ieee80211_regdomain *rd)
213
{
214
	BUG_ON(!last_request);
215 216 217 218 219 220 221

	reset_regdomains();

	cfg80211_world_regdom = rd;
	cfg80211_regdomain = rd;
}

222
bool is_world_regdom(const char *alpha2)
223 224 225 226 227 228 229
{
	if (!alpha2)
		return false;
	if (alpha2[0] == '0' && alpha2[1] == '0')
		return true;
	return false;
}
230

231
static bool is_alpha2_set(const char *alpha2)
232 233 234 235 236 237 238
{
	if (!alpha2)
		return false;
	if (alpha2[0] != 0 && alpha2[1] != 0)
		return true;
	return false;
}
239

240 241 242 243 244 245 246
static bool is_alpha_upper(char letter)
{
	/* ASCII A - Z */
	if (letter >= 65 && letter <= 90)
		return true;
	return false;
}
247

248
static bool is_unknown_alpha2(const char *alpha2)
249 250 251
{
	if (!alpha2)
		return false;
252 253 254 255
	/*
	 * Special case where regulatory domain was built by driver
	 * but a specific alpha2 cannot be determined
	 */
256 257 258 259
	if (alpha2[0] == '9' && alpha2[1] == '9')
		return true;
	return false;
}
260

261 262 263 264
static bool is_intersected_alpha2(const char *alpha2)
{
	if (!alpha2)
		return false;
265 266
	/*
	 * Special case where regulatory domain is the
267
	 * result of an intersection between two regulatory domain
268 269
	 * structures
	 */
270 271 272 273 274
	if (alpha2[0] == '9' && alpha2[1] == '8')
		return true;
	return false;
}

275
static bool is_an_alpha2(const char *alpha2)
276 277 278 279 280 281 282
{
	if (!alpha2)
		return false;
	if (is_alpha_upper(alpha2[0]) && is_alpha_upper(alpha2[1]))
		return true;
	return false;
}
283

284
static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
285 286 287 288 289 290 291 292 293
{
	if (!alpha2_x || !alpha2_y)
		return false;
	if (alpha2_x[0] == alpha2_y[0] &&
		alpha2_x[1] == alpha2_y[1])
		return true;
	return false;
}

294
static bool regdom_changed(const char *alpha2)
295
{
296 297
	assert_cfg80211_lock();

298 299 300 301 302 303 304
	if (!cfg80211_regdomain)
		return true;
	if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
		return false;
	return true;
}

305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
/**
 * country_ie_integrity_changes - tells us if the country IE has changed
 * @checksum: checksum of country IE of fields we are interested in
 *
 * If the country IE has not changed you can ignore it safely. This is
 * useful to determine if two devices are seeing two different country IEs
 * even on the same alpha2. Note that this will return false if no IE has
 * been set on the wireless core yet.
 */
static bool country_ie_integrity_changes(u32 checksum)
{
	/* If no IE has been set then the checksum doesn't change */
	if (unlikely(!last_request->country_ie_checksum))
		return false;
	if (unlikely(last_request->country_ie_checksum != checksum))
		return true;
	return false;
}

324 325 326 327
/*
 * This lets us keep regulatory code which is updated on a regulatory
 * basis in userspace.
 */
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
static int call_crda(const char *alpha2)
{
	char country_env[9 + 2] = "COUNTRY=";
	char *envp[] = {
		country_env,
		NULL
	};

	if (!is_world_regdom((char *) alpha2))
		printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
			alpha2[0], alpha2[1]);
	else
		printk(KERN_INFO "cfg80211: Calling CRDA to update world "
			"regulatory domain\n");

	country_env[8] = alpha2[0];
	country_env[9] = alpha2[1];

	return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
}

/* Used by nl80211 before kmalloc'ing our regulatory domain */
350
bool reg_is_valid_request(const char *alpha2)
351
{
352 353 354 355
	if (!last_request)
		return false;

	return alpha2_equal(last_request->alpha2, alpha2);
356
}
357

358
/* Sanity check on a regulatory rule */
359
static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
360
{
361
	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
362 363
	u32 freq_diff;

364
	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
365 366 367 368 369 370 371
		return false;

	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
		return false;

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;

372
	if (freq_diff <= 0 || freq_range->max_bandwidth_khz > freq_diff)
373 374 375 376 377
		return false;

	return true;
}

378
static bool is_valid_rd(const struct ieee80211_regdomain *rd)
379
{
380
	const struct ieee80211_reg_rule *reg_rule = NULL;
381
	unsigned int i;
382

383 384
	if (!rd->n_reg_rules)
		return false;
385

386 387 388
	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
		return false;

389 390 391 392 393 394 395
	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		if (!is_valid_reg_rule(reg_rule))
			return false;
	}

	return true;
396 397
}

398 399 400 401 402 403 404 405 406 407 408 409 410 411
/* Returns value in KHz */
static u32 freq_max_bandwidth(const struct ieee80211_freq_range *freq_range,
	u32 freq)
{
	unsigned int i;
	for (i = 0; i < ARRAY_SIZE(supported_bandwidths); i++) {
		u32 start_freq_khz = freq - supported_bandwidths[i]/2;
		u32 end_freq_khz = freq + supported_bandwidths[i]/2;
		if (start_freq_khz >= freq_range->start_freq_khz &&
			end_freq_khz <= freq_range->end_freq_khz)
			return supported_bandwidths[i];
	}
	return 0;
}
412

413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
/**
 * freq_in_rule_band - tells us if a frequency is in a frequency band
 * @freq_range: frequency rule we want to query
 * @freq_khz: frequency we are inquiring about
 *
 * This lets us know if a specific frequency rule is or is not relevant to
 * a specific frequency's band. Bands are device specific and artificial
 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
 * safe for now to assume that a frequency rule should not be part of a
 * frequency's band if the start freq or end freq are off by more than 2 GHz.
 * This resolution can be lowered and should be considered as we add
 * regulatory rule support for other "bands".
 **/
static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
	u32 freq_khz)
{
#define ONE_GHZ_IN_KHZ	1000000
	if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	return false;
#undef ONE_GHZ_IN_KHZ
}

438 439
/*
 * Converts a country IE to a regulatory domain. A regulatory domain
440 441
 * structure has a lot of information which the IE doesn't yet have,
 * so for the other values we use upper max values as we will intersect
442 443
 * with our userspace regulatory agent to get lower bounds.
 */
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
static struct ieee80211_regdomain *country_ie_2_rd(
				u8 *country_ie,
				u8 country_ie_len,
				u32 *checksum)
{
	struct ieee80211_regdomain *rd = NULL;
	unsigned int i = 0;
	char alpha2[2];
	u32 flags = 0;
	u32 num_rules = 0, size_of_regd = 0;
	u8 *triplets_start = NULL;
	u8 len_at_triplet = 0;
	/* the last channel we have registered in a subband (triplet) */
	int last_sub_max_channel = 0;

	*checksum = 0xDEADBEEF;

	/* Country IE requirements */
	BUG_ON(country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN ||
		country_ie_len & 0x01);

	alpha2[0] = country_ie[0];
	alpha2[1] = country_ie[1];

	/*
	 * Third octet can be:
	 *    'I' - Indoor
	 *    'O' - Outdoor
	 *
	 *  anything else we assume is no restrictions
	 */
	if (country_ie[2] == 'I')
		flags = NL80211_RRF_NO_OUTDOOR;
	else if (country_ie[2] == 'O')
		flags = NL80211_RRF_NO_INDOOR;

	country_ie += 3;
	country_ie_len -= 3;

	triplets_start = country_ie;
	len_at_triplet = country_ie_len;

	*checksum ^= ((flags ^ alpha2[0] ^ alpha2[1]) << 8);

488 489
	/*
	 * We need to build a reg rule for each triplet, but first we must
490
	 * calculate the number of reg rules we will need. We will need one
491 492
	 * for each channel subband
	 */
493
	while (country_ie_len >= 3) {
494
		int end_channel = 0;
495 496 497 498 499 500 501 502 503 504 505
		struct ieee80211_country_ie_triplet *triplet =
			(struct ieee80211_country_ie_triplet *) country_ie;
		int cur_sub_max_channel = 0, cur_channel = 0;

		if (triplet->ext.reg_extension_id >=
				IEEE80211_COUNTRY_EXTENSION_ID) {
			country_ie += 3;
			country_ie_len -= 3;
			continue;
		}

506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
		/* 2 GHz */
		if (triplet->chans.first_channel <= 14)
			end_channel = triplet->chans.first_channel +
				triplet->chans.num_channels;
		else
			/*
			 * 5 GHz -- For example in country IEs if the first
			 * channel given is 36 and the number of channels is 4
			 * then the individual channel numbers defined for the
			 * 5 GHz PHY by these parameters are: 36, 40, 44, and 48
			 * and not 36, 37, 38, 39.
			 *
			 * See: http://tinyurl.com/11d-clarification
			 */
			end_channel =  triplet->chans.first_channel +
				(4 * (triplet->chans.num_channels - 1));

523
		cur_channel = triplet->chans.first_channel;
524
		cur_sub_max_channel = end_channel;
525 526 527 528 529

		/* Basic sanity check */
		if (cur_sub_max_channel < cur_channel)
			return NULL;

530 531
		/*
		 * Do not allow overlapping channels. Also channels
532
		 * passed in each subband must be monotonically
533 534
		 * increasing
		 */
535 536 537 538 539 540 541
		if (last_sub_max_channel) {
			if (cur_channel <= last_sub_max_channel)
				return NULL;
			if (cur_sub_max_channel <= last_sub_max_channel)
				return NULL;
		}

542 543
		/*
		 * When dot11RegulatoryClassesRequired is supported
544 545
		 * we can throw ext triplets as part of this soup,
		 * for now we don't care when those change as we
546 547
		 * don't support them
		 */
548 549 550 551 552 553 554 555 556 557
		*checksum ^= ((cur_channel ^ cur_sub_max_channel) << 8) |
		  ((cur_sub_max_channel ^ cur_sub_max_channel) << 16) |
		  ((triplet->chans.max_power ^ cur_sub_max_channel) << 24);

		last_sub_max_channel = cur_sub_max_channel;

		country_ie += 3;
		country_ie_len -= 3;
		num_rules++;

558 559 560 561
		/*
		 * Note: this is not a IEEE requirement but
		 * simply a memory requirement
		 */
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
		if (num_rules > NL80211_MAX_SUPP_REG_RULES)
			return NULL;
	}

	country_ie = triplets_start;
	country_ie_len = len_at_triplet;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
		(num_rules * sizeof(struct ieee80211_reg_rule));

	rd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!rd)
		return NULL;

	rd->n_reg_rules = num_rules;
	rd->alpha2[0] = alpha2[0];
	rd->alpha2[1] = alpha2[1];

	/* This time around we fill in the rd */
	while (country_ie_len >= 3) {
582
		int end_channel = 0;
583 584 585 586 587 588
		struct ieee80211_country_ie_triplet *triplet =
			(struct ieee80211_country_ie_triplet *) country_ie;
		struct ieee80211_reg_rule *reg_rule = NULL;
		struct ieee80211_freq_range *freq_range = NULL;
		struct ieee80211_power_rule *power_rule = NULL;

589 590 591 592
		/*
		 * Must parse if dot11RegulatoryClassesRequired is true,
		 * we don't support this yet
		 */
593 594 595 596 597 598 599 600 601 602 603 604 605
		if (triplet->ext.reg_extension_id >=
				IEEE80211_COUNTRY_EXTENSION_ID) {
			country_ie += 3;
			country_ie_len -= 3;
			continue;
		}

		reg_rule = &rd->reg_rules[i];
		freq_range = &reg_rule->freq_range;
		power_rule = &reg_rule->power_rule;

		reg_rule->flags = flags;

606 607 608 609 610 611 612 613
		/* 2 GHz */
		if (triplet->chans.first_channel <= 14)
			end_channel = triplet->chans.first_channel +
				triplet->chans.num_channels;
		else
			end_channel =  triplet->chans.first_channel +
				(4 * (triplet->chans.num_channels - 1));

614 615
		/*
		 * The +10 is since the regulatory domain expects
616 617
		 * the actual band edge, not the center of freq for
		 * its start and end freqs, assuming 20 MHz bandwidth on
618 619
		 * the channels passed
		 */
620 621 622 623 624
		freq_range->start_freq_khz =
			MHZ_TO_KHZ(ieee80211_channel_to_frequency(
				triplet->chans.first_channel) - 10);
		freq_range->end_freq_khz =
			MHZ_TO_KHZ(ieee80211_channel_to_frequency(
625
				end_channel) + 10);
626

627 628 629 630 631
		/*
		 * These are large arbitrary values we use to intersect later.
		 * Increment this if we ever support >= 40 MHz channels
		 * in IEEE 802.11
		 */
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
		freq_range->max_bandwidth_khz = MHZ_TO_KHZ(40);
		power_rule->max_antenna_gain = DBI_TO_MBI(100);
		power_rule->max_eirp = DBM_TO_MBM(100);

		country_ie += 3;
		country_ie_len -= 3;
		i++;

		BUG_ON(i > NL80211_MAX_SUPP_REG_RULES);
	}

	return rd;
}


647 648 649 650
/*
 * Helper for regdom_intersect(), this does the real
 * mathematical intersection fun
 */
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
static int reg_rules_intersect(
	const struct ieee80211_reg_rule *rule1,
	const struct ieee80211_reg_rule *rule2,
	struct ieee80211_reg_rule *intersected_rule)
{
	const struct ieee80211_freq_range *freq_range1, *freq_range2;
	struct ieee80211_freq_range *freq_range;
	const struct ieee80211_power_rule *power_rule1, *power_rule2;
	struct ieee80211_power_rule *power_rule;
	u32 freq_diff;

	freq_range1 = &rule1->freq_range;
	freq_range2 = &rule2->freq_range;
	freq_range = &intersected_rule->freq_range;

	power_rule1 = &rule1->power_rule;
	power_rule2 = &rule2->power_rule;
	power_rule = &intersected_rule->power_rule;

	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
		freq_range2->start_freq_khz);
	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
		freq_range2->end_freq_khz);
	freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
		freq_range2->max_bandwidth_khz);

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
	if (freq_range->max_bandwidth_khz > freq_diff)
		freq_range->max_bandwidth_khz = freq_diff;

	power_rule->max_eirp = min(power_rule1->max_eirp,
		power_rule2->max_eirp);
	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
		power_rule2->max_antenna_gain);

	intersected_rule->flags = (rule1->flags | rule2->flags);

	if (!is_valid_reg_rule(intersected_rule))
		return -EINVAL;

	return 0;
}

/**
 * regdom_intersect - do the intersection between two regulatory domains
 * @rd1: first regulatory domain
 * @rd2: second regulatory domain
 *
 * Use this function to get the intersection between two regulatory domains.
 * Once completed we will mark the alpha2 for the rd as intersected, "98",
 * as no one single alpha2 can represent this regulatory domain.
 *
 * Returns a pointer to the regulatory domain structure which will hold the
 * resulting intersection of rules between rd1 and rd2. We will
 * kzalloc() this structure for you.
 */
static struct ieee80211_regdomain *regdom_intersect(
	const struct ieee80211_regdomain *rd1,
	const struct ieee80211_regdomain *rd2)
{
	int r, size_of_regd;
	unsigned int x, y;
	unsigned int num_rules = 0, rule_idx = 0;
	const struct ieee80211_reg_rule *rule1, *rule2;
	struct ieee80211_reg_rule *intersected_rule;
	struct ieee80211_regdomain *rd;
	/* This is just a dummy holder to help us count */
	struct ieee80211_reg_rule irule;

	/* Uses the stack temporarily for counter arithmetic */
	intersected_rule = &irule;

	memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));

	if (!rd1 || !rd2)
		return NULL;

728 729
	/*
	 * First we get a count of the rules we'll need, then we actually
730 731 732
	 * build them. This is to so we can malloc() and free() a
	 * regdomain once. The reason we use reg_rules_intersect() here
	 * is it will return -EINVAL if the rule computed makes no sense.
733 734
	 * All rules that do check out OK are valid.
	 */
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
			if (!reg_rules_intersect(rule1, rule2,
					intersected_rule))
				num_rules++;
			memset(intersected_rule, 0,
					sizeof(struct ieee80211_reg_rule));
		}
	}

	if (!num_rules)
		return NULL;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
		((num_rules + 1) * sizeof(struct ieee80211_reg_rule));

	rd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!rd)
		return NULL;

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
762 763
			/*
			 * This time around instead of using the stack lets
764
			 * write to the target rule directly saving ourselves
765 766
			 * a memcpy()
			 */
767 768 769
			intersected_rule = &rd->reg_rules[rule_idx];
			r = reg_rules_intersect(rule1, rule2,
				intersected_rule);
770 771 772 773
			/*
			 * No need to memset here the intersected rule here as
			 * we're not using the stack anymore
			 */
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
			if (r)
				continue;
			rule_idx++;
		}
	}

	if (rule_idx != num_rules) {
		kfree(rd);
		return NULL;
	}

	rd->n_reg_rules = num_rules;
	rd->alpha2[0] = '9';
	rd->alpha2[1] = '8';

	return rd;
}

792 793 794 795
/*
 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
 * want to just have the channel structure use these
 */
796 797 798 799 800 801 802 803 804 805 806 807
static u32 map_regdom_flags(u32 rd_flags)
{
	u32 channel_flags = 0;
	if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
		channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
	if (rd_flags & NL80211_RRF_NO_IBSS)
		channel_flags |= IEEE80211_CHAN_NO_IBSS;
	if (rd_flags & NL80211_RRF_DFS)
		channel_flags |= IEEE80211_CHAN_RADAR;
	return channel_flags;
}

808 809 810 811 812
static int freq_reg_info_regd(struct wiphy *wiphy,
			      u32 center_freq,
			      u32 *bandwidth,
			      const struct ieee80211_reg_rule **reg_rule,
			      const struct ieee80211_regdomain *custom_regd)
813 814
{
	int i;
815
	bool band_rule_found = false;
816
	const struct ieee80211_regdomain *regd;
817
	u32 max_bandwidth = 0;
818

819
	regd = custom_regd ? custom_regd : cfg80211_regdomain;
820

821 822 823 824
	/*
	 * Follow the driver's regulatory domain, if present, unless a country
	 * IE has been processed or a user wants to help complaince further
	 */
825
	if (last_request->initiator != REGDOM_SET_BY_COUNTRY_IE &&
826
	    last_request->initiator != REGDOM_SET_BY_USER &&
827 828 829 830
	    wiphy->regd)
		regd = wiphy->regd;

	if (!regd)
831 832
		return -EINVAL;

833
	for (i = 0; i < regd->n_reg_rules; i++) {
834 835 836 837
		const struct ieee80211_reg_rule *rr;
		const struct ieee80211_freq_range *fr = NULL;
		const struct ieee80211_power_rule *pr = NULL;

838
		rr = &regd->reg_rules[i];
839 840
		fr = &rr->freq_range;
		pr = &rr->power_rule;
841

842 843
		/*
		 * We only need to know if one frequency rule was
844
		 * was in center_freq's band, that's enough, so lets
845 846
		 * not overwrite it once found
		 */
847 848 849
		if (!band_rule_found)
			band_rule_found = freq_in_rule_band(fr, center_freq);

850
		max_bandwidth = freq_max_bandwidth(fr, center_freq);
851

852 853 854
		if (max_bandwidth && *bandwidth <= max_bandwidth) {
			*reg_rule = rr;
			*bandwidth = max_bandwidth;
855 856 857 858
			break;
		}
	}

859 860 861
	if (!band_rule_found)
		return -ERANGE;

862 863
	return !max_bandwidth;
}
864
EXPORT_SYMBOL(freq_reg_info);
865

866
int freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 *bandwidth,
867 868 869 870 871
			 const struct ieee80211_reg_rule **reg_rule)
{
	return freq_reg_info_regd(wiphy, center_freq,
		bandwidth, reg_rule, NULL);
}
872

873 874
static void handle_channel(struct wiphy *wiphy, enum ieee80211_band band,
			   unsigned int chan_idx)
875 876
{
	int r;
877
	u32 flags;
878 879 880
	u32 max_bandwidth = 0;
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
881 882
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;
883
	struct wiphy *request_wiphy = NULL;
884

885 886
	assert_cfg80211_lock();

887 888
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

889 890 891 892 893
	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

	flags = chan->orig_flags;
894

895
	r = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq),
896 897 898
		&max_bandwidth, &reg_rule);

	if (r) {
899 900
		/*
		 * This means no regulatory rule was found in the country IE
901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
		 * with a frequency range on the center_freq's band, since
		 * IEEE-802.11 allows for a country IE to have a subset of the
		 * regulatory information provided in a country we ignore
		 * disabling the channel unless at least one reg rule was
		 * found on the center_freq's band. For details see this
		 * clarification:
		 *
		 * http://tinyurl.com/11d-clarification
		 */
		if (r == -ERANGE &&
		    last_request->initiator == REGDOM_SET_BY_COUNTRY_IE) {
#ifdef CONFIG_CFG80211_REG_DEBUG
			printk(KERN_DEBUG "cfg80211: Leaving channel %d MHz "
				"intact on %s - no rule found in band on "
				"Country IE\n",
				chan->center_freq, wiphy_name(wiphy));
#endif
		} else {
919 920 921 922
		/*
		 * In this case we know the country IE has at least one reg rule
		 * for the band so we respect its band definitions
		 */
923 924 925 926 927 928 929 930 931 932
#ifdef CONFIG_CFG80211_REG_DEBUG
			if (last_request->initiator == REGDOM_SET_BY_COUNTRY_IE)
				printk(KERN_DEBUG "cfg80211: Disabling "
					"channel %d MHz on %s due to "
					"Country IE\n",
					chan->center_freq, wiphy_name(wiphy));
#endif
			flags |= IEEE80211_CHAN_DISABLED;
			chan->flags = flags;
		}
933 934 935
		return;
	}

936 937
	power_rule = &reg_rule->power_rule;

938
	if (last_request->initiator == REGDOM_SET_BY_DRIVER &&
939 940
	    request_wiphy && request_wiphy == wiphy &&
	    request_wiphy->strict_regulatory) {
941 942
		/*
		 * This gaurantees the driver's requested regulatory domain
943
		 * will always be used as a base for further regulatory
944 945
		 * settings
		 */
946 947 948 949 950 951 952 953 954 955
		chan->flags = chan->orig_flags =
			map_regdom_flags(reg_rule->flags);
		chan->max_antenna_gain = chan->orig_mag =
			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
		chan->max_bandwidth = KHZ_TO_MHZ(max_bandwidth);
		chan->max_power = chan->orig_mpwr =
			(int) MBM_TO_DBM(power_rule->max_eirp);
		return;
	}

956
	chan->flags = flags | map_regdom_flags(reg_rule->flags);
957
	chan->max_antenna_gain = min(chan->orig_mag,
958 959
		(int) MBI_TO_DBI(power_rule->max_antenna_gain));
	chan->max_bandwidth = KHZ_TO_MHZ(max_bandwidth);
960
	if (chan->orig_mpwr)
961 962
		chan->max_power = min(chan->orig_mpwr,
			(int) MBM_TO_DBM(power_rule->max_eirp));
963
	else
964
		chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
965 966
}

967
static void handle_band(struct wiphy *wiphy, enum ieee80211_band band)
968
{
969 970 971 972 973
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];
974 975

	for (i = 0; i < sband->n_channels; i++)
976
		handle_channel(wiphy, band, i);
977 978
}

979 980 981 982 983
static bool ignore_reg_update(struct wiphy *wiphy, enum reg_set_by setby)
{
	if (!last_request)
		return true;
	if (setby == REGDOM_SET_BY_CORE &&
984
		  wiphy->custom_regulatory)
985
		return true;
986 987 988 989
	/*
	 * wiphy->regd will be set once the device has its own
	 * desired regulatory domain set
	 */
990 991
	if (wiphy->strict_regulatory && !wiphy->regd &&
	    !is_world_regdom(last_request->alpha2))
992 993 994 995
		return true;
	return false;
}

996
static void update_all_wiphy_regulatory(enum reg_set_by setby)
997
{
998
	struct cfg80211_registered_device *drv;
999

1000
	list_for_each_entry(drv, &cfg80211_drv_list, list)
1001
		wiphy_update_regulatory(&drv->wiphy, setby);
1002 1003 1004 1005 1006
}

void wiphy_update_regulatory(struct wiphy *wiphy, enum reg_set_by setby)
{
	enum ieee80211_band band;
1007 1008 1009

	if (ignore_reg_update(wiphy, setby))
		return;
1010
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1011
		if (wiphy->bands[band])
1012
			handle_band(wiphy, band);
1013
	}
1014
	if (wiphy->reg_notifier)
1015
		wiphy->reg_notifier(wiphy, last_request);
1016 1017
}

1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
static void handle_channel_custom(struct wiphy *wiphy,
				  enum ieee80211_band band,
				  unsigned int chan_idx,
				  const struct ieee80211_regdomain *regd)
{
	int r;
	u32 max_bandwidth = 0;
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;

	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

	r = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
		&max_bandwidth, &reg_rule, regd);

	if (r) {
		chan->flags = IEEE80211_CHAN_DISABLED;
		return;
	}

	power_rule = &reg_rule->power_rule;

	chan->flags |= map_regdom_flags(reg_rule->flags);
	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
	chan->max_bandwidth = KHZ_TO_MHZ(max_bandwidth);
	chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
}

static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
			       const struct ieee80211_regdomain *regd)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];

	for (i = 0; i < sband->n_channels; i++)
		handle_channel_custom(wiphy, band, i, regd);
}

/* Used by drivers prior to wiphy registration */
void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
				   const struct ieee80211_regdomain *regd)
{
	enum ieee80211_band band;
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
		if (wiphy->bands[band])
			handle_band_custom(wiphy, band, regd);
1071 1072
	}
}
1073 1074
EXPORT_SYMBOL(wiphy_apply_custom_regulatory);

1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
			 const struct ieee80211_regdomain *src_regd)
{
	struct ieee80211_regdomain *regd;
	int size_of_regd = 0;
	unsigned int i;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
	  ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));

	regd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!regd)
		return -ENOMEM;

	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));

	for (i = 0; i < src_regd->n_reg_rules; i++)
		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
			sizeof(struct ieee80211_reg_rule));

	*dst_regd = regd;
	return 0;
}
1098

1099 1100 1101 1102
/*
 * Return value which can be used by ignore_request() to indicate
 * it has been determined we should intersect two regulatory domains
 */
1103 1104
#define REG_INTERSECT	1

1105 1106 1107 1108 1109
/* This has the logic which determines when a new request
 * should be ignored. */
static int ignore_request(struct wiphy *wiphy, enum reg_set_by set_by,
			  const char *alpha2)
{
1110
	struct wiphy *last_wiphy = NULL;
1111 1112 1113

	assert_cfg80211_lock();

1114 1115 1116 1117 1118 1119 1120 1121
	/* All initial requests are respected */
	if (!last_request)
		return 0;

	switch (set_by) {
	case REGDOM_SET_BY_INIT:
		return -EINVAL;
	case REGDOM_SET_BY_CORE:
1122
		return -EINVAL;
1123
	case REGDOM_SET_BY_COUNTRY_IE:
1124 1125 1126

		last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

1127 1128 1129
		if (unlikely(!is_an_alpha2(alpha2)))
			return -EINVAL;
		if (last_request->initiator == REGDOM_SET_BY_COUNTRY_IE) {
1130
			if (last_wiphy != wiphy) {
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
				/*
				 * Two cards with two APs claiming different
				 * different Country IE alpha2s. We could
				 * intersect them, but that seems unlikely
				 * to be correct. Reject second one for now.
				 */
				if (!alpha2_equal(alpha2,
						  cfg80211_regdomain->alpha2))
					return -EOPNOTSUPP;
				return -EALREADY;
			}
1142 1143 1144 1145
			/*
			 * Two consecutive Country IE hints on the same wiphy.
			 * This should be picked up early by the driver/stack
			 */
1146 1147
			if (WARN_ON(!alpha2_equal(cfg80211_regdomain->alpha2,
				  alpha2)))
1148 1149 1150
				return 0;
			return -EALREADY;
		}
1151
		return REG_INTERSECT;
1152
	case REGDOM_SET_BY_DRIVER:
1153 1154 1155 1156 1157
		if (last_request->initiator == REGDOM_SET_BY_CORE) {
			if (is_old_static_regdom(cfg80211_regdomain))
				return 0;
			if (!alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
				return 0;
1158
			return -EALREADY;
1159
		}
1160
		return REG_INTERSECT;
1161 1162
	case REGDOM_SET_BY_USER:
		if (last_request->initiator == REGDOM_SET_BY_COUNTRY_IE)
1163
			return REG_INTERSECT;
1164 1165 1166 1167
		/*
		 * If the user knows better the user should set the regdom
		 * to their country before the IE is picked up
		 */
1168 1169 1170
		if (last_request->initiator == REGDOM_SET_BY_USER &&
			  last_request->intersect)
			return -EOPNOTSUPP;
1171 1172 1173 1174
		/*
		 * Process user requests only after previous user/driver/core
		 * requests have been processed
		 */
1175 1176 1177 1178 1179 1180 1181 1182
		if (last_request->initiator == REGDOM_SET_BY_CORE ||
		    last_request->initiator == REGDOM_SET_BY_DRIVER ||
		    last_request->initiator == REGDOM_SET_BY_USER) {
			if (!alpha2_equal(last_request->alpha2,
			    cfg80211_regdomain->alpha2))
				return -EAGAIN;
		}

1183 1184 1185 1186
		if (!is_old_static_regdom(cfg80211_regdomain) &&
		    alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
			return -EALREADY;

1187 1188 1189 1190 1191 1192
		return 0;
	}

	return -EINVAL;
}

1193
/* Caller must hold &cfg80211_mutex */
1194
int __regulatory_hint(struct wiphy *wiphy, enum reg_set_by set_by,
1195 1196 1197
			const char *alpha2,
			u32 country_ie_checksum,
			enum environment_cap env)
1198 1199
{
	struct regulatory_request *request;
1200
	bool intersect = false;
1201 1202
	int r = 0;

1203 1204
	assert_cfg80211_lock();

1205
	r = ignore_request(wiphy, set_by, alpha2);
1206

1207 1208 1209 1210 1211 1212
	if (r == REG_INTERSECT) {
		if (set_by == REGDOM_SET_BY_DRIVER) {
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
			if (r)
				return r;
		}
1213
		intersect = true;
1214
	} else if (r) {
1215 1216
		/*
		 * If the regulatory domain being requested by the
1217
		 * driver has already been set just copy it to the
1218 1219
		 * wiphy
		 */
1220 1221 1222 1223 1224 1225 1226
		if (r == -EALREADY && set_by == REGDOM_SET_BY_DRIVER) {
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
			if (r)
				return r;
			r = -EALREADY;
			goto new_request;
		}
1227
		return r;
1228
	}
1229

1230
new_request:
1231 1232 1233 1234 1235 1236 1237 1238
	request = kzalloc(sizeof(struct regulatory_request),
			  GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
	request->initiator = set_by;
1239
	request->wiphy_idx = get_wiphy_idx(wiphy);
1240
	request->intersect = intersect;
1241 1242
	request->country_ie_checksum = country_ie_checksum;
	request->country_ie_env = env;
1243 1244 1245

	kfree(last_request);
	last_request = request;
1246 1247 1248 1249 1250

	/* When r == REG_INTERSECT we do need to call CRDA */
	if (r < 0)
		return r;

1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
	/*
	 * Note: When CONFIG_WIRELESS_OLD_REGULATORY is enabled
	 * AND if CRDA is NOT present nothing will happen, if someone
	 * wants to bother with 11d with OLD_REG you can add a timer.
	 * If after x amount of time nothing happens you can call:
	 *
	 * return set_regdom(country_ie_regdomain);
	 *
	 * to intersect with the static rd
	 */
1261
	return call_crda(alpha2);
1262 1263
}

1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
/* This currently only processes user and driver regulatory hints */
static int reg_process_hint(struct regulatory_request *reg_request)
{
	int r = 0;
	struct wiphy *wiphy = NULL;

	BUG_ON(!reg_request->alpha2);

	mutex_lock(&cfg80211_mutex);

	if (wiphy_idx_valid(reg_request->wiphy_idx))
		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);

	if (reg_request->initiator == REGDOM_SET_BY_DRIVER &&
	    !wiphy) {
		r = -ENODEV;
		goto out;
	}

	r = __regulatory_hint(wiphy,
			      reg_request->initiator,
			      reg_request->alpha2,
			      reg_request->country_ie_checksum,
			      reg_request->country_ie_env);
	/* This is required so that the orig_* parameters are saved */
	if (r == -EALREADY && wiphy && wiphy->strict_regulatory)
		wiphy_update_regulatory(wiphy, reg_request->initiator);
out:
	mutex_unlock(&cfg80211_mutex);

	if (r == -EALREADY)
		r = 0;

	return r;
}

static void reg_process_pending_hints(void)
	{
	struct regulatory_request *reg_request;
	int r;

	spin_lock(&reg_requests_lock);
	while (!list_empty(&reg_requests_list)) {
		reg_request = list_first_entry(&reg_requests_list,
					       struct regulatory_request,
					       list);
		list_del_init(&reg_request->list);
		spin_unlock(&reg_requests_lock);

		r = reg_process_hint(reg_request);
#ifdef CONFIG_CFG80211_REG_DEBUG
		if (r && (reg_request->initiator == REGDOM_SET_BY_DRIVER ||
		    reg_request->initiator == REGDOM_SET_BY_COUNTRY_IE))
			printk(KERN_ERR "cfg80211: wiphy_idx %d sent a "
				"regulatory hint for %c%c but now has "
				"gone fishing, ignoring request\n",
				reg_request->wiphy_idx,
				reg_request->alpha2[0],
				reg_request->alpha2[1]);
#endif
		kfree(reg_request);
		spin_lock(&reg_requests_lock);
	}
	spin_unlock(&reg_requests_lock);
}

static void reg_todo(struct work_struct *work)
{
	reg_process_pending_hints();
}

static DECLARE_WORK(reg_work, reg_todo);

static void queue_regulatory_request(struct regulatory_request *request)
{
	spin_lock(&reg_requests_lock);
	list_add_tail(&request->list, &reg_requests_list);
	spin_unlock(&reg_requests_lock);

	schedule_work(&reg_work);
}

/* Core regulatory hint -- happens once during cfg80211_init() */
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
static int regulatory_hint_core(const char *alpha2)
{
	struct regulatory_request *request;

	BUG_ON(last_request);

	request = kzalloc(sizeof(struct regulatory_request),
			  GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
	request->initiator = REGDOM_SET_BY_CORE;

1362
	queue_regulatory_request(request);
1363

1364
	return 0;
1365 1366
}

1367 1368
/* User hints */
int regulatory_hint_user(const char *alpha2)
1369
{
1370 1371
	struct regulatory_request *request;

1372
	BUG_ON(!alpha2);
1373

1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = WIPHY_IDX_STALE;
	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
	request->initiator = REGDOM_SET_BY_USER,

	queue_regulatory_request(request);

	return 0;
}

/* Driver hints */
int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
{
	struct regulatory_request *request;

	BUG_ON(!alpha2);
	BUG_ON(!wiphy);

	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = get_wiphy_idx(wiphy);

	/* Must have registered wiphy first */
	BUG_ON(!wiphy_idx_valid(request->wiphy_idx));

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
	request->initiator = REGDOM_SET_BY_DRIVER;

	queue_regulatory_request(request);

	return 0;
1412 1413 1414
}
EXPORT_SYMBOL(regulatory_hint);

1415 1416 1417
static bool reg_same_country_ie_hint(struct wiphy *wiphy,
			u32 country_ie_checksum)
{
1418 1419
	struct wiphy *request_wiphy;

1420 1421
	assert_cfg80211_lock();

1422 1423 1424
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

	if (!request_wiphy)
1425
		return false;
1426 1427

	if (likely(request_wiphy != wiphy))
1428
		return !country_ie_integrity_changes(country_ie_checksum);
1429 1430
	/*
	 * We should not have let these through at this point, they
1431
	 * should have been picked up earlier by the first alpha2 check
1432 1433
	 * on the device
	 */
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
	if (WARN_ON(!country_ie_integrity_changes(country_ie_checksum)))
		return true;
	return false;
}

void regulatory_hint_11d(struct wiphy *wiphy,
			u8 *country_ie,
			u8 country_ie_len)
{
	struct ieee80211_regdomain *rd = NULL;
	char alpha2[2];
	u32 checksum = 0;
	enum environment_cap env = ENVIRON_ANY;
1447
	struct regulatory_request *request;
1448

1449
	mutex_lock(&cfg80211_mutex);
1450

1451 1452 1453 1454 1455
	if (unlikely(!last_request)) {
		mutex_unlock(&cfg80211_mutex);
		return;
	}

1456 1457 1458 1459 1460 1461 1462
	/* IE len must be evenly divisible by 2 */
	if (country_ie_len & 0x01)
		goto out;

	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
		goto out;

1463 1464
	/*
	 * Pending country IE processing, this can happen after we
1465
	 * call CRDA and wait for a response if a beacon was received before
1466 1467
	 * we were able to process the last regulatory_hint_11d() call
	 */
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
	if (country_ie_regdomain)
		goto out;

	alpha2[0] = country_ie[0];
	alpha2[1] = country_ie[1];

	if (country_ie[2] == 'I')
		env = ENVIRON_INDOOR;
	else if (country_ie[2] == 'O')
		env = ENVIRON_OUTDOOR;

1479 1480
	/*
	 * We will run this for *every* beacon processed for the BSSID, so
1481
	 * we optimize an early check to exit out early if we don't have to
1482 1483
	 * do anything
	 */
1484
	if (likely(wiphy_idx_valid(last_request->wiphy_idx))) {
1485 1486
		struct cfg80211_registered_device *drv_last_ie;

1487 1488
		drv_last_ie =
			cfg80211_drv_by_wiphy_idx(last_request->wiphy_idx);
1489

1490 1491 1492 1493
		/*
		 * Lets keep this simple -- we trust the first AP
		 * after we intersect with CRDA
		 */
1494
		if (likely(&drv_last_ie->wiphy == wiphy)) {
1495 1496 1497 1498
			/*
			 * Ignore IEs coming in on this wiphy with
			 * the same alpha2 and environment cap
			 */
1499 1500 1501 1502 1503
			if (likely(alpha2_equal(drv_last_ie->country_ie_alpha2,
				  alpha2) &&
				  env == drv_last_ie->env)) {
				goto out;
			}
1504 1505
			/*
			 * the wiphy moved on to another BSSID or the AP
1506 1507 1508
			 * was reconfigured. XXX: We need to deal with the
			 * case where the user suspends and goes to goes
			 * to another country, and then gets IEs from an
1509 1510
			 * AP with different settings
			 */
1511 1512
			goto out;
		} else {
1513 1514 1515 1516
			/*
			 * Ignore IEs coming in on two separate wiphys with
			 * the same alpha2 and environment cap
			 */
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
			if (likely(alpha2_equal(drv_last_ie->country_ie_alpha2,
				  alpha2) &&
				  env == drv_last_ie->env)) {
				goto out;
			}
			/* We could potentially intersect though */
			goto out;
		}
	}

	rd = country_ie_2_rd(country_ie, country_ie_len, &checksum);
	if (!rd)
		goto out;

1531 1532
	/*
	 * This will not happen right now but we leave it here for the
1533 1534
	 * the future when we want to add suspend/resume support and having
	 * the user move to another country after doing so, or having the user
1535 1536 1537 1538 1539 1540
	 * move to another AP. Right now we just trust the first AP.
	 *
	 * If we hit this before we add this support we want to be informed of
	 * it as it would indicate a mistake in the current design
	 */
	if (WARN_ON(reg_same_country_ie_hint(wiphy, checksum)))
1541
		goto free_rd_out;
1542

1543 1544 1545 1546
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		goto free_rd_out;

1547 1548 1549 1550
	/*
	 * We keep this around for when CRDA comes back with a response so
	 * we can intersect with that
	 */
1551 1552
	country_ie_regdomain = rd;

1553 1554 1555 1556 1557 1558 1559 1560
	request->wiphy_idx = get_wiphy_idx(wiphy);
	request->alpha2[0] = rd->alpha2[0];
	request->alpha2[1] = rd->alpha2[1];
	request->initiator = REGDOM_SET_BY_COUNTRY_IE;
	request->country_ie_checksum = checksum;
	request->country_ie_env = env;

	mutex_unlock(&cfg80211_mutex);
1561

1562 1563 1564
	queue_regulatory_request(request);

	return;
1565 1566 1567

free_rd_out:
	kfree(rd);
1568
out:
1569
	mutex_unlock(&cfg80211_mutex);
1570 1571
}
EXPORT_SYMBOL(regulatory_hint_11d);
1572

1573
static void print_rd_rules(const struct ieee80211_regdomain *rd)
1574 1575
{
	unsigned int i;
1576 1577 1578
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_freq_range *freq_range = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
1579 1580 1581 1582 1583 1584 1585 1586 1587

	printk(KERN_INFO "\t(start_freq - end_freq @ bandwidth), "
		"(max_antenna_gain, max_eirp)\n");

	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		freq_range = &reg_rule->freq_range;
		power_rule = &reg_rule->power_rule;

1588 1589 1590 1591
		/*
		 * There may not be documentation for max antenna gain
		 * in certain regions
		 */
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
		if (power_rule->max_antenna_gain)
			printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
				"(%d mBi, %d mBm)\n",
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_antenna_gain,
				power_rule->max_eirp);
		else
			printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
				"(N/A, %d mBm)\n",
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_eirp);
	}
}

1610
static void print_regdomain(const struct ieee80211_regdomain *rd)
1611 1612
{

1613 1614 1615
	if (is_intersected_alpha2(rd->alpha2)) {

		if (last_request->initiator == REGDOM_SET_BY_COUNTRY_IE) {
1616 1617 1618 1619
			struct cfg80211_registered_device *drv;
			drv = cfg80211_drv_by_wiphy_idx(
				last_request->wiphy_idx);
			if (drv) {
1620 1621 1622 1623 1624 1625 1626 1627 1628
				printk(KERN_INFO "cfg80211: Current regulatory "
					"domain updated by AP to: %c%c\n",
					drv->country_ie_alpha2[0],
					drv->country_ie_alpha2[1]);
			} else
				printk(KERN_INFO "cfg80211: Current regulatory "
					"domain intersected: \n");
		} else
				printk(KERN_INFO "cfg80211: Current regulatory "
1629
					"domain intersected: \n");
1630
	} else if (is_world_regdom(rd->alpha2))
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
		printk(KERN_INFO "cfg80211: World regulatory "
			"domain updated:\n");
	else {
		if (is_unknown_alpha2(rd->alpha2))
			printk(KERN_INFO "cfg80211: Regulatory domain "
				"changed to driver built-in settings "
				"(unknown country)\n");
		else
			printk(KERN_INFO "cfg80211: Regulatory domain "
				"changed to country: %c%c\n",
				rd->alpha2[0], rd->alpha2[1]);
	}
	print_rd_rules(rd);
}

1646
static void print_regdomain_info(const struct ieee80211_regdomain *rd)
1647 1648 1649 1650 1651 1652
{
	printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
		rd->alpha2[0], rd->alpha2[1]);
	print_rd_rules(rd);
}

1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
#ifdef CONFIG_CFG80211_REG_DEBUG
static void reg_country_ie_process_debug(
	const struct ieee80211_regdomain *rd,
	const struct ieee80211_regdomain *country_ie_regdomain,
	const struct ieee80211_regdomain *intersected_rd)
{
	printk(KERN_DEBUG "cfg80211: Received country IE:\n");
	print_regdomain_info(country_ie_regdomain);
	printk(KERN_DEBUG "cfg80211: CRDA thinks this should applied:\n");
	print_regdomain_info(rd);
	if (intersected_rd) {
		printk(KERN_DEBUG "cfg80211: We intersect both of these "
			"and get:\n");
1666
		print_regdomain_info(intersected_rd);
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
		return;
	}
	printk(KERN_DEBUG "cfg80211: Intersection between both failed\n");
}
#else
static inline void reg_country_ie_process_debug(
	const struct ieee80211_regdomain *rd,
	const struct ieee80211_regdomain *country_ie_regdomain,
	const struct ieee80211_regdomain *intersected_rd)
{
}
#endif

1680
/* Takes ownership of rd only if it doesn't fail */
1681
static int __set_regdom(const struct ieee80211_regdomain *rd)
1682
{
1683
	const struct ieee80211_regdomain *intersected_rd = NULL;
1684
	struct cfg80211_registered_device *drv = NULL;
1685
	struct wiphy *request_wiphy;
1686 1687 1688
	/* Some basic sanity checks first */

	if (is_world_regdom(rd->alpha2)) {
1689
		if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1690 1691 1692 1693 1694 1695 1696 1697 1698
			return -EINVAL;
		update_world_regdomain(rd);
		return 0;
	}

	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
			!is_unknown_alpha2(rd->alpha2))
		return -EINVAL;

1699
	if (!last_request)
1700 1701
		return -EINVAL;

1702 1703
	/*
	 * Lets only bother proceeding on the same alpha2 if the current
1704
	 * rd is non static (it means CRDA was present and was used last)
1705 1706
	 * and the pending request came in from a country IE
	 */
1707
	if (last_request->initiator != REGDOM_SET_BY_COUNTRY_IE) {
1708 1709 1710 1711
		/*
		 * If someone else asked us to change the rd lets only bother
		 * checking if the alpha2 changes if CRDA was already called
		 */
1712 1713 1714 1715 1716
		if (!is_old_static_regdom(cfg80211_regdomain) &&
		    !regdom_changed(rd->alpha2))
			return -EINVAL;
	}

1717 1718
	/*
	 * Now lets set the regulatory domain, update all driver channels
1719 1720
	 * and finally inform them of what we have done, in case they want
	 * to review or adjust their own settings based on their own
1721 1722
	 * internal EEPROM data
	 */
1723

1724
	if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1725 1726
		return -EINVAL;

1727 1728 1729 1730 1731
	if (!is_valid_rd(rd)) {
		printk(KERN_ERR "cfg80211: Invalid "
			"regulatory domain detected:\n");
		print_regdomain_info(rd);
		return -EINVAL;
1732 1733
	}

1734 1735
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

1736
	if (!last_request->intersect) {
1737 1738 1739 1740 1741 1742 1743 1744
		int r;

		if (last_request->initiator != REGDOM_SET_BY_DRIVER) {
			reset_regdomains();
			cfg80211_regdomain = rd;
			return 0;
		}

1745 1746 1747 1748
		/*
		 * For a driver hint, lets copy the regulatory domain the
		 * driver wanted to the wiphy to deal with conflicts
		 */
1749

1750
		BUG_ON(request_wiphy->regd);
1751

1752
		r = reg_copy_regd(&request_wiphy->regd, rd);
1753 1754 1755
		if (r)
			return r;

1756 1757 1758 1759 1760 1761 1762 1763 1764
		reset_regdomains();
		cfg80211_regdomain = rd;
		return 0;
	}

	/* Intersection requires a bit more work */

	if (last_request->initiator != REGDOM_SET_BY_COUNTRY_IE) {

1765 1766 1767
		intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
		if (!intersected_rd)
			return -EINVAL;
1768

1769 1770
		/*
		 * We can trash what CRDA provided now.
1771
		 * However if a driver requested this specific regulatory
1772 1773
		 * domain we keep it for its private use
		 */
1774
		if (last_request->initiator == REGDOM_SET_BY_DRIVER)
1775
			request_wiphy->regd = rd;
1776 1777 1778
		else
			kfree(rd);

1779 1780 1781 1782 1783 1784
		rd = NULL;

		reset_regdomains();
		cfg80211_regdomain = intersected_rd;

		return 0;
1785 1786
	}

1787 1788 1789 1790 1791 1792 1793 1794
	/*
	 * Country IE requests are handled a bit differently, we intersect
	 * the country IE rd with what CRDA believes that country should have
	 */

	BUG_ON(!country_ie_regdomain);

	if (rd != country_ie_regdomain) {
1795 1796 1797 1798
		/*
		 * Intersect what CRDA returned and our what we
		 * had built from the Country IE received
		 */
1799 1800 1801 1802 1803 1804 1805 1806 1807

		intersected_rd = regdom_intersect(rd, country_ie_regdomain);

		reg_country_ie_process_debug(rd, country_ie_regdomain,
			intersected_rd);

		kfree(country_ie_regdomain);
		country_ie_regdomain = NULL;
	} else {
1808 1809
		/*
		 * This would happen when CRDA was not present and
1810
		 * OLD_REGULATORY was enabled. We intersect our Country
1811 1812
		 * IE rd and what was set on cfg80211 originally
		 */
1813 1814 1815 1816 1817 1818
		intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
	}

	if (!intersected_rd)
		return -EINVAL;

1819
	drv = wiphy_to_dev(request_wiphy);
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829

	drv->country_ie_alpha2[0] = rd->alpha2[0];
	drv->country_ie_alpha2[1] = rd->alpha2[1];
	drv->env = last_request->country_ie_env;

	BUG_ON(intersected_rd == rd);

	kfree(rd);
	rd = NULL;

1830
	reset_regdomains();
1831
	cfg80211_regdomain = intersected_rd;
1832 1833 1834 1835 1836

	return 0;
}


1837 1838
/*
 * Use this call to set the current regulatory domain. Conflicts with
1839
 * multiple drivers can be ironed out later. Caller must've already
1840 1841
 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
 */
1842
int set_regdom(const struct ieee80211_regdomain *rd)
1843 1844 1845
{
	int r;

1846 1847
	assert_cfg80211_lock();

1848 1849
	/* Note that this doesn't update the wiphys, this is done below */
	r = __set_regdom(rd);
1850 1851
	if (r) {
		kfree(rd);
1852
		return r;
1853
	}
1854 1855

	/* This would make this whole thing pointless */
1856 1857
	if (!last_request->intersect)
		BUG_ON(rd != cfg80211_regdomain);
1858 1859

	/* update all wiphys now with the new established regulatory domain */
1860
	update_all_wiphy_regulatory(last_request->initiator);
1861

1862
	print_regdomain(cfg80211_regdomain);
1863 1864 1865 1866

	return r;
}

1867
/* Caller must hold cfg80211_mutex */
1868 1869
void reg_device_remove(struct wiphy *wiphy)
{
1870 1871
	struct wiphy *request_wiphy;

1872 1873
	assert_cfg80211_lock();

1874 1875
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

1876
	kfree(wiphy->regd);
1877
	if (!last_request || !request_wiphy)
1878
		return;
1879
	if (request_wiphy != wiphy)
1880
		return;
1881
	last_request->wiphy_idx = WIPHY_IDX_STALE;
1882 1883 1884
	last_request->country_ie_env = ENVIRON_ANY;
}

1885 1886
int regulatory_init(void)
{
1887
	int err = 0;
1888

1889 1890 1891
	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
	if (IS_ERR(reg_pdev))
		return PTR_ERR(reg_pdev);
1892

1893 1894
	spin_lock_init(&reg_requests_lock);

1895
#ifdef CONFIG_WIRELESS_OLD_REGULATORY
1896
	cfg80211_regdomain = static_regdom(ieee80211_regdom);
1897

1898
	printk(KERN_INFO "cfg80211: Using static regulatory domain info\n");
1899
	print_regdomain_info(cfg80211_regdomain);
1900 1901
	/*
	 * The old code still requests for a new regdomain and if
1902 1903
	 * you have CRDA you get it updated, otherwise you get
	 * stuck with the static values. We ignore "EU" code as
1904 1905
	 * that is not a valid ISO / IEC 3166 alpha2
	 */
J
Johannes Berg 已提交
1906
	if (ieee80211_regdom[0] != 'E' || ieee80211_regdom[1] != 'U')
1907
		err = regulatory_hint_core(ieee80211_regdom);
1908
#else
1909
	cfg80211_regdomain = cfg80211_world_regdom;
1910

1911
	err = regulatory_hint_core("00");
1912
#endif
1913
	if (err) {
1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
		if (err == -ENOMEM)
			return err;
		/*
		 * N.B. kobject_uevent_env() can fail mainly for when we're out
		 * memory which is handled and propagated appropriately above
		 * but it can also fail during a netlink_broadcast() or during
		 * early boot for call_usermodehelper(). For now treat these
		 * errors as non-fatal.
		 */
		printk(KERN_ERR "cfg80211: kobject_uevent_env() was unable "
			"to call CRDA during init");
#ifdef CONFIG_CFG80211_REG_DEBUG
		/* We want to find out exactly why when debugging */
		WARN_ON(err);
1928
#endif
1929
	}
1930

1931 1932 1933 1934 1935
	return 0;
}

void regulatory_exit(void)
{
1936 1937 1938 1939
	struct regulatory_request *reg_request, *tmp;

	cancel_work_sync(&reg_work);

1940
	mutex_lock(&cfg80211_mutex);
1941

1942
	reset_regdomains();
1943

1944 1945 1946
	kfree(country_ie_regdomain);
	country_ie_regdomain = NULL;

1947 1948
	kfree(last_request);

1949
	platform_device_unregister(reg_pdev);
1950

1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
	spin_lock(&reg_requests_lock);
	if (!list_empty(&reg_requests_list)) {
		list_for_each_entry_safe(reg_request, tmp,
					 &reg_requests_list, list) {
			list_del(&reg_request->list);
			kfree(reg_request);
		}
	}
	spin_unlock(&reg_requests_lock);

1961
	mutex_unlock(&cfg80211_mutex);
1962
}