keystore.c 56.8 KB
Newer Older
1 2 3 4 5 6 7 8 9
/**
 * eCryptfs: Linux filesystem encryption layer
 * In-kernel key management code.  Includes functions to parse and
 * write authentication token-related packets with the underlying
 * file.
 *
 * Copyright (C) 2004-2006 International Business Machines Corp.
 *   Author(s): Michael A. Halcrow <mhalcrow@us.ibm.com>
 *              Michael C. Thompson <mcthomps@us.ibm.com>
10
 *              Trevor S. Highland <trevor.highland@gmail.com>
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of the
 * License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
 * 02111-1307, USA.
 */

#include <linux/string.h>
#include <linux/syscalls.h>
#include <linux/pagemap.h>
#include <linux/key.h>
#include <linux/random.h>
#include <linux/crypto.h>
#include <linux/scatterlist.h>
#include "ecryptfs_kernel.h"

/**
 * request_key returned an error instead of a valid key address;
 * determine the type of error, make appropriate log entries, and
 * return an error code.
 */
int process_request_key_err(long err_code)
{
	int rc = 0;

	switch (err_code) {
	case ENOKEY:
		ecryptfs_printk(KERN_WARNING, "No key\n");
		rc = -ENOENT;
		break;
	case EKEYEXPIRED:
		ecryptfs_printk(KERN_WARNING, "Key expired\n");
		rc = -ETIME;
		break;
	case EKEYREVOKED:
		ecryptfs_printk(KERN_WARNING, "Key revoked\n");
		rc = -EINVAL;
		break;
	default:
		ecryptfs_printk(KERN_WARNING, "Unknown error code: "
				"[0x%.16x]\n", err_code);
		rc = -EINVAL;
	}
	return rc;
}

/**
 * parse_packet_length
 * @data: Pointer to memory containing length at offset
 * @size: This function writes the decoded size to this memory
 *        address; zero on error
 * @length_size: The number of bytes occupied by the encoded length
 *
 * Returns Zero on success
 */
static int parse_packet_length(unsigned char *data, size_t *size,
			       size_t *length_size)
{
	int rc = 0;

	(*length_size) = 0;
	(*size) = 0;
	if (data[0] < 192) {
		/* One-byte length */
85
		(*size) = (unsigned char)data[0];
86 87 88
		(*length_size) = 1;
	} else if (data[0] < 224) {
		/* Two-byte length */
89 90
		(*size) = (((unsigned char)(data[0]) - 192) * 256);
		(*size) += ((unsigned char)(data[1]) + 192);
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
		(*length_size) = 2;
	} else if (data[0] == 255) {
		/* Five-byte length; we're not supposed to see this */
		ecryptfs_printk(KERN_ERR, "Five-byte packet length not "
				"supported\n");
		rc = -EINVAL;
		goto out;
	} else {
		ecryptfs_printk(KERN_ERR, "Error parsing packet length\n");
		rc = -EINVAL;
		goto out;
	}
out:
	return rc;
}

/**
 * write_packet_length
 * @dest: The byte array target into which to write the
 *       length. Must have at least 5 bytes allocated.
 * @size: The length to write.
 * @packet_size_length: The number of bytes used to encode the
 *                      packet length is written to this address.
 *
 * Returns zero on success; non-zero on error.
 */
static int write_packet_length(char *dest, size_t size,
			       size_t *packet_size_length)
{
	int rc = 0;

	if (size < 192) {
		dest[0] = size;
		(*packet_size_length) = 1;
	} else if (size < 65536) {
		dest[0] = (((size - 192) / 256) + 192);
		dest[1] = ((size - 192) % 256);
		(*packet_size_length) = 2;
	} else {
		rc = -EINVAL;
		ecryptfs_printk(KERN_WARNING,
				"Unsupported packet size: [%d]\n", size);
	}
	return rc;
}

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
static int
write_tag_64_packet(char *signature, struct ecryptfs_session_key *session_key,
		    char **packet, size_t *packet_len)
{
	size_t i = 0;
	size_t data_len;
	size_t packet_size_len;
	char *message;
	int rc;

	/*
	 *              ***** TAG 64 Packet Format *****
	 *    | Content Type                       | 1 byte       |
	 *    | Key Identifier Size                | 1 or 2 bytes |
	 *    | Key Identifier                     | arbitrary    |
	 *    | Encrypted File Encryption Key Size | 1 or 2 bytes |
	 *    | Encrypted File Encryption Key      | arbitrary    |
	 */
	data_len = (5 + ECRYPTFS_SIG_SIZE_HEX
		    + session_key->encrypted_key_size);
	*packet = kmalloc(data_len, GFP_KERNEL);
	message = *packet;
	if (!message) {
		ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
		rc = -ENOMEM;
		goto out;
	}
	message[i++] = ECRYPTFS_TAG_64_PACKET_TYPE;
	rc = write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
				 &packet_size_len);
	if (rc) {
		ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
				"header; cannot generate packet length\n");
		goto out;
	}
	i += packet_size_len;
	memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
	i += ECRYPTFS_SIG_SIZE_HEX;
	rc = write_packet_length(&message[i], session_key->encrypted_key_size,
				 &packet_size_len);
	if (rc) {
		ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
				"header; cannot generate packet length\n");
		goto out;
	}
	i += packet_size_len;
	memcpy(&message[i], session_key->encrypted_key,
	       session_key->encrypted_key_size);
	i += session_key->encrypted_key_size;
	*packet_len = i;
out:
	return rc;
}

static int
parse_tag_65_packet(struct ecryptfs_session_key *session_key, u16 *cipher_code,
		    struct ecryptfs_message *msg)
{
	size_t i = 0;
	char *data;
	size_t data_len;
	size_t m_size;
	size_t message_len;
	u16 checksum = 0;
	u16 expected_checksum = 0;
	int rc;

	/*
	 *              ***** TAG 65 Packet Format *****
	 *         | Content Type             | 1 byte       |
	 *         | Status Indicator         | 1 byte       |
	 *         | File Encryption Key Size | 1 or 2 bytes |
	 *         | File Encryption Key      | arbitrary    |
	 */
	message_len = msg->data_len;
	data = msg->data;
	if (message_len < 4) {
		rc = -EIO;
		goto out;
	}
	if (data[i++] != ECRYPTFS_TAG_65_PACKET_TYPE) {
		ecryptfs_printk(KERN_ERR, "Type should be ECRYPTFS_TAG_65\n");
		rc = -EIO;
		goto out;
	}
	if (data[i++]) {
		ecryptfs_printk(KERN_ERR, "Status indicator has non-zero value "
				"[%d]\n", data[i-1]);
		rc = -EIO;
		goto out;
	}
	rc = parse_packet_length(&data[i], &m_size, &data_len);
	if (rc) {
		ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
				"rc = [%d]\n", rc);
		goto out;
	}
	i += data_len;
	if (message_len < (i + m_size)) {
		ecryptfs_printk(KERN_ERR, "The received netlink message is "
				"shorter than expected\n");
		rc = -EIO;
		goto out;
	}
	if (m_size < 3) {
		ecryptfs_printk(KERN_ERR,
				"The decrypted key is not long enough to "
				"include a cipher code and checksum\n");
		rc = -EIO;
		goto out;
	}
	*cipher_code = data[i++];
	/* The decrypted key includes 1 byte cipher code and 2 byte checksum */
	session_key->decrypted_key_size = m_size - 3;
	if (session_key->decrypted_key_size > ECRYPTFS_MAX_KEY_BYTES) {
		ecryptfs_printk(KERN_ERR, "key_size [%d] larger than "
				"the maximum key size [%d]\n",
				session_key->decrypted_key_size,
				ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
		rc = -EIO;
		goto out;
	}
	memcpy(session_key->decrypted_key, &data[i],
	       session_key->decrypted_key_size);
	i += session_key->decrypted_key_size;
	expected_checksum += (unsigned char)(data[i++]) << 8;
	expected_checksum += (unsigned char)(data[i++]);
	for (i = 0; i < session_key->decrypted_key_size; i++)
		checksum += session_key->decrypted_key[i];
	if (expected_checksum != checksum) {
		ecryptfs_printk(KERN_ERR, "Invalid checksum for file "
				"encryption  key; expected [%x]; calculated "
				"[%x]\n", expected_checksum, checksum);
		rc = -EIO;
	}
out:
	return rc;
}


static int
write_tag_66_packet(char *signature, size_t cipher_code,
		    struct ecryptfs_crypt_stat *crypt_stat, char **packet,
		    size_t *packet_len)
{
	size_t i = 0;
	size_t j;
	size_t data_len;
	size_t checksum = 0;
	size_t packet_size_len;
	char *message;
	int rc;

	/*
	 *              ***** TAG 66 Packet Format *****
	 *         | Content Type             | 1 byte       |
	 *         | Key Identifier Size      | 1 or 2 bytes |
	 *         | Key Identifier           | arbitrary    |
	 *         | File Encryption Key Size | 1 or 2 bytes |
	 *         | File Encryption Key      | arbitrary    |
	 */
	data_len = (5 + ECRYPTFS_SIG_SIZE_HEX + crypt_stat->key_size);
	*packet = kmalloc(data_len, GFP_KERNEL);
	message = *packet;
	if (!message) {
		ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
		rc = -ENOMEM;
		goto out;
	}
	message[i++] = ECRYPTFS_TAG_66_PACKET_TYPE;
	rc = write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
				 &packet_size_len);
	if (rc) {
		ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
				"header; cannot generate packet length\n");
		goto out;
	}
	i += packet_size_len;
	memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
	i += ECRYPTFS_SIG_SIZE_HEX;
	/* The encrypted key includes 1 byte cipher code and 2 byte checksum */
	rc = write_packet_length(&message[i], crypt_stat->key_size + 3,
				 &packet_size_len);
	if (rc) {
		ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
				"header; cannot generate packet length\n");
		goto out;
	}
	i += packet_size_len;
	message[i++] = cipher_code;
	memcpy(&message[i], crypt_stat->key, crypt_stat->key_size);
	i += crypt_stat->key_size;
	for (j = 0; j < crypt_stat->key_size; j++)
		checksum += crypt_stat->key[j];
	message[i++] = (checksum / 256) % 256;
	message[i++] = (checksum % 256);
	*packet_len = i;
out:
	return rc;
}

static int
parse_tag_67_packet(struct ecryptfs_key_record *key_rec,
		    struct ecryptfs_message *msg)
{
	size_t i = 0;
	char *data;
	size_t data_len;
	size_t message_len;
	int rc;

	/*
	 *              ***** TAG 65 Packet Format *****
	 *    | Content Type                       | 1 byte       |
	 *    | Status Indicator                   | 1 byte       |
	 *    | Encrypted File Encryption Key Size | 1 or 2 bytes |
	 *    | Encrypted File Encryption Key      | arbitrary    |
	 */
	message_len = msg->data_len;
	data = msg->data;
	/* verify that everything through the encrypted FEK size is present */
	if (message_len < 4) {
		rc = -EIO;
		goto out;
	}
	if (data[i++] != ECRYPTFS_TAG_67_PACKET_TYPE) {
		ecryptfs_printk(KERN_ERR, "Type should be ECRYPTFS_TAG_67\n");
		rc = -EIO;
		goto out;
	}
	if (data[i++]) {
		ecryptfs_printk(KERN_ERR, "Status indicator has non zero value"
				" [%d]\n", data[i-1]);
		rc = -EIO;
		goto out;
	}
	rc = parse_packet_length(&data[i], &key_rec->enc_key_size, &data_len);
	if (rc) {
		ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
				"rc = [%d]\n", rc);
		goto out;
	}
	i += data_len;
	if (message_len < (i + key_rec->enc_key_size)) {
		ecryptfs_printk(KERN_ERR, "message_len [%d]; max len is [%d]\n",
				message_len, (i + key_rec->enc_key_size));
		rc = -EIO;
		goto out;
	}
	if (key_rec->enc_key_size > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
		ecryptfs_printk(KERN_ERR, "Encrypted key_size [%d] larger than "
				"the maximum key size [%d]\n",
				key_rec->enc_key_size,
				ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
		rc = -EIO;
		goto out;
	}
	memcpy(key_rec->enc_key, &data[i], key_rec->enc_key_size);
out:
	return rc;
}

/**
 * decrypt_pki_encrypted_session_key - Decrypt the session key with
 * the given auth_tok.
 *
 * Returns Zero on success; non-zero error otherwise.
 */
405 406 407
static int
decrypt_pki_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
				  struct ecryptfs_crypt_stat *crypt_stat)
408 409 410 411
{
	u16 cipher_code = 0;
	struct ecryptfs_msg_ctx *msg_ctx;
	struct ecryptfs_message *msg = NULL;
412
	char *auth_tok_sig;
413 414 415 416
	char *netlink_message;
	size_t netlink_message_length;
	int rc;

417 418 419 420 421 422
	if ((rc = ecryptfs_get_auth_tok_sig(&auth_tok_sig, auth_tok))) {
		printk(KERN_ERR "Unrecognized auth tok type: [%d]\n",
		       auth_tok->token_type);
		goto out;
	}
	rc = write_tag_64_packet(auth_tok_sig, &(auth_tok->session_key),
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
				 &netlink_message, &netlink_message_length);
	if (rc) {
		ecryptfs_printk(KERN_ERR, "Failed to write tag 64 packet");
		goto out;
	}
	rc = ecryptfs_send_message(ecryptfs_transport, netlink_message,
				   netlink_message_length, &msg_ctx);
	if (rc) {
		ecryptfs_printk(KERN_ERR, "Error sending netlink message\n");
		goto out;
	}
	rc = ecryptfs_wait_for_response(msg_ctx, &msg);
	if (rc) {
		ecryptfs_printk(KERN_ERR, "Failed to receive tag 65 packet "
				"from the user space daemon\n");
		rc = -EIO;
		goto out;
	}
	rc = parse_tag_65_packet(&(auth_tok->session_key),
				 &cipher_code, msg);
	if (rc) {
		printk(KERN_ERR "Failed to parse tag 65 packet; rc = [%d]\n",
		       rc);
		goto out;
	}
	auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
	memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
	       auth_tok->session_key.decrypted_key_size);
	crypt_stat->key_size = auth_tok->session_key.decrypted_key_size;
	rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher, cipher_code);
	if (rc) {
		ecryptfs_printk(KERN_ERR, "Cipher code [%d] is invalid\n",
				cipher_code)
		goto out;
	}
	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
	if (ecryptfs_verbosity > 0) {
		ecryptfs_printk(KERN_DEBUG, "Decrypted session key:\n");
		ecryptfs_dump_hex(crypt_stat->key,
				  crypt_stat->key_size);
	}
out:
	if (msg)
		kfree(msg);
	return rc;
}

static void wipe_auth_tok_list(struct list_head *auth_tok_list_head)
{
	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
473
	struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
474

475 476 477
	list_for_each_entry_safe(auth_tok_list_item, auth_tok_list_item_tmp,
				 auth_tok_list_head, list) {
		list_del(&auth_tok_list_item->list);
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
		kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
				auth_tok_list_item);
	}
}

struct kmem_cache *ecryptfs_auth_tok_list_item_cache;

/**
 * parse_tag_1_packet
 * @crypt_stat: The cryptographic context to modify based on packet
 *              contents.
 * @data: The raw bytes of the packet.
 * @auth_tok_list: eCryptfs parses packets into authentication tokens;
 *                 a new authentication token will be placed at the end
 *                 of this list for this packet.
 * @new_auth_tok: Pointer to a pointer to memory that this function
 *                allocates; sets the memory address of the pointer to
 *                NULL on error. This object is added to the
 *                auth_tok_list.
 * @packet_size: This function writes the size of the parsed packet
 *               into this memory location; zero on error.
 *
 * Returns zero on success; non-zero on error.
 */
static int
parse_tag_1_packet(struct ecryptfs_crypt_stat *crypt_stat,
		   unsigned char *data, struct list_head *auth_tok_list,
		   struct ecryptfs_auth_tok **new_auth_tok,
		   size_t *packet_size, size_t max_packet_size)
{
	size_t body_size;
	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
	size_t length_size;
	int rc = 0;

	(*packet_size) = 0;
	(*new_auth_tok) = NULL;
M
Michael Halcrow 已提交
515 516 517 518 519 520 521 522 523 524 525 526
	/**
	 * This format is inspired by OpenPGP; see RFC 2440
	 * packet tag 1
	 *
	 * Tag 1 identifier (1 byte)
	 * Max Tag 1 packet size (max 3 bytes)
	 * Version (1 byte)
	 * Key identifier (8 bytes; ECRYPTFS_SIG_SIZE)
	 * Cipher identifier (1 byte)
	 * Encrypted key size (arbitrary)
	 *
	 * 12 bytes minimum packet size
527
	 */
M
Michael Halcrow 已提交
528 529
	if (unlikely(max_packet_size < 12)) {
		printk(KERN_ERR "Invalid max packet size; must be >=12\n");
530 531 532 533
		rc = -EINVAL;
		goto out;
	}
	if (data[(*packet_size)++] != ECRYPTFS_TAG_1_PACKET_TYPE) {
M
Michael Halcrow 已提交
534 535
		printk(KERN_ERR "Enter w/ first byte != 0x%.2x\n",
		       ECRYPTFS_TAG_1_PACKET_TYPE);
536 537 538 539 540 541
		rc = -EINVAL;
		goto out;
	}
	/* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
	 * at end of function upon failure */
	auth_tok_list_item =
M
Michael Halcrow 已提交
542 543
		kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache,
				  GFP_KERNEL);
544
	if (!auth_tok_list_item) {
M
Michael Halcrow 已提交
545
		printk(KERN_ERR "Unable to allocate memory\n");
546 547 548 549
		rc = -ENOMEM;
		goto out;
	}
	(*new_auth_tok) = &auth_tok_list_item->auth_tok;
M
Michael Halcrow 已提交
550 551 552 553
	if ((rc = parse_packet_length(&data[(*packet_size)], &body_size,
				      &length_size))) {
		printk(KERN_WARNING "Error parsing packet length; "
		       "rc = [%d]\n", rc);
554 555
		goto out_free;
	}
M
Michael Halcrow 已提交
556 557
	if (unlikely(body_size < (ECRYPTFS_SIG_SIZE + 2))) {
		printk(KERN_WARNING "Invalid body size ([%d])\n", body_size);
558 559 560 561 562
		rc = -EINVAL;
		goto out_free;
	}
	(*packet_size) += length_size;
	if (unlikely((*packet_size) + body_size > max_packet_size)) {
M
Michael Halcrow 已提交
563
		printk(KERN_WARNING "Packet size exceeds max\n");
564 565 566 567
		rc = -EINVAL;
		goto out_free;
	}
	if (unlikely(data[(*packet_size)++] != 0x03)) {
M
Michael Halcrow 已提交
568 569
		printk(KERN_WARNING "Unknown version number [%d]\n",
		       data[(*packet_size) - 1]);
570 571 572 573 574 575 576 577 578 579
		rc = -EINVAL;
		goto out_free;
	}
	ecryptfs_to_hex((*new_auth_tok)->token.private_key.signature,
			&data[(*packet_size)], ECRYPTFS_SIG_SIZE);
	*packet_size += ECRYPTFS_SIG_SIZE;
	/* This byte is skipped because the kernel does not need to
	 * know which public key encryption algorithm was used */
	(*packet_size)++;
	(*new_auth_tok)->session_key.encrypted_key_size =
M
Michael Halcrow 已提交
580
		body_size - (ECRYPTFS_SIG_SIZE + 2);
581 582
	if ((*new_auth_tok)->session_key.encrypted_key_size
	    > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
M
Michael Halcrow 已提交
583 584
		printk(KERN_WARNING "Tag 1 packet contains key larger "
		       "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES");
585 586 587 588
		rc = -EINVAL;
		goto out;
	}
	memcpy((*new_auth_tok)->session_key.encrypted_key,
M
Michael Halcrow 已提交
589
	       &data[(*packet_size)], (body_size - (ECRYPTFS_SIG_SIZE + 2)));
590 591 592 593 594 595
	(*packet_size) += (*new_auth_tok)->session_key.encrypted_key_size;
	(*new_auth_tok)->session_key.flags &=
		~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
	(*new_auth_tok)->session_key.flags |=
		ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
	(*new_auth_tok)->token_type = ECRYPTFS_PRIVATE_KEY;
M
Michael Halcrow 已提交
596
	(*new_auth_tok)->flags = 0;
597 598 599 600
	(*new_auth_tok)->session_key.flags &=
		~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
	(*new_auth_tok)->session_key.flags &=
		~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
601 602 603 604 605 606 607 608 609 610 611 612 613 614
	list_add(&auth_tok_list_item->list, auth_tok_list);
	goto out;
out_free:
	(*new_auth_tok) = NULL;
	memset(auth_tok_list_item, 0,
	       sizeof(struct ecryptfs_auth_tok_list_item));
	kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
			auth_tok_list_item);
out:
	if (rc)
		(*packet_size) = 0;
	return rc;
}

615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
/**
 * parse_tag_3_packet
 * @crypt_stat: The cryptographic context to modify based on packet
 *              contents.
 * @data: The raw bytes of the packet.
 * @auth_tok_list: eCryptfs parses packets into authentication tokens;
 *                 a new authentication token will be placed at the end
 *                 of this list for this packet.
 * @new_auth_tok: Pointer to a pointer to memory that this function
 *                allocates; sets the memory address of the pointer to
 *                NULL on error. This object is added to the
 *                auth_tok_list.
 * @packet_size: This function writes the size of the parsed packet
 *               into this memory location; zero on error.
 * @max_packet_size: maximum number of bytes to parse
 *
 * Returns zero on success; non-zero on error.
 */
static int
parse_tag_3_packet(struct ecryptfs_crypt_stat *crypt_stat,
		   unsigned char *data, struct list_head *auth_tok_list,
		   struct ecryptfs_auth_tok **new_auth_tok,
		   size_t *packet_size, size_t max_packet_size)
{
	size_t body_size;
	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
	size_t length_size;
642
	int rc = 0;
643 644 645

	(*packet_size) = 0;
	(*new_auth_tok) = NULL;
M
Michael Halcrow 已提交
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
	/**
	 *This format is inspired by OpenPGP; see RFC 2440
	 * packet tag 3
	 *
	 * Tag 3 identifier (1 byte)
	 * Max Tag 3 packet size (max 3 bytes)
	 * Version (1 byte)
	 * Cipher code (1 byte)
	 * S2K specifier (1 byte)
	 * Hash identifier (1 byte)
	 * Salt (ECRYPTFS_SALT_SIZE)
	 * Hash iterations (1 byte)
	 * Encrypted key (arbitrary)
	 *
	 * (ECRYPTFS_SALT_SIZE + 7) minimum packet size
661
	 */
M
Michael Halcrow 已提交
662 663
	if (max_packet_size < (ECRYPTFS_SALT_SIZE + 7)) {
		printk(KERN_ERR "Max packet size too large\n");
664 665 666 667
		rc = -EINVAL;
		goto out;
	}
	if (data[(*packet_size)++] != ECRYPTFS_TAG_3_PACKET_TYPE) {
M
Michael Halcrow 已提交
668 669
		printk(KERN_ERR "First byte != 0x%.2x; invalid packet\n",
		       ECRYPTFS_TAG_3_PACKET_TYPE);
670 671 672 673 674 675
		rc = -EINVAL;
		goto out;
	}
	/* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
	 * at end of function upon failure */
	auth_tok_list_item =
676
	    kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache, GFP_KERNEL);
677
	if (!auth_tok_list_item) {
M
Michael Halcrow 已提交
678
		printk(KERN_ERR "Unable to allocate memory\n");
679 680 681 682
		rc = -ENOMEM;
		goto out;
	}
	(*new_auth_tok) = &auth_tok_list_item->auth_tok;
M
Michael Halcrow 已提交
683 684 685 686
	if ((rc = parse_packet_length(&data[(*packet_size)], &body_size,
				      &length_size))) {
		printk(KERN_WARNING "Error parsing packet length; rc = [%d]\n",
		       rc);
687 688
		goto out_free;
	}
M
Michael Halcrow 已提交
689 690
	if (unlikely(body_size < (ECRYPTFS_SALT_SIZE + 5))) {
		printk(KERN_WARNING "Invalid body size ([%d])\n", body_size);
691 692 693 694 695
		rc = -EINVAL;
		goto out_free;
	}
	(*packet_size) += length_size;
	if (unlikely((*packet_size) + body_size > max_packet_size)) {
M
Michael Halcrow 已提交
696
		printk(KERN_ERR "Packet size exceeds max\n");
697 698 699 700
		rc = -EINVAL;
		goto out_free;
	}
	(*new_auth_tok)->session_key.encrypted_key_size =
M
Michael Halcrow 已提交
701
		(body_size - (ECRYPTFS_SALT_SIZE + 5));
702
	if (unlikely(data[(*packet_size)++] != 0x04)) {
M
Michael Halcrow 已提交
703 704
		printk(KERN_WARNING "Unknown version number [%d]\n",
		       data[(*packet_size) - 1]);
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
		rc = -EINVAL;
		goto out_free;
	}
	ecryptfs_cipher_code_to_string(crypt_stat->cipher,
				       (u16)data[(*packet_size)]);
	/* A little extra work to differentiate among the AES key
	 * sizes; see RFC2440 */
	switch(data[(*packet_size)++]) {
	case RFC2440_CIPHER_AES_192:
		crypt_stat->key_size = 24;
		break;
	default:
		crypt_stat->key_size =
			(*new_auth_tok)->session_key.encrypted_key_size;
	}
	ecryptfs_init_crypt_ctx(crypt_stat);
	if (unlikely(data[(*packet_size)++] != 0x03)) {
M
Michael Halcrow 已提交
722
		printk(KERN_WARNING "Only S2K ID 3 is currently supported\n");
723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
		rc = -ENOSYS;
		goto out_free;
	}
	/* TODO: finish the hash mapping */
	switch (data[(*packet_size)++]) {
	case 0x01: /* See RFC2440 for these numbers and their mappings */
		/* Choose MD5 */
		memcpy((*new_auth_tok)->token.password.salt,
		       &data[(*packet_size)], ECRYPTFS_SALT_SIZE);
		(*packet_size) += ECRYPTFS_SALT_SIZE;
		/* This conversion was taken straight from RFC2440 */
		(*new_auth_tok)->token.password.hash_iterations =
			((u32) 16 + (data[(*packet_size)] & 15))
				<< ((data[(*packet_size)] >> 4) + 6);
		(*packet_size)++;
M
Michael Halcrow 已提交
738 739 740
		/* Friendly reminder:
		 * (*new_auth_tok)->session_key.encrypted_key_size =
		 *         (body_size - (ECRYPTFS_SALT_SIZE + 5)); */
741 742 743 744 745 746 747 748 749
		memcpy((*new_auth_tok)->session_key.encrypted_key,
		       &data[(*packet_size)],
		       (*new_auth_tok)->session_key.encrypted_key_size);
		(*packet_size) +=
			(*new_auth_tok)->session_key.encrypted_key_size;
		(*new_auth_tok)->session_key.flags &=
			~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
		(*new_auth_tok)->session_key.flags |=
			ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
M
Michael Halcrow 已提交
750
		(*new_auth_tok)->token.password.hash_algo = 0x01; /* MD5 */
751 752 753 754 755 756 757 758 759 760
		break;
	default:
		ecryptfs_printk(KERN_ERR, "Unsupported hash algorithm: "
				"[%d]\n", data[(*packet_size) - 1]);
		rc = -ENOSYS;
		goto out_free;
	}
	(*new_auth_tok)->token_type = ECRYPTFS_PASSWORD;
	/* TODO: Parametarize; we might actually want userspace to
	 * decrypt the session key. */
761 762 763 764
	(*new_auth_tok)->session_key.flags &=
			    ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
	(*new_auth_tok)->session_key.flags &=
			    ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
	list_add(&auth_tok_list_item->list, auth_tok_list);
	goto out;
out_free:
	(*new_auth_tok) = NULL;
	memset(auth_tok_list_item, 0,
	       sizeof(struct ecryptfs_auth_tok_list_item));
	kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
			auth_tok_list_item);
out:
	if (rc)
		(*packet_size) = 0;
	return rc;
}

/**
 * parse_tag_11_packet
 * @data: The raw bytes of the packet
 * @contents: This function writes the data contents of the literal
 *            packet into this memory location
 * @max_contents_bytes: The maximum number of bytes that this function
 *                      is allowed to write into contents
 * @tag_11_contents_size: This function writes the size of the parsed
 *                        contents into this memory location; zero on
 *                        error
 * @packet_size: This function writes the size of the parsed packet
 *               into this memory location; zero on error
 * @max_packet_size: maximum number of bytes to parse
 *
 * Returns zero on success; non-zero on error.
 */
static int
parse_tag_11_packet(unsigned char *data, unsigned char *contents,
		    size_t max_contents_bytes, size_t *tag_11_contents_size,
		    size_t *packet_size, size_t max_packet_size)
{
	size_t body_size;
	size_t length_size;
802
	int rc = 0;
803 804 805

	(*packet_size) = 0;
	(*tag_11_contents_size) = 0;
806 807 808 809 810 811 812 813 814 815 816 817 818
	/* This format is inspired by OpenPGP; see RFC 2440
	 * packet tag 11
	 *
	 * Tag 11 identifier (1 byte)
	 * Max Tag 11 packet size (max 3 bytes)
	 * Binary format specifier (1 byte)
	 * Filename length (1 byte)
	 * Filename ("_CONSOLE") (8 bytes)
	 * Modification date (4 bytes)
	 * Literal data (arbitrary)
	 *
	 * We need at least 16 bytes of data for the packet to even be
	 * valid.
819
	 */
820 821
	if (max_packet_size < 16) {
		printk(KERN_ERR "Maximum packet size too small\n");
822 823 824 825
		rc = -EINVAL;
		goto out;
	}
	if (data[(*packet_size)++] != ECRYPTFS_TAG_11_PACKET_TYPE) {
826
		printk(KERN_WARNING "Invalid tag 11 packet format\n");
827 828 829
		rc = -EINVAL;
		goto out;
	}
830 831 832
	if ((rc = parse_packet_length(&data[(*packet_size)], &body_size,
				      &length_size))) {
		printk(KERN_WARNING "Invalid tag 11 packet format\n");
833 834
		goto out;
	}
835 836
	if (body_size < 14) {
		printk(KERN_WARNING "Invalid body size ([%d])\n", body_size);
837 838 839
		rc = -EINVAL;
		goto out;
	}
840 841
	(*packet_size) += length_size;
	(*tag_11_contents_size) = (body_size - 14);
842
	if (unlikely((*packet_size) + body_size + 1 > max_packet_size)) {
843
		printk(KERN_ERR "Packet size exceeds max\n");
844 845 846 847
		rc = -EINVAL;
		goto out;
	}
	if (data[(*packet_size)++] != 0x62) {
848
		printk(KERN_WARNING "Unrecognizable packet\n");
849 850 851 852
		rc = -EINVAL;
		goto out;
	}
	if (data[(*packet_size)++] != 0x08) {
853
		printk(KERN_WARNING "Unrecognizable packet\n");
854 855 856
		rc = -EINVAL;
		goto out;
	}
857
	(*packet_size) += 12; /* Ignore filename and modification date */
858 859 860 861 862 863 864 865 866 867
	memcpy(contents, &data[(*packet_size)], (*tag_11_contents_size));
	(*packet_size) += (*tag_11_contents_size);
out:
	if (rc) {
		(*packet_size) = 0;
		(*tag_11_contents_size) = 0;
	}
	return rc;
}

868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
static int
ecryptfs_find_global_auth_tok_for_sig(
	struct ecryptfs_global_auth_tok **global_auth_tok,
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat, char *sig)
{
	struct ecryptfs_global_auth_tok *walker;
	int rc = 0;

	(*global_auth_tok) = NULL;
	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
	list_for_each_entry(walker,
			    &mount_crypt_stat->global_auth_tok_list,
			    mount_crypt_stat_list) {
		if (memcmp(walker->sig, sig, ECRYPTFS_SIG_SIZE_HEX) == 0) {
			(*global_auth_tok) = walker;
			goto out;
		}
	}
	rc = -EINVAL;
out:
	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
	return rc;
}

892
/**
893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
 * ecryptfs_verify_version
 * @version: The version number to confirm
 *
 * Returns zero on good version; non-zero otherwise
 */
static int ecryptfs_verify_version(u16 version)
{
	int rc = 0;
	unsigned char major;
	unsigned char minor;

	major = ((version >> 8) & 0xFF);
	minor = (version & 0xFF);
	if (major != ECRYPTFS_VERSION_MAJOR) {
		ecryptfs_printk(KERN_ERR, "Major version number mismatch. "
				"Expected [%d]; got [%d]\n",
				ECRYPTFS_VERSION_MAJOR, major);
		rc = -EINVAL;
		goto out;
	}
	if (minor != ECRYPTFS_VERSION_MINOR) {
		ecryptfs_printk(KERN_ERR, "Minor version number mismatch. "
				"Expected [%d]; got [%d]\n",
				ECRYPTFS_VERSION_MINOR, minor);
		rc = -EINVAL;
		goto out;
	}
out:
	return rc;
}

int ecryptfs_keyring_auth_tok_for_sig(struct key **auth_tok_key,
				      struct ecryptfs_auth_tok **auth_tok,
				      char *sig)
{
	int rc = 0;

	(*auth_tok_key) = request_key(&key_type_user, sig, NULL);
	if (!(*auth_tok_key) || IS_ERR(*auth_tok_key)) {
		printk(KERN_ERR "Could not find key with description: [%s]\n",
		       sig);
		process_request_key_err(PTR_ERR(*auth_tok_key));
		rc = -EINVAL;
		goto out;
	}
	(*auth_tok) = ecryptfs_get_key_payload_data(*auth_tok_key);
	if (ecryptfs_verify_version((*auth_tok)->version)) {
		printk(KERN_ERR
		       "Data structure version mismatch. "
		       "Userspace tools must match eCryptfs "
		       "kernel module with major version [%d] "
		       "and minor version [%d]\n",
		       ECRYPTFS_VERSION_MAJOR,
		       ECRYPTFS_VERSION_MINOR);
		rc = -EINVAL;
		goto out;
	}
	if ((*auth_tok)->token_type != ECRYPTFS_PASSWORD
	    && (*auth_tok)->token_type != ECRYPTFS_PRIVATE_KEY) {
		printk(KERN_ERR "Invalid auth_tok structure "
		       "returned from key query\n");
		rc = -EINVAL;
		goto out;
	}
out:
	return rc;
}

/**
 * ecryptfs_find_auth_tok_for_sig
 * @auth_tok: Set to the matching auth_tok; NULL if not found
 * @crypt_stat: inode crypt_stat crypto context
 * @sig: Sig of auth_tok to find
 *
 * For now, this function simply looks at the registered auth_tok's
 * linked off the mount_crypt_stat, so all the auth_toks that can be
 * used must be registered at mount time. This function could
 * potentially try a lot harder to find auth_tok's (e.g., by calling
 * out to ecryptfsd to dynamically retrieve an auth_tok object) so
 * that static registration of auth_tok's will no longer be necessary.
 *
 * Returns zero on no error; non-zero on error
 */
static int
ecryptfs_find_auth_tok_for_sig(
	struct ecryptfs_auth_tok **auth_tok,
	struct ecryptfs_crypt_stat *crypt_stat, char *sig)
{
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
		crypt_stat->mount_crypt_stat;
	struct ecryptfs_global_auth_tok *global_auth_tok;
	int rc = 0;

	(*auth_tok) = NULL;
	if (ecryptfs_find_global_auth_tok_for_sig(&global_auth_tok,
						  mount_crypt_stat, sig)) {
		struct key *auth_tok_key;

		rc = ecryptfs_keyring_auth_tok_for_sig(&auth_tok_key, auth_tok,
						       sig);
	} else
		(*auth_tok) = global_auth_tok->global_auth_tok;
	return rc;
}

/**
 * decrypt_passphrase_encrypted_session_key - Decrypt the session key
 * with the given auth_tok.
1001 1002 1003
 *
 * Returns Zero on success; non-zero error otherwise.
 */
1004 1005 1006
static int
decrypt_passphrase_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
					 struct ecryptfs_crypt_stat *crypt_stat)
1007
{
1008 1009
	struct scatterlist dst_sg;
	struct scatterlist src_sg;
1010
	struct mutex *tfm_mutex = NULL;
1011 1012 1013 1014
	struct blkcipher_desc desc = {
		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
	};
	int rc = 0;
1015

1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
	if (unlikely(ecryptfs_verbosity > 0)) {
		ecryptfs_printk(
			KERN_DEBUG, "Session key encryption key (size [%d]):\n",
			auth_tok->token.password.session_key_encryption_key_bytes);
		ecryptfs_dump_hex(
			auth_tok->token.password.session_key_encryption_key,
			auth_tok->token.password.session_key_encryption_key_bytes);
	}
	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
							crypt_stat->cipher);
	if (unlikely(rc)) {
		printk(KERN_ERR "Internal error whilst attempting to get "
		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
		       crypt_stat->cipher, rc);
		goto out;
1031
	}
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
	if ((rc = virt_to_scatterlist(auth_tok->session_key.encrypted_key,
				      auth_tok->session_key.encrypted_key_size,
				      &src_sg, 1)) != 1) {
		printk(KERN_ERR "Internal error whilst attempting to convert "
			"auth_tok->session_key.encrypted_key to scatterlist; "
			"expected rc = 1; got rc = [%d]. "
		       "auth_tok->session_key.encrypted_key_size = [%d]\n", rc,
			auth_tok->session_key.encrypted_key_size);
		goto out;
	}
	auth_tok->session_key.decrypted_key_size =
		auth_tok->session_key.encrypted_key_size;
	if ((rc = virt_to_scatterlist(auth_tok->session_key.decrypted_key,
				      auth_tok->session_key.decrypted_key_size,
				      &dst_sg, 1)) != 1) {
		printk(KERN_ERR "Internal error whilst attempting to convert "
			"auth_tok->session_key.decrypted_key to scatterlist; "
			"expected rc = 1; got rc = [%d]\n", rc);
		goto out;
	}
	mutex_lock(tfm_mutex);
	rc = crypto_blkcipher_setkey(
		desc.tfm, auth_tok->token.password.session_key_encryption_key,
		crypt_stat->key_size);
	if (unlikely(rc < 0)) {
		mutex_unlock(tfm_mutex);
1058 1059
		printk(KERN_ERR "Error setting key for crypto context\n");
		rc = -EINVAL;
1060
		goto out;
1061
	}
1062
	rc = crypto_blkcipher_decrypt(&desc, &dst_sg, &src_sg,
1063
				      auth_tok->session_key.encrypted_key_size);
1064 1065
	mutex_unlock(tfm_mutex);
	if (unlikely(rc)) {
1066
		printk(KERN_ERR "Error decrypting; rc = [%d]\n", rc);
1067
		goto out;
1068
	}
1069 1070 1071
	auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
	memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
	       auth_tok->session_key.decrypted_key_size);
1072
	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1073 1074 1075
	if (unlikely(ecryptfs_verbosity > 0)) {
		ecryptfs_printk(KERN_DEBUG, "FEK of size [%d]:\n",
				crypt_stat->key_size);
1076 1077
		ecryptfs_dump_hex(crypt_stat->key,
				  crypt_stat->key_size);
1078
	}
1079 1080 1081 1082
out:
	return rc;
}

1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
int ecryptfs_get_auth_tok_sig(char **sig, struct ecryptfs_auth_tok *auth_tok)
{
	int rc = 0;

	(*sig) = NULL;
	switch (auth_tok->token_type) {
	case ECRYPTFS_PASSWORD:
		(*sig) = auth_tok->token.password.signature;
		break;
	case ECRYPTFS_PRIVATE_KEY:
		(*sig) = auth_tok->token.private_key.signature;
		break;
	default:
		printk(KERN_ERR "Cannot get sig for auth_tok of type [%d]\n",
		       auth_tok->token_type);
		rc = -EINVAL;
	}
	return rc;
}

1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
/**
 * ecryptfs_parse_packet_set
 * @dest: The header page in memory
 * @version: Version of file format, to guide parsing behavior
 *
 * Get crypt_stat to have the file's session key if the requisite key
 * is available to decrypt the session key.
 *
 * Returns Zero if a valid authentication token was retrieved and
 * processed; negative value for file not encrypted or for error
 * conditions.
 */
int ecryptfs_parse_packet_set(struct ecryptfs_crypt_stat *crypt_stat,
			      unsigned char *src,
			      struct dentry *ecryptfs_dentry)
{
	size_t i = 0;
1120
	size_t found_auth_tok;
1121 1122
	size_t next_packet_is_auth_tok_packet;
	struct list_head auth_tok_list;
1123
	struct ecryptfs_auth_tok *matching_auth_tok = NULL;
1124
	struct ecryptfs_auth_tok *candidate_auth_tok = NULL;
1125
	char *candidate_auth_tok_sig;
1126 1127 1128
	size_t packet_size;
	struct ecryptfs_auth_tok *new_auth_tok;
	unsigned char sig_tmp_space[ECRYPTFS_SIG_SIZE];
1129
	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1130 1131
	size_t tag_11_contents_size;
	size_t tag_11_packet_size;
1132
	int rc = 0;
1133 1134

	INIT_LIST_HEAD(&auth_tok_list);
1135
	/* Parse the header to find as many packets as we can; these will be
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
	 * added the our &auth_tok_list */
	next_packet_is_auth_tok_packet = 1;
	while (next_packet_is_auth_tok_packet) {
		size_t max_packet_size = ((PAGE_CACHE_SIZE - 8) - i);

		switch (src[i]) {
		case ECRYPTFS_TAG_3_PACKET_TYPE:
			rc = parse_tag_3_packet(crypt_stat,
						(unsigned char *)&src[i],
						&auth_tok_list, &new_auth_tok,
						&packet_size, max_packet_size);
			if (rc) {
				ecryptfs_printk(KERN_ERR, "Error parsing "
						"tag 3 packet\n");
				rc = -EIO;
				goto out_wipe_list;
			}
			i += packet_size;
			rc = parse_tag_11_packet((unsigned char *)&src[i],
						 sig_tmp_space,
						 ECRYPTFS_SIG_SIZE,
						 &tag_11_contents_size,
						 &tag_11_packet_size,
						 max_packet_size);
			if (rc) {
				ecryptfs_printk(KERN_ERR, "No valid "
						"(ecryptfs-specific) literal "
						"packet containing "
						"authentication token "
						"signature found after "
						"tag 3 packet\n");
				rc = -EIO;
				goto out_wipe_list;
			}
			i += tag_11_packet_size;
			if (ECRYPTFS_SIG_SIZE != tag_11_contents_size) {
				ecryptfs_printk(KERN_ERR, "Expected "
						"signature of size [%d]; "
						"read size [%d]\n",
						ECRYPTFS_SIG_SIZE,
						tag_11_contents_size);
				rc = -EIO;
				goto out_wipe_list;
			}
			ecryptfs_to_hex(new_auth_tok->token.password.signature,
					sig_tmp_space, tag_11_contents_size);
			new_auth_tok->token.password.signature[
				ECRYPTFS_PASSWORD_SIG_SIZE] = '\0';
1184
			crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1185
			break;
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
		case ECRYPTFS_TAG_1_PACKET_TYPE:
			rc = parse_tag_1_packet(crypt_stat,
						(unsigned char *)&src[i],
						&auth_tok_list, &new_auth_tok,
						&packet_size, max_packet_size);
			if (rc) {
				ecryptfs_printk(KERN_ERR, "Error parsing "
						"tag 1 packet\n");
				rc = -EIO;
				goto out_wipe_list;
			}
			i += packet_size;
1198
			crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1199
			break;
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
		case ECRYPTFS_TAG_11_PACKET_TYPE:
			ecryptfs_printk(KERN_WARNING, "Invalid packet set "
					"(Tag 11 not allowed by itself)\n");
			rc = -EIO;
			goto out_wipe_list;
			break;
		default:
			ecryptfs_printk(KERN_DEBUG, "No packet at offset "
					"[%d] of the file header; hex value of "
					"character is [0x%.2x]\n", i, src[i]);
			next_packet_is_auth_tok_packet = 0;
		}
	}
	if (list_empty(&auth_tok_list)) {
1214 1215 1216 1217
		printk(KERN_ERR "The lower file appears to be a non-encrypted "
		       "eCryptfs file; this is not supported in this version "
		       "of the eCryptfs kernel module\n");
		rc = -EINVAL;
1218 1219
		goto out;
	}
1220 1221 1222 1223 1224 1225 1226 1227 1228
	/* auth_tok_list contains the set of authentication tokens
	 * parsed from the metadata. We need to find a matching
	 * authentication token that has the secret component(s)
	 * necessary to decrypt the EFEK in the auth_tok parsed from
	 * the metadata. There may be several potential matches, but
	 * just one will be sufficient to decrypt to get the FEK. */
find_next_matching_auth_tok:
	found_auth_tok = 0;
	list_for_each_entry(auth_tok_list_item, &auth_tok_list, list) {
1229 1230 1231 1232 1233 1234
		candidate_auth_tok = &auth_tok_list_item->auth_tok;
		if (unlikely(ecryptfs_verbosity > 0)) {
			ecryptfs_printk(KERN_DEBUG,
					"Considering cadidate auth tok:\n");
			ecryptfs_dump_auth_tok(candidate_auth_tok);
		}
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
		if ((rc = ecryptfs_get_auth_tok_sig(&candidate_auth_tok_sig,
						    candidate_auth_tok))) {
			printk(KERN_ERR
			       "Unrecognized candidate auth tok type: [%d]\n",
			       candidate_auth_tok->token_type);
			rc = -EINVAL;
			goto out_wipe_list;
		}
		if ((rc = ecryptfs_find_auth_tok_for_sig(
			     &matching_auth_tok, crypt_stat,
			     candidate_auth_tok_sig)))
			rc = 0;
		if (matching_auth_tok) {
1248
			found_auth_tok = 1;
1249
			goto found_matching_auth_tok;
1250 1251 1252
		}
	}
	if (!found_auth_tok) {
1253 1254
		ecryptfs_printk(KERN_ERR, "Could not find a usable "
				"authentication token\n");
1255 1256
		rc = -EIO;
		goto out_wipe_list;
1257
	}
1258
found_matching_auth_tok:
1259
	if (candidate_auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
1260
		memcpy(&(candidate_auth_tok->token.private_key),
1261
		       &(matching_auth_tok->token.private_key),
1262
		       sizeof(struct ecryptfs_private_key));
1263
		rc = decrypt_pki_encrypted_session_key(candidate_auth_tok,
1264 1265
						       crypt_stat);
	} else if (candidate_auth_tok->token_type == ECRYPTFS_PASSWORD) {
1266
		memcpy(&(candidate_auth_tok->token.password),
1267
		       &(matching_auth_tok->token.password),
1268
		       sizeof(struct ecryptfs_password));
1269 1270
		rc = decrypt_passphrase_encrypted_session_key(
			candidate_auth_tok, crypt_stat);
1271 1272
	}
	if (rc) {
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
		struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;

		ecryptfs_printk(KERN_WARNING, "Error decrypting the "
				"session key for authentication token with sig "
				"[%.*s]; rc = [%d]. Removing auth tok "
				"candidate from the list and searching for "
				"the next match.\n", candidate_auth_tok_sig,
				ECRYPTFS_SIG_SIZE_HEX, rc);
		list_for_each_entry_safe(auth_tok_list_item,
					 auth_tok_list_item_tmp,
					 &auth_tok_list, list) {
			if (candidate_auth_tok
			    == &auth_tok_list_item->auth_tok) {
				list_del(&auth_tok_list_item->list);
				kmem_cache_free(
					ecryptfs_auth_tok_list_item_cache,
					auth_tok_list_item);
				goto find_next_matching_auth_tok;
			}
		}
		BUG();
1294 1295 1296 1297 1298 1299
	}
	rc = ecryptfs_compute_root_iv(crypt_stat);
	if (rc) {
		ecryptfs_printk(KERN_ERR, "Error computing "
				"the root IV\n");
		goto out_wipe_list;
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
	}
	rc = ecryptfs_init_crypt_ctx(crypt_stat);
	if (rc) {
		ecryptfs_printk(KERN_ERR, "Error initializing crypto "
				"context for cipher [%s]; rc = [%d]\n",
				crypt_stat->cipher, rc);
	}
out_wipe_list:
	wipe_auth_tok_list(&auth_tok_list);
out:
	return rc;
}
1312

1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
static int
pki_encrypt_session_key(struct ecryptfs_auth_tok *auth_tok,
			struct ecryptfs_crypt_stat *crypt_stat,
			struct ecryptfs_key_record *key_rec)
{
	struct ecryptfs_msg_ctx *msg_ctx = NULL;
	char *netlink_payload;
	size_t netlink_payload_length;
	struct ecryptfs_message *msg;
	int rc;

	rc = write_tag_66_packet(auth_tok->token.private_key.signature,
				 ecryptfs_code_for_cipher_string(crypt_stat),
				 crypt_stat, &netlink_payload,
				 &netlink_payload_length);
	if (rc) {
		ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet\n");
		goto out;
	}
	rc = ecryptfs_send_message(ecryptfs_transport, netlink_payload,
				   netlink_payload_length, &msg_ctx);
	if (rc) {
		ecryptfs_printk(KERN_ERR, "Error sending netlink message\n");
		goto out;
	}
	rc = ecryptfs_wait_for_response(msg_ctx, &msg);
	if (rc) {
		ecryptfs_printk(KERN_ERR, "Failed to receive tag 67 packet "
				"from the user space daemon\n");
		rc = -EIO;
		goto out;
	}
	rc = parse_tag_67_packet(key_rec, msg);
	if (rc)
		ecryptfs_printk(KERN_ERR, "Error parsing tag 67 packet\n");
	kfree(msg);
out:
	if (netlink_payload)
		kfree(netlink_payload);
	return rc;
}
/**
 * write_tag_1_packet - Write an RFC2440-compatible tag 1 (public key) packet
 * @dest: Buffer into which to write the packet
 * @max: Maximum number of bytes that can be writtn
 * @packet_size: This function will write the number of bytes that end
 *               up constituting the packet; set to zero on error
 *
 * Returns zero on success; non-zero on error.
 */
static int
1364 1365
write_tag_1_packet(char *dest, size_t *remaining_bytes,
		   struct ecryptfs_auth_tok *auth_tok,
1366 1367 1368 1369 1370 1371
		   struct ecryptfs_crypt_stat *crypt_stat,
		   struct ecryptfs_key_record *key_rec, size_t *packet_size)
{
	size_t i;
	size_t encrypted_session_key_valid = 0;
	size_t packet_size_length;
1372
	size_t max_packet_size;
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
	int rc = 0;

	(*packet_size) = 0;
	ecryptfs_from_hex(key_rec->sig, auth_tok->token.private_key.signature,
			  ECRYPTFS_SIG_SIZE);
	encrypted_session_key_valid = 0;
	for (i = 0; i < crypt_stat->key_size; i++)
		encrypted_session_key_valid |=
			auth_tok->session_key.encrypted_key[i];
	if (encrypted_session_key_valid) {
		memcpy(key_rec->enc_key,
		       auth_tok->session_key.encrypted_key,
		       auth_tok->session_key.encrypted_key_size);
		goto encrypted_session_key_set;
	}
	if (auth_tok->session_key.encrypted_key_size == 0)
		auth_tok->session_key.encrypted_key_size =
			auth_tok->token.private_key.key_size;
	rc = pki_encrypt_session_key(auth_tok, crypt_stat, key_rec);
	if (rc) {
		ecryptfs_printk(KERN_ERR, "Failed to encrypt session key "
				"via a pki");
		goto out;
	}
	if (ecryptfs_verbosity > 0) {
		ecryptfs_printk(KERN_DEBUG, "Encrypted key:\n");
		ecryptfs_dump_hex(key_rec->enc_key, key_rec->enc_key_size);
	}
encrypted_session_key_set:
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
	/* This format is inspired by OpenPGP; see RFC 2440
	 * packet tag 1 */
	max_packet_size = (1                         /* Tag 1 identifier */
			   + 3                       /* Max Tag 1 packet size */
			   + 1                       /* Version */
			   + ECRYPTFS_SIG_SIZE       /* Key identifier */
			   + 1                       /* Cipher identifier */
			   + key_rec->enc_key_size); /* Encrypted key size */
	if (max_packet_size > (*remaining_bytes)) {
		printk(KERN_ERR "Packet length larger than maximum allowable; "
		       "need up to [%d] bytes, but there are only [%d] "
		       "available\n", max_packet_size, (*remaining_bytes));
1414 1415 1416 1417
		rc = -EINVAL;
		goto out;
	}
	dest[(*packet_size)++] = ECRYPTFS_TAG_1_PACKET_TYPE;
1418
	rc = write_packet_length(&dest[(*packet_size)], (max_packet_size - 4),
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
				 &packet_size_length);
	if (rc) {
		ecryptfs_printk(KERN_ERR, "Error generating tag 1 packet "
				"header; cannot generate packet length\n");
		goto out;
	}
	(*packet_size) += packet_size_length;
	dest[(*packet_size)++] = 0x03; /* version 3 */
	memcpy(&dest[(*packet_size)], key_rec->sig, ECRYPTFS_SIG_SIZE);
	(*packet_size) += ECRYPTFS_SIG_SIZE;
	dest[(*packet_size)++] = RFC2440_CIPHER_RSA;
	memcpy(&dest[(*packet_size)], key_rec->enc_key,
	       key_rec->enc_key_size);
	(*packet_size) += key_rec->enc_key_size;
out:
	if (rc)
		(*packet_size) = 0;
1436 1437
	else
		(*remaining_bytes) -= (*packet_size);
1438 1439
	return rc;
}
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455

/**
 * write_tag_11_packet
 * @dest: Target into which Tag 11 packet is to be written
 * @max: Maximum packet length
 * @contents: Byte array of contents to copy in
 * @contents_length: Number of bytes in contents
 * @packet_length: Length of the Tag 11 packet written; zero on error
 *
 * Returns zero on success; non-zero on error.
 */
static int
write_tag_11_packet(char *dest, int max, char *contents, size_t contents_length,
		    size_t *packet_length)
{
	size_t packet_size_length;
1456
	int rc = 0;
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508

	(*packet_length) = 0;
	if ((13 + contents_length) > max) {
		rc = -EINVAL;
		ecryptfs_printk(KERN_ERR, "Packet length larger than "
				"maximum allowable\n");
		goto out;
	}
	/* General packet header */
	/* Packet tag */
	dest[(*packet_length)++] = ECRYPTFS_TAG_11_PACKET_TYPE;
	/* Packet length */
	rc = write_packet_length(&dest[(*packet_length)],
				 (13 + contents_length), &packet_size_length);
	if (rc) {
		ecryptfs_printk(KERN_ERR, "Error generating tag 11 packet "
				"header; cannot generate packet length\n");
		goto out;
	}
	(*packet_length) += packet_size_length;
	/* Tag 11 specific */
	/* One-octet field that describes how the data is formatted */
	dest[(*packet_length)++] = 0x62; /* binary data */
	/* One-octet filename length followed by filename */
	dest[(*packet_length)++] = 8;
	memcpy(&dest[(*packet_length)], "_CONSOLE", 8);
	(*packet_length) += 8;
	/* Four-octet number indicating modification date */
	memset(&dest[(*packet_length)], 0x00, 4);
	(*packet_length) += 4;
	/* Remainder is literal data */
	memcpy(&dest[(*packet_length)], contents, contents_length);
	(*packet_length) += contents_length;
 out:
	if (rc)
		(*packet_length) = 0;
	return rc;
}

/**
 * write_tag_3_packet
 * @dest: Buffer into which to write the packet
 * @max: Maximum number of bytes that can be written
 * @auth_tok: Authentication token
 * @crypt_stat: The cryptographic context
 * @key_rec: encrypted key
 * @packet_size: This function will write the number of bytes that end
 *               up constituting the packet; set to zero on error
 *
 * Returns zero on success; non-zero on error.
 */
static int
1509 1510
write_tag_3_packet(char *dest, size_t *remaining_bytes,
		   struct ecryptfs_auth_tok *auth_tok,
1511 1512 1513 1514 1515 1516
		   struct ecryptfs_crypt_stat *crypt_stat,
		   struct ecryptfs_key_record *key_rec, size_t *packet_size)
{
	size_t i;
	size_t encrypted_session_key_valid = 0;
	char session_key_encryption_key[ECRYPTFS_MAX_KEY_BYTES];
1517 1518
	struct scatterlist dst_sg;
	struct scatterlist src_sg;
1519 1520
	struct mutex *tfm_mutex = NULL;
	size_t cipher_code;
1521 1522 1523 1524
	size_t packet_size_length;
	size_t max_packet_size;
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
		crypt_stat->mount_crypt_stat;
1525 1526 1527 1528 1529
	struct blkcipher_desc desc = {
		.tfm = NULL,
		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
	};
	int rc = 0;
1530 1531

	(*packet_size) = 0;
1532
	ecryptfs_from_hex(key_rec->sig, auth_tok->token.password.signature,
1533
			  ECRYPTFS_SIG_SIZE);
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
							crypt_stat->cipher);
	if (unlikely(rc)) {
		printk(KERN_ERR "Internal error whilst attempting to get "
		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
		       crypt_stat->cipher, rc);
		goto out;
	}
	if (mount_crypt_stat->global_default_cipher_key_size == 0) {
		struct blkcipher_alg *alg = crypto_blkcipher_alg(desc.tfm);

		printk(KERN_WARNING "No key size specified at mount; "
		       "defaulting to [%d]\n", alg->max_keysize);
		mount_crypt_stat->global_default_cipher_key_size =
			alg->max_keysize;
1549
	}
1550 1551 1552
	if (crypt_stat->key_size == 0)
		crypt_stat->key_size =
			mount_crypt_stat->global_default_cipher_key_size;
1553 1554 1555 1556 1557 1558 1559
	if (auth_tok->session_key.encrypted_key_size == 0)
		auth_tok->session_key.encrypted_key_size =
			crypt_stat->key_size;
	if (crypt_stat->key_size == 24
	    && strcmp("aes", crypt_stat->cipher) == 0) {
		memset((crypt_stat->key + 24), 0, 8);
		auth_tok->session_key.encrypted_key_size = 32;
1560 1561
	} else
		auth_tok->session_key.encrypted_key_size = crypt_stat->key_size;
1562
	key_rec->enc_key_size =
1563
		auth_tok->session_key.encrypted_key_size;
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
	encrypted_session_key_valid = 0;
	for (i = 0; i < auth_tok->session_key.encrypted_key_size; i++)
		encrypted_session_key_valid |=
			auth_tok->session_key.encrypted_key[i];
	if (encrypted_session_key_valid) {
		ecryptfs_printk(KERN_DEBUG, "encrypted_session_key_valid != 0; "
				"using auth_tok->session_key.encrypted_key, "
				"where key_rec->enc_key_size = [%d]\n",
				key_rec->enc_key_size);
		memcpy(key_rec->enc_key,
		       auth_tok->session_key.encrypted_key,
		       key_rec->enc_key_size);
		goto encrypted_session_key_set;
	}
1578 1579
	if (auth_tok->token.password.flags &
	    ECRYPTFS_SESSION_KEY_ENCRYPTION_KEY_SET) {
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
		ecryptfs_printk(KERN_DEBUG, "Using previously generated "
				"session key encryption key of size [%d]\n",
				auth_tok->token.password.
				session_key_encryption_key_bytes);
		memcpy(session_key_encryption_key,
		       auth_tok->token.password.session_key_encryption_key,
		       crypt_stat->key_size);
		ecryptfs_printk(KERN_DEBUG,
				"Cached session key " "encryption key: \n");
		if (ecryptfs_verbosity > 0)
			ecryptfs_dump_hex(session_key_encryption_key, 16);
	}
	if (unlikely(ecryptfs_verbosity > 0)) {
		ecryptfs_printk(KERN_DEBUG, "Session key encryption key:\n");
		ecryptfs_dump_hex(session_key_encryption_key, 16);
	}
1596 1597 1598
	if ((rc = virt_to_scatterlist(crypt_stat->key,
				      key_rec->enc_key_size, &src_sg, 1))
	    != 1) {
1599
		ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
1600 1601 1602
				"for crypt_stat session key; expected rc = 1; "
				"got rc = [%d]. key_rec->enc_key_size = [%d]\n",
				rc, key_rec->enc_key_size);
1603 1604 1605
		rc = -ENOMEM;
		goto out;
	}
1606 1607 1608
	if ((rc = virt_to_scatterlist(key_rec->enc_key,
				      key_rec->enc_key_size, &dst_sg, 1))
	    != 1) {
1609
		ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
1610 1611 1612 1613
				"for crypt_stat encrypted session key; "
				"expected rc = 1; got rc = [%d]. "
				"key_rec->enc_key_size = [%d]\n", rc,
				key_rec->enc_key_size);
1614 1615 1616
		rc = -ENOMEM;
		goto out;
	}
1617
	mutex_lock(tfm_mutex);
1618 1619
	rc = crypto_blkcipher_setkey(desc.tfm, session_key_encryption_key,
				     crypt_stat->key_size);
1620
	if (rc < 0) {
1621
		mutex_unlock(tfm_mutex);
1622
		ecryptfs_printk(KERN_ERR, "Error setting key for crypto "
1623
				"context; rc = [%d]\n", rc);
1624 1625 1626 1627 1628
		goto out;
	}
	rc = 0;
	ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes of the key\n",
			crypt_stat->key_size);
1629
	rc = crypto_blkcipher_encrypt(&desc, &dst_sg, &src_sg,
1630
				      (*key_rec).enc_key_size);
1631
	mutex_unlock(tfm_mutex);
1632 1633 1634 1635
	if (rc) {
		printk(KERN_ERR "Error encrypting; rc = [%d]\n", rc);
		goto out;
	}
1636
	ecryptfs_printk(KERN_DEBUG, "This should be the encrypted key:\n");
1637 1638 1639
	if (ecryptfs_verbosity > 0) {
		ecryptfs_printk(KERN_DEBUG, "EFEK of size [%d]:\n",
				key_rec->enc_key_size);
1640 1641
		ecryptfs_dump_hex(key_rec->enc_key,
				  key_rec->enc_key_size);
1642
	}
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
encrypted_session_key_set:
	/* This format is inspired by OpenPGP; see RFC 2440
	 * packet tag 3 */
	max_packet_size = (1                         /* Tag 3 identifier */
			   + 3                       /* Max Tag 3 packet size */
			   + 1                       /* Version */
			   + 1                       /* Cipher code */
			   + 1                       /* S2K specifier */
			   + 1                       /* Hash identifier */
			   + ECRYPTFS_SALT_SIZE      /* Salt */
			   + 1                       /* Hash iterations */
			   + key_rec->enc_key_size); /* Encrypted key size */
	if (max_packet_size > (*remaining_bytes)) {
		printk(KERN_ERR "Packet too large; need up to [%d] bytes, but "
		       "there are only [%d] available\n", max_packet_size,
		       (*remaining_bytes));
1659 1660 1661 1662
		rc = -EINVAL;
		goto out;
	}
	dest[(*packet_size)++] = ECRYPTFS_TAG_3_PACKET_TYPE;
1663 1664 1665
	/* Chop off the Tag 3 identifier(1) and Tag 3 packet size(3)
	 * to get the number of octets in the actual Tag 3 packet */
	rc = write_packet_length(&dest[(*packet_size)], (max_packet_size - 4),
1666 1667
				 &packet_size_length);
	if (rc) {
1668 1669
		printk(KERN_ERR "Error generating tag 3 packet header; cannot "
		       "generate packet length. rc = [%d]\n", rc);
1670 1671 1672 1673
		goto out;
	}
	(*packet_size) += packet_size_length;
	dest[(*packet_size)++] = 0x04; /* version 4 */
1674 1675
	/* TODO: Break from RFC2440 so that arbitrary ciphers can be
	 * specified with strings */
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
	cipher_code = ecryptfs_code_for_cipher_string(crypt_stat);
	if (cipher_code == 0) {
		ecryptfs_printk(KERN_WARNING, "Unable to generate code for "
				"cipher [%s]\n", crypt_stat->cipher);
		rc = -EINVAL;
		goto out;
	}
	dest[(*packet_size)++] = cipher_code;
	dest[(*packet_size)++] = 0x03;	/* S2K */
	dest[(*packet_size)++] = 0x01;	/* MD5 (TODO: parameterize) */
	memcpy(&dest[(*packet_size)], auth_tok->token.password.salt,
	       ECRYPTFS_SALT_SIZE);
	(*packet_size) += ECRYPTFS_SALT_SIZE;	/* salt */
	dest[(*packet_size)++] = 0x60;	/* hash iterations (65536) */
1690 1691 1692
	memcpy(&dest[(*packet_size)], key_rec->enc_key,
	       key_rec->enc_key_size);
	(*packet_size) += key_rec->enc_key_size;
1693 1694 1695
out:
	if (rc)
		(*packet_size) = 0;
1696 1697
	else
		(*remaining_bytes) -= (*packet_size);
1698 1699 1700
	return rc;
}

1701 1702
struct kmem_cache *ecryptfs_key_record_cache;

1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
/**
 * ecryptfs_generate_key_packet_set
 * @dest: Virtual address from which to write the key record set
 * @crypt_stat: The cryptographic context from which the
 *              authentication tokens will be retrieved
 * @ecryptfs_dentry: The dentry, used to retrieve the mount crypt stat
 *                   for the global parameters
 * @len: The amount written
 * @max: The maximum amount of data allowed to be written
 *
 * Generates a key packet set and writes it to the virtual address
 * passed in.
 *
 * Returns zero on success; non-zero on error.
 */
int
ecryptfs_generate_key_packet_set(char *dest_base,
				 struct ecryptfs_crypt_stat *crypt_stat,
				 struct dentry *ecryptfs_dentry, size_t *len,
				 size_t max)
{
	struct ecryptfs_auth_tok *auth_tok;
1725
	struct ecryptfs_global_auth_tok *global_auth_tok;
1726 1727 1728 1729
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
		&ecryptfs_superblock_to_private(
			ecryptfs_dentry->d_sb)->mount_crypt_stat;
	size_t written;
1730
	struct ecryptfs_key_record *key_rec;
1731
	struct ecryptfs_key_sig *key_sig;
1732
	int rc = 0;
1733 1734

	(*len) = 0;
1735
	mutex_lock(&crypt_stat->keysig_list_mutex);
1736 1737 1738 1739 1740
	key_rec = kmem_cache_alloc(ecryptfs_key_record_cache, GFP_KERNEL);
	if (!key_rec) {
		rc = -ENOMEM;
		goto out;
	}
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
	list_for_each_entry(key_sig, &crypt_stat->keysig_list,
			    crypt_stat_list) {
		memset(key_rec, 0, sizeof(*key_rec));
		rc = ecryptfs_find_global_auth_tok_for_sig(&global_auth_tok,
							   mount_crypt_stat,
							   key_sig->keysig);
		if (rc) {
			printk(KERN_ERR "Error attempting to get the global "
			       "auth_tok; rc = [%d]\n", rc);
			goto out_free;
		}
		if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID) {
			printk(KERN_WARNING
			       "Skipping invalid auth tok with sig = [%s]\n",
			       global_auth_tok->sig);
			continue;
		}
		auth_tok = global_auth_tok->global_auth_tok;
1759 1760
		if (auth_tok->token_type == ECRYPTFS_PASSWORD) {
			rc = write_tag_3_packet((dest_base + (*len)),
1761
						&max, auth_tok,
1762
						crypt_stat, key_rec,
1763 1764 1765 1766
						&written);
			if (rc) {
				ecryptfs_printk(KERN_WARNING, "Error "
						"writing tag 3 packet\n");
1767
				goto out_free;
1768 1769 1770
			}
			(*len) += written;
			/* Write auth tok signature packet */
1771 1772 1773
			rc = write_tag_11_packet((dest_base + (*len)), &max,
						 key_rec->sig,
						 ECRYPTFS_SIG_SIZE, &written);
1774 1775 1776
			if (rc) {
				ecryptfs_printk(KERN_ERR, "Error writing "
						"auth tok signature packet\n");
1777
				goto out_free;
1778 1779
			}
			(*len) += written;
1780 1781
		} else if (auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
			rc = write_tag_1_packet(dest_base + (*len),
1782 1783
						&max, auth_tok,
						crypt_stat, key_rec, &written);
1784 1785 1786
			if (rc) {
				ecryptfs_printk(KERN_WARNING, "Error "
						"writing tag 1 packet\n");
1787
				goto out_free;
1788 1789
			}
			(*len) += written;
1790 1791 1792 1793
		} else {
			ecryptfs_printk(KERN_WARNING, "Unsupported "
					"authentication token type\n");
			rc = -EINVAL;
1794
			goto out_free;
1795
		}
1796 1797
	}
	if (likely(max > 0)) {
1798 1799 1800 1801 1802
		dest_base[(*len)] = 0x00;
	} else {
		ecryptfs_printk(KERN_ERR, "Error writing boundary byte\n");
		rc = -EIO;
	}
1803 1804
out_free:
	kmem_cache_free(ecryptfs_key_record_cache, key_rec);
1805 1806 1807
out:
	if (rc)
		(*len) = 0;
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
	mutex_unlock(&crypt_stat->keysig_list_mutex);
	return rc;
}

struct kmem_cache *ecryptfs_key_sig_cache;

int ecryptfs_add_keysig(struct ecryptfs_crypt_stat *crypt_stat, char *sig)
{
	struct ecryptfs_key_sig *new_key_sig;
	int rc = 0;

	new_key_sig = kmem_cache_alloc(ecryptfs_key_sig_cache, GFP_KERNEL);
	if (!new_key_sig) {
		rc = -ENOMEM;
		printk(KERN_ERR
		       "Error allocating from ecryptfs_key_sig_cache\n");
		goto out;
	}
	memcpy(new_key_sig->keysig, sig, ECRYPTFS_SIG_SIZE_HEX);
	mutex_lock(&crypt_stat->keysig_list_mutex);
	list_add(&new_key_sig->crypt_stat_list, &crypt_stat->keysig_list);
	mutex_unlock(&crypt_stat->keysig_list_mutex);
out:
1831 1832
	return rc;
}
1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861

struct kmem_cache *ecryptfs_global_auth_tok_cache;

int
ecryptfs_add_global_auth_tok(struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
			     char *sig)
{
	struct ecryptfs_global_auth_tok *new_auth_tok;
	int rc = 0;

	new_auth_tok = kmem_cache_alloc(ecryptfs_global_auth_tok_cache,
					GFP_KERNEL);
	if (!new_auth_tok) {
		rc = -ENOMEM;
		printk(KERN_ERR "Error allocating from "
		       "ecryptfs_global_auth_tok_cache\n");
		goto out;
	}
	memcpy(new_auth_tok->sig, sig, ECRYPTFS_SIG_SIZE_HEX);
	new_auth_tok->sig[ECRYPTFS_SIG_SIZE_HEX] = '\0';
	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
	list_add(&new_auth_tok->mount_crypt_stat_list,
		 &mount_crypt_stat->global_auth_tok_list);
	mount_crypt_stat->num_global_auth_toks++;
	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
out:
	return rc;
}