pgtable.h 21.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3
#ifndef _ASM_GENERIC_PGTABLE_H
#define _ASM_GENERIC_PGTABLE_H

4 5
#include <linux/pfn.h>

6
#ifndef __ASSEMBLY__
7
#ifdef CONFIG_MMU
8

9
#include <linux/mm_types.h>
10
#include <linux/bug.h>
11
#include <linux/errno.h>
12

13 14 15 16 17
#if 4 - defined(__PAGETABLE_PUD_FOLDED) - defined(__PAGETABLE_PMD_FOLDED) != \
	CONFIG_PGTABLE_LEVELS
#error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{PUD,PMD}_FOLDED
#endif

18 19 20 21 22 23 24 25 26 27
/*
 * On almost all architectures and configurations, 0 can be used as the
 * upper ceiling to free_pgtables(): on many architectures it has the same
 * effect as using TASK_SIZE.  However, there is one configuration which
 * must impose a more careful limit, to avoid freeing kernel pgtables.
 */
#ifndef USER_PGTABLES_CEILING
#define USER_PGTABLES_CEILING	0UL
#endif

L
Linus Torvalds 已提交
28
#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
29 30 31 32 33 34
extern int ptep_set_access_flags(struct vm_area_struct *vma,
				 unsigned long address, pte_t *ptep,
				 pte_t entry, int dirty);
#endif

#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
35
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
36 37 38
extern int pmdp_set_access_flags(struct vm_area_struct *vma,
				 unsigned long address, pmd_t *pmdp,
				 pmd_t entry, int dirty);
39 40 41 42 43 44 45 46 47
#else
static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
					unsigned long address, pmd_t *pmdp,
					pmd_t entry, int dirty)
{
	BUILD_BUG();
	return 0;
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
L
Linus Torvalds 已提交
48 49 50
#endif

#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
					    unsigned long address,
					    pte_t *ptep)
{
	pte_t pte = *ptep;
	int r = 1;
	if (!pte_young(pte))
		r = 0;
	else
		set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
	return r;
}
#endif

#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
					    unsigned long address,
					    pmd_t *pmdp)
{
	pmd_t pmd = *pmdp;
	int r = 1;
	if (!pmd_young(pmd))
		r = 0;
	else
		set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
	return r;
}
79
#else
80 81 82 83
static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
					    unsigned long address,
					    pmd_t *pmdp)
{
84
	BUILD_BUG();
85 86 87
	return 0;
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
L
Linus Torvalds 已提交
88 89 90
#endif

#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
91 92 93 94 95
int ptep_clear_flush_young(struct vm_area_struct *vma,
			   unsigned long address, pte_t *ptep);
#endif

#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
				  unsigned long address, pmd_t *pmdp);
#else
/*
 * Despite relevant to THP only, this API is called from generic rmap code
 * under PageTransHuge(), hence needs a dummy implementation for !THP
 */
static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
					 unsigned long address, pmd_t *pmdp)
{
	BUILD_BUG();
	return 0;
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
L
Linus Torvalds 已提交
111 112 113
#endif

#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
114 115 116 117 118 119 120 121 122 123
static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
				       unsigned long address,
				       pte_t *ptep)
{
	pte_t pte = *ptep;
	pte_clear(mm, address, ptep);
	return pte;
}
#endif

124
#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
125
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
126 127 128
static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
					    unsigned long address,
					    pmd_t *pmdp)
129 130
{
	pmd_t pmd = *pmdp;
131
	pmd_clear(pmdp);
132
	return pmd;
133
}
134
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
L
Linus Torvalds 已提交
135 136
#endif

137
#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
138
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
139
static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm,
140 141 142
					    unsigned long address, pmd_t *pmdp,
					    int full)
{
143
	return pmdp_huge_get_and_clear(mm, address, pmdp);
144 145 146 147
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
#endif

148
#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
149 150 151 152 153 154 155 156
static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
					    unsigned long address, pte_t *ptep,
					    int full)
{
	pte_t pte;
	pte = ptep_get_and_clear(mm, address, ptep);
	return pte;
}
157 158
#endif

159 160 161 162 163 164
/*
 * Some architectures may be able to avoid expensive synchronization
 * primitives when modifications are made to PTE's which are already
 * not present, or in the process of an address space destruction.
 */
#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
165 166 167 168 169 170 171
static inline void pte_clear_not_present_full(struct mm_struct *mm,
					      unsigned long address,
					      pte_t *ptep,
					      int full)
{
	pte_clear(mm, address, ptep);
}
172 173
#endif

L
Linus Torvalds 已提交
174
#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
175 176 177 178 179
extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
			      unsigned long address,
			      pte_t *ptep);
#endif

180 181
#ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
182 183
			      unsigned long address,
			      pmd_t *pmdp);
L
Linus Torvalds 已提交
184 185 186
#endif

#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
187
struct mm_struct;
L
Linus Torvalds 已提交
188 189 190 191 192 193 194
static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
{
	pte_t old_pte = *ptep;
	set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
}
#endif

195 196 197 198 199 200 201 202
#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static inline void pmdp_set_wrprotect(struct mm_struct *mm,
				      unsigned long address, pmd_t *pmdp)
{
	pmd_t old_pmd = *pmdp;
	set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
}
203
#else
204 205 206
static inline void pmdp_set_wrprotect(struct mm_struct *mm,
				      unsigned long address, pmd_t *pmdp)
{
207
	BUILD_BUG();
208 209 210 211
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
#endif

212 213
#ifndef pmdp_collapse_flush
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
214 215
extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
				 unsigned long address, pmd_t *pmdp);
216 217 218 219 220 221 222 223 224 225 226 227
#else
static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
					unsigned long address,
					pmd_t *pmdp)
{
	BUILD_BUG();
	return *pmdp;
}
#define pmdp_collapse_flush pmdp_collapse_flush
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
#endif

228
#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
229 230
extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
				       pgtable_t pgtable);
231 232 233
#endif

#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
234
extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
235 236
#endif

G
Gerald Schaefer 已提交
237 238 239 240 241
#ifndef __HAVE_ARCH_PMDP_INVALIDATE
extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
			    pmd_t *pmdp);
#endif

L
Linus Torvalds 已提交
242
#ifndef __HAVE_ARCH_PTE_SAME
243 244 245 246 247 248
static inline int pte_same(pte_t pte_a, pte_t pte_b)
{
	return pte_val(pte_a) == pte_val(pte_b);
}
#endif

249 250 251 252 253 254 255 256 257 258 259 260 261
#ifndef __HAVE_ARCH_PTE_UNUSED
/*
 * Some architectures provide facilities to virtualization guests
 * so that they can flag allocated pages as unused. This allows the
 * host to transparently reclaim unused pages. This function returns
 * whether the pte's page is unused.
 */
static inline int pte_unused(pte_t pte)
{
	return 0;
}
#endif

262 263 264 265 266 267 268 269 270
#ifndef __HAVE_ARCH_PMD_SAME
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
{
	return pmd_val(pmd_a) == pmd_val(pmd_b);
}
#else /* CONFIG_TRANSPARENT_HUGEPAGE */
static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
{
271
	BUILD_BUG();
272 273 274
	return 0;
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
L
Linus Torvalds 已提交
275 276 277 278 279 280
#endif

#ifndef __HAVE_ARCH_PGD_OFFSET_GATE
#define pgd_offset_gate(mm, addr)	pgd_offset(mm, addr)
#endif

281
#ifndef __HAVE_ARCH_MOVE_PTE
282 283 284
#define move_pte(pte, prot, old_addr, new_addr)	(pte)
#endif

R
Rik van Riel 已提交
285
#ifndef pte_accessible
286
# define pte_accessible(mm, pte)	((void)(pte), 1)
R
Rik van Riel 已提交
287 288
#endif

289 290 291 292
#ifndef flush_tlb_fix_spurious_fault
#define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
#endif

293 294 295 296
#ifndef pgprot_noncached
#define pgprot_noncached(prot)	(prot)
#endif

297 298 299 300
#ifndef pgprot_writecombine
#define pgprot_writecombine pgprot_noncached
#endif

301 302 303 304
#ifndef pgprot_writethrough
#define pgprot_writethrough pgprot_noncached
#endif

305 306 307 308
#ifndef pgprot_device
#define pgprot_device pgprot_noncached
#endif

309 310 311 312 313 314 315 316 317 318 319 320 321 322
#ifndef pgprot_modify
#define pgprot_modify pgprot_modify
static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
{
	if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
		newprot = pgprot_noncached(newprot);
	if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
		newprot = pgprot_writecombine(newprot);
	if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
		newprot = pgprot_device(newprot);
	return newprot;
}
#endif

L
Linus Torvalds 已提交
323
/*
324 325 326
 * When walking page tables, get the address of the next boundary,
 * or the end address of the range if that comes earlier.  Although no
 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
L
Linus Torvalds 已提交
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
 */

#define pgd_addr_end(addr, end)						\
({	unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK;	\
	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
})

#ifndef pud_addr_end
#define pud_addr_end(addr, end)						\
({	unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK;	\
	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
})
#endif

#ifndef pmd_addr_end
#define pmd_addr_end(addr, end)						\
({	unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK;	\
	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
})
#endif

/*
 * When walking page tables, we usually want to skip any p?d_none entries;
 * and any p?d_bad entries - reporting the error before resetting to none.
 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
 */
void pgd_clear_bad(pgd_t *);
void pud_clear_bad(pud_t *);
void pmd_clear_bad(pmd_t *);

static inline int pgd_none_or_clear_bad(pgd_t *pgd)
{
	if (pgd_none(*pgd))
		return 1;
	if (unlikely(pgd_bad(*pgd))) {
		pgd_clear_bad(pgd);
		return 1;
	}
	return 0;
}

static inline int pud_none_or_clear_bad(pud_t *pud)
{
	if (pud_none(*pud))
		return 1;
	if (unlikely(pud_bad(*pud))) {
		pud_clear_bad(pud);
		return 1;
	}
	return 0;
}

static inline int pmd_none_or_clear_bad(pmd_t *pmd)
{
	if (pmd_none(*pmd))
		return 1;
	if (unlikely(pmd_bad(*pmd))) {
		pmd_clear_bad(pmd);
		return 1;
	}
	return 0;
}
389

390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
static inline pte_t __ptep_modify_prot_start(struct mm_struct *mm,
					     unsigned long addr,
					     pte_t *ptep)
{
	/*
	 * Get the current pte state, but zero it out to make it
	 * non-present, preventing the hardware from asynchronously
	 * updating it.
	 */
	return ptep_get_and_clear(mm, addr, ptep);
}

static inline void __ptep_modify_prot_commit(struct mm_struct *mm,
					     unsigned long addr,
					     pte_t *ptep, pte_t pte)
{
	/*
	 * The pte is non-present, so there's no hardware state to
	 * preserve.
	 */
	set_pte_at(mm, addr, ptep, pte);
}

#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
/*
 * Start a pte protection read-modify-write transaction, which
 * protects against asynchronous hardware modifications to the pte.
 * The intention is not to prevent the hardware from making pte
 * updates, but to prevent any updates it may make from being lost.
 *
 * This does not protect against other software modifications of the
 * pte; the appropriate pte lock must be held over the transation.
 *
 * Note that this interface is intended to be batchable, meaning that
 * ptep_modify_prot_commit may not actually update the pte, but merely
 * queue the update to be done at some later time.  The update must be
 * actually committed before the pte lock is released, however.
 */
static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
					   unsigned long addr,
					   pte_t *ptep)
{
	return __ptep_modify_prot_start(mm, addr, ptep);
}

/*
 * Commit an update to a pte, leaving any hardware-controlled bits in
 * the PTE unmodified.
 */
static inline void ptep_modify_prot_commit(struct mm_struct *mm,
					   unsigned long addr,
					   pte_t *ptep, pte_t pte)
{
	__ptep_modify_prot_commit(mm, addr, ptep, pte);
}
#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
446
#endif /* CONFIG_MMU */
447

448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
/*
 * A facility to provide lazy MMU batching.  This allows PTE updates and
 * page invalidations to be delayed until a call to leave lazy MMU mode
 * is issued.  Some architectures may benefit from doing this, and it is
 * beneficial for both shadow and direct mode hypervisors, which may batch
 * the PTE updates which happen during this window.  Note that using this
 * interface requires that read hazards be removed from the code.  A read
 * hazard could result in the direct mode hypervisor case, since the actual
 * write to the page tables may not yet have taken place, so reads though
 * a raw PTE pointer after it has been modified are not guaranteed to be
 * up to date.  This mode can only be entered and left under the protection of
 * the page table locks for all page tables which may be modified.  In the UP
 * case, this is required so that preemption is disabled, and in the SMP case,
 * it must synchronize the delayed page table writes properly on other CPUs.
 */
#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
#define arch_enter_lazy_mmu_mode()	do {} while (0)
#define arch_leave_lazy_mmu_mode()	do {} while (0)
#define arch_flush_lazy_mmu_mode()	do {} while (0)
#endif

/*
470 471 472 473 474 475 476 477 478
 * A facility to provide batching of the reload of page tables and
 * other process state with the actual context switch code for
 * paravirtualized guests.  By convention, only one of the batched
 * update (lazy) modes (CPU, MMU) should be active at any given time,
 * entry should never be nested, and entry and exits should always be
 * paired.  This is for sanity of maintaining and reasoning about the
 * kernel code.  In this case, the exit (end of the context switch) is
 * in architecture-specific code, and so doesn't need a generic
 * definition.
479
 */
480
#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
481
#define arch_start_context_switch(prev)	do {} while (0)
482 483
#endif

484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
#ifndef CONFIG_HAVE_ARCH_SOFT_DIRTY
static inline int pte_soft_dirty(pte_t pte)
{
	return 0;
}

static inline int pmd_soft_dirty(pmd_t pmd)
{
	return 0;
}

static inline pte_t pte_mksoft_dirty(pte_t pte)
{
	return pte;
}

static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
{
	return pmd;
}
504

505 506 507 508 509 510 511 512 513 514
static inline pte_t pte_clear_soft_dirty(pte_t pte)
{
	return pte;
}

static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
{
	return pmd;
}

515 516 517 518 519 520 521 522 523 524 525 526 527 528
static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
{
	return pte;
}

static inline int pte_swp_soft_dirty(pte_t pte)
{
	return 0;
}

static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
{
	return pte;
}
529 530
#endif

531 532
#ifndef __HAVE_PFNMAP_TRACKING
/*
533 534 535 536 537 538 539 540
 * Interfaces that can be used by architecture code to keep track of
 * memory type of pfn mappings specified by the remap_pfn_range,
 * vm_insert_pfn.
 */

/*
 * track_pfn_remap is called when a _new_ pfn mapping is being established
 * by remap_pfn_range() for physical range indicated by pfn and size.
541
 */
542
static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
543 544
				  unsigned long pfn, unsigned long addr,
				  unsigned long size)
545 546 547 548 549
{
	return 0;
}

/*
550 551 552 553
 * track_pfn_insert is called when a _new_ single pfn is established
 * by vm_insert_pfn().
 */
static inline int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
554
				   pfn_t pfn)
555 556 557 558 559 560
{
	return 0;
}

/*
 * track_pfn_copy is called when vma that is covering the pfnmap gets
561 562
 * copied through copy_page_range().
 */
563
static inline int track_pfn_copy(struct vm_area_struct *vma)
564 565 566 567 568
{
	return 0;
}

/*
569
 * untrack_pfn is called while unmapping a pfnmap for a region.
570
 * untrack can be called for a specific region indicated by pfn and size or
571
 * can be for the entire vma (in which case pfn, size are zero).
572
 */
573 574
static inline void untrack_pfn(struct vm_area_struct *vma,
			       unsigned long pfn, unsigned long size)
575 576
{
}
577 578 579 580 581 582 583

/*
 * untrack_pfn_moved is called while mremapping a pfnmap for a new region.
 */
static inline void untrack_pfn_moved(struct vm_area_struct *vma)
{
}
584
#else
585
extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
586 587
			   unsigned long pfn, unsigned long addr,
			   unsigned long size);
588
extern int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
589
			    pfn_t pfn);
590 591 592
extern int track_pfn_copy(struct vm_area_struct *vma);
extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
			unsigned long size);
593
extern void untrack_pfn_moved(struct vm_area_struct *vma);
594 595
#endif

596 597 598 599 600 601 602 603
#ifdef __HAVE_COLOR_ZERO_PAGE
static inline int is_zero_pfn(unsigned long pfn)
{
	extern unsigned long zero_pfn;
	unsigned long offset_from_zero_pfn = pfn - zero_pfn;
	return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
}

604 605
#define my_zero_pfn(addr)	page_to_pfn(ZERO_PAGE(addr))

606 607 608 609 610 611 612 613 614 615 616 617 618 619
#else
static inline int is_zero_pfn(unsigned long pfn)
{
	extern unsigned long zero_pfn;
	return pfn == zero_pfn;
}

static inline unsigned long my_zero_pfn(unsigned long addr)
{
	extern unsigned long zero_pfn;
	return zero_pfn;
}
#endif

620 621
#ifdef CONFIG_MMU

622 623 624 625 626
#ifndef CONFIG_TRANSPARENT_HUGEPAGE
static inline int pmd_trans_huge(pmd_t pmd)
{
	return 0;
}
627 628 629 630 631 632 633
#ifndef __HAVE_ARCH_PMD_WRITE
static inline int pmd_write(pmd_t pmd)
{
	BUG();
	return 0;
}
#endif /* __HAVE_ARCH_PMD_WRITE */
634 635
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */

636 637 638 639 640 641 642 643 644 645 646 647
#ifndef pmd_read_atomic
static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
{
	/*
	 * Depend on compiler for an atomic pmd read. NOTE: this is
	 * only going to work, if the pmdval_t isn't larger than
	 * an unsigned long.
	 */
	return *pmdp;
}
#endif

648 649 650 651 652 653 654 655 656 657 658 659
#ifndef pmd_move_must_withdraw
static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
					 spinlock_t *old_pmd_ptl)
{
	/*
	 * With split pmd lock we also need to move preallocated
	 * PTE page table if new_pmd is on different PMD page table.
	 */
	return new_pmd_ptl != old_pmd_ptl;
}
#endif

660 661 662 663 664 665 666 667 668 669 670 671 672
/*
 * This function is meant to be used by sites walking pagetables with
 * the mmap_sem hold in read mode to protect against MADV_DONTNEED and
 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
 * into a null pmd and the transhuge page fault can convert a null pmd
 * into an hugepmd or into a regular pmd (if the hugepage allocation
 * fails). While holding the mmap_sem in read mode the pmd becomes
 * stable and stops changing under us only if it's not null and not a
 * transhuge pmd. When those races occurs and this function makes a
 * difference vs the standard pmd_none_or_clear_bad, the result is
 * undefined so behaving like if the pmd was none is safe (because it
 * can return none anyway). The compiler level barrier() is critically
 * important to compute the two checks atomically on the same pmdval.
673 674 675 676 677 678 679
 *
 * For 32bit kernels with a 64bit large pmd_t this automatically takes
 * care of reading the pmd atomically to avoid SMP race conditions
 * against pmd_populate() when the mmap_sem is hold for reading by the
 * caller (a special atomic read not done by "gcc" as in the generic
 * version above, is also needed when THP is disabled because the page
 * fault can populate the pmd from under us).
680 681 682
 */
static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
{
683
	pmd_t pmdval = pmd_read_atomic(pmd);
684 685 686
	/*
	 * The barrier will stabilize the pmdval in a register or on
	 * the stack so that it will stop changing under the code.
687 688 689 690 691 692 693 694 695 696
	 *
	 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
	 * pmd_read_atomic is allowed to return a not atomic pmdval
	 * (for example pointing to an hugepage that has never been
	 * mapped in the pmd). The below checks will only care about
	 * the low part of the pmd with 32bit PAE x86 anyway, with the
	 * exception of pmd_none(). So the important thing is that if
	 * the low part of the pmd is found null, the high part will
	 * be also null or the pmd_none() check below would be
	 * confused.
697 698 699 700
	 */
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	barrier();
#endif
701
	if (pmd_none(pmdval) || pmd_trans_huge(pmdval))
702 703
		return 1;
	if (unlikely(pmd_bad(pmdval))) {
704
		pmd_clear_bad(pmd);
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
		return 1;
	}
	return 0;
}

/*
 * This is a noop if Transparent Hugepage Support is not built into
 * the kernel. Otherwise it is equivalent to
 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
 * places that already verified the pmd is not none and they want to
 * walk ptes while holding the mmap sem in read mode (write mode don't
 * need this). If THP is not enabled, the pmd can't go away under the
 * code even if MADV_DONTNEED runs, but if THP is enabled we need to
 * run a pmd_trans_unstable before walking the ptes after
 * split_huge_page_pmd returns (because it may have run when the pmd
 * become null, but then a page fault can map in a THP and not a
 * regular page).
 */
static inline int pmd_trans_unstable(pmd_t *pmd)
{
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	return pmd_none_or_trans_huge_or_clear_bad(pmd);
#else
	return 0;
729
#endif
730 731
}

732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
#ifndef CONFIG_NUMA_BALANCING
/*
 * Technically a PTE can be PROTNONE even when not doing NUMA balancing but
 * the only case the kernel cares is for NUMA balancing and is only ever set
 * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked
 * _PAGE_PROTNONE so by by default, implement the helper as "always no". It
 * is the responsibility of the caller to distinguish between PROT_NONE
 * protections and NUMA hinting fault protections.
 */
static inline int pte_protnone(pte_t pte)
{
	return 0;
}

static inline int pmd_protnone(pmd_t pmd)
{
	return 0;
}
#endif /* CONFIG_NUMA_BALANCING */

752
#endif /* CONFIG_MMU */
753

754 755 756
#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
757 758
int pud_clear_huge(pud_t *pud);
int pmd_clear_huge(pmd_t *pmd);
759 760 761 762 763 764 765 766 767
#else	/* !CONFIG_HAVE_ARCH_HUGE_VMAP */
static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
{
	return 0;
}
static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
{
	return 0;
}
768 769 770 771 772 773 774 775
static inline int pud_clear_huge(pud_t *pud)
{
	return 0;
}
static inline int pmd_clear_huge(pmd_t *pmd)
{
	return 0;
}
776 777
#endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */

L
Linus Torvalds 已提交
778 779
#endif /* !__ASSEMBLY__ */

780 781 782 783
#ifndef io_remap_pfn_range
#define io_remap_pfn_range remap_pfn_range
#endif

L
Linus Torvalds 已提交
784
#endif /* _ASM_GENERIC_PGTABLE_H */