bio-integrity.c 17.9 KB
Newer Older
1 2 3
/*
 * bio-integrity.c - bio data integrity extensions
 *
4
 * Copyright (C) 2007, 2008, 2009 Oracle Corporation
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 * Written by: Martin K. Petersen <martin.petersen@oracle.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License version
 * 2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; see the file COPYING.  If not, write to
 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139,
 * USA.
 *
 */

#include <linux/blkdev.h>
#include <linux/mempool.h>
25
#include <linux/export.h>
26 27
#include <linux/bio.h>
#include <linux/workqueue.h>
28
#include <linux/slab.h>
29

30
#define BIP_INLINE_VECS	4
31

32
static struct kmem_cache *bip_slab;
33 34 35
static struct workqueue_struct *kintegrityd_wq;

/**
36
 * bio_integrity_alloc - Allocate integrity payload and attach it to bio
37 38 39 40 41 42 43 44
 * @bio:	bio to attach integrity metadata to
 * @gfp_mask:	Memory allocation mask
 * @nr_vecs:	Number of integrity metadata scatter-gather elements
 *
 * Description: This function prepares a bio for attaching integrity
 * metadata.  nr_vecs specifies the maximum number of pages containing
 * integrity metadata that can be attached.
 */
45 46 47
struct bio_integrity_payload *bio_integrity_alloc(struct bio *bio,
						  gfp_t gfp_mask,
						  unsigned int nr_vecs)
48 49
{
	struct bio_integrity_payload *bip;
50
	struct bio_set *bs = bio->bi_pool;
51 52 53 54 55 56 57 58
	unsigned long idx = BIO_POOL_NONE;
	unsigned inline_vecs;

	if (!bs) {
		bip = kmalloc(sizeof(struct bio_integrity_payload) +
			      sizeof(struct bio_vec) * nr_vecs, gfp_mask);
		inline_vecs = nr_vecs;
	} else {
59
		bip = mempool_alloc(bs->bio_integrity_pool, gfp_mask);
60
		inline_vecs = BIP_INLINE_VECS;
61 62
	}

63 64 65
	if (unlikely(!bip))
		return NULL;

66 67
	memset(bip, 0, sizeof(*bip));

68 69 70 71 72 73 74 75 76
	if (nr_vecs > inline_vecs) {
		bip->bip_vec = bvec_alloc(gfp_mask, nr_vecs, &idx,
					  bs->bvec_integrity_pool);
		if (!bip->bip_vec)
			goto err;
	} else {
		bip->bip_vec = bip->bip_inline_vecs;
	}

77
	bip->bip_slab = idx;
78 79 80 81
	bip->bip_bio = bio;
	bio->bi_integrity = bip;

	return bip;
82 83 84
err:
	mempool_free(bip, bs->bio_integrity_pool);
	return NULL;
85 86 87 88 89 90 91 92 93 94
}
EXPORT_SYMBOL(bio_integrity_alloc);

/**
 * bio_integrity_free - Free bio integrity payload
 * @bio:	bio containing bip to be freed
 *
 * Description: Used to free the integrity portion of a bio. Usually
 * called from bio_free().
 */
95
void bio_integrity_free(struct bio *bio)
96 97
{
	struct bio_integrity_payload *bip = bio->bi_integrity;
98 99
	struct bio_set *bs = bio->bi_pool;

100
	if (bip->bip_owns_buf)
101 102
		kfree(bip->bip_buf);

103 104 105 106 107
	if (bs) {
		if (bip->bip_slab != BIO_POOL_NONE)
			bvec_free(bs->bvec_integrity_pool, bip->bip_vec,
				  bip->bip_slab);

108
		mempool_free(bip, bs->bio_integrity_pool);
109 110 111
	} else {
		kfree(bip);
	}
112 113 114 115 116

	bio->bi_integrity = NULL;
}
EXPORT_SYMBOL(bio_integrity_free);

117 118 119 120 121 122 123 124
static inline unsigned int bip_integrity_vecs(struct bio_integrity_payload *bip)
{
	if (bip->bip_slab == BIO_POOL_NONE)
		return BIP_INLINE_VECS;

	return bvec_nr_vecs(bip->bip_slab);
}

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
/**
 * bio_integrity_add_page - Attach integrity metadata
 * @bio:	bio to update
 * @page:	page containing integrity metadata
 * @len:	number of bytes of integrity metadata in page
 * @offset:	start offset within page
 *
 * Description: Attach a page containing integrity metadata to bio.
 */
int bio_integrity_add_page(struct bio *bio, struct page *page,
			   unsigned int len, unsigned int offset)
{
	struct bio_integrity_payload *bip = bio->bi_integrity;
	struct bio_vec *iv;

140
	if (bip->bip_vcnt >= bip_integrity_vecs(bip)) {
141 142 143 144
		printk(KERN_ERR "%s: bip_vec full\n", __func__);
		return 0;
	}

145
	iv = bip->bip_vec + bip->bip_vcnt;
146 147 148 149 150 151 152 153 154 155

	iv->bv_page = page;
	iv->bv_len = len;
	iv->bv_offset = offset;
	bip->bip_vcnt++;

	return len;
}
EXPORT_SYMBOL(bio_integrity_add_page);

156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
static int bdev_integrity_enabled(struct block_device *bdev, int rw)
{
	struct blk_integrity *bi = bdev_get_integrity(bdev);

	if (bi == NULL)
		return 0;

	if (rw == READ && bi->verify_fn != NULL &&
	    (bi->flags & INTEGRITY_FLAG_READ))
		return 1;

	if (rw == WRITE && bi->generate_fn != NULL &&
	    (bi->flags & INTEGRITY_FLAG_WRITE))
		return 1;

	return 0;
}

174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
/**
 * bio_integrity_enabled - Check whether integrity can be passed
 * @bio:	bio to check
 *
 * Description: Determines whether bio_integrity_prep() can be called
 * on this bio or not.	bio data direction and target device must be
 * set prior to calling.  The functions honors the write_generate and
 * read_verify flags in sysfs.
 */
int bio_integrity_enabled(struct bio *bio)
{
	/* Already protected? */
	if (bio_integrity(bio))
		return 0;

	return bdev_integrity_enabled(bio->bi_bdev, bio_data_dir(bio));
}
EXPORT_SYMBOL(bio_integrity_enabled);

/**
 * bio_integrity_hw_sectors - Convert 512b sectors to hardware ditto
 * @bi:		blk_integrity profile for device
 * @sectors:	Number of 512 sectors to convert
 *
 * Description: The block layer calculates everything in 512 byte
 * sectors but integrity metadata is done in terms of the hardware
 * sector size of the storage device.  Convert the block layer sectors
 * to physical sectors.
 */
203 204
static inline unsigned int bio_integrity_hw_sectors(struct blk_integrity *bi,
						    unsigned int sectors)
205 206 207 208 209 210 211 212
{
	/* At this point there are only 512b or 4096b DIF/EPP devices */
	if (bi->sector_size == 4096)
		return sectors >>= 3;

	return sectors;
}

213 214 215 216 217 218
static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi,
					       unsigned int sectors)
{
	return bio_integrity_hw_sectors(bi, sectors) * bi->tuple_size;
}

219 220 221 222 223 224 225 226 227 228 229 230
/**
 * bio_integrity_tag_size - Retrieve integrity tag space
 * @bio:	bio to inspect
 *
 * Description: Returns the maximum number of tag bytes that can be
 * attached to this bio. Filesystems can use this to determine how
 * much metadata to attach to an I/O.
 */
unsigned int bio_integrity_tag_size(struct bio *bio)
{
	struct blk_integrity *bi = bdev_get_integrity(bio->bi_bdev);

231
	BUG_ON(bio->bi_iter.bi_size == 0);
232

233
	return bi->tag_size * (bio->bi_iter.bi_size / bi->sector_size);
234 235 236 237 238 239 240 241 242 243 244 245 246 247
}
EXPORT_SYMBOL(bio_integrity_tag_size);

int bio_integrity_tag(struct bio *bio, void *tag_buf, unsigned int len, int set)
{
	struct bio_integrity_payload *bip = bio->bi_integrity;
	struct blk_integrity *bi = bdev_get_integrity(bio->bi_bdev);
	unsigned int nr_sectors;

	BUG_ON(bip->bip_buf == NULL);

	if (bi->tag_size == 0)
		return -1;

248 249
	nr_sectors = bio_integrity_hw_sectors(bi,
					DIV_ROUND_UP(len, bi->tag_size));
250

251 252 253
	if (nr_sectors * bi->tuple_size > bip->bip_iter.bi_size) {
		printk(KERN_ERR "%s: tag too big for bio: %u > %u\n", __func__,
		       nr_sectors * bi->tuple_size, bip->bip_iter.bi_size);
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
		return -1;
	}

	if (set)
		bi->set_tag_fn(bip->bip_buf, tag_buf, nr_sectors);
	else
		bi->get_tag_fn(bip->bip_buf, tag_buf, nr_sectors);

	return 0;
}

/**
 * bio_integrity_set_tag - Attach a tag buffer to a bio
 * @bio:	bio to attach buffer to
 * @tag_buf:	Pointer to a buffer containing tag data
 * @len:	Length of the included buffer
 *
 * Description: Use this function to tag a bio by leveraging the extra
 * space provided by devices formatted with integrity protection.  The
 * size of the integrity buffer must be <= to the size reported by
 * bio_integrity_tag_size().
 */
int bio_integrity_set_tag(struct bio *bio, void *tag_buf, unsigned int len)
{
	BUG_ON(bio_data_dir(bio) != WRITE);

	return bio_integrity_tag(bio, tag_buf, len, 1);
}
EXPORT_SYMBOL(bio_integrity_set_tag);

/**
 * bio_integrity_get_tag - Retrieve a tag buffer from a bio
 * @bio:	bio to retrieve buffer from
 * @tag_buf:	Pointer to a buffer for the tag data
 * @len:	Length of the target buffer
 *
 * Description: Use this function to retrieve the tag buffer from a
 * completed I/O. The size of the integrity buffer must be <= to the
 * size reported by bio_integrity_tag_size().
 */
int bio_integrity_get_tag(struct bio *bio, void *tag_buf, unsigned int len)
{
	BUG_ON(bio_data_dir(bio) != READ);

	return bio_integrity_tag(bio, tag_buf, len, 0);
}
EXPORT_SYMBOL(bio_integrity_get_tag);

/**
 * bio_integrity_generate - Generate integrity metadata for a bio
 * @bio:	bio to generate integrity metadata for
 *
 * Description: Generates integrity metadata for a bio by calling the
 * block device's generation callback function.  The bio must have a
 * bip attached with enough room to accommodate the generated
 * integrity metadata.
 */
static void bio_integrity_generate(struct bio *bio)
{
	struct blk_integrity *bi = bdev_get_integrity(bio->bi_bdev);
	struct blk_integrity_exchg bix;
315 316
	struct bio_vec bv;
	struct bvec_iter iter;
317
	sector_t sector = bio->bi_iter.bi_sector;
318
	unsigned int sectors, total;
319 320 321 322 323 324
	void *prot_buf = bio->bi_integrity->bip_buf;

	total = 0;
	bix.disk_name = bio->bi_bdev->bd_disk->disk_name;
	bix.sector_size = bi->sector_size;

325 326 327 328
	bio_for_each_segment(bv, bio, iter) {
		void *kaddr = kmap_atomic(bv.bv_page);
		bix.data_buf = kaddr + bv.bv_offset;
		bix.data_size = bv.bv_len;
329 330 331 332 333
		bix.prot_buf = prot_buf;
		bix.sector = sector;

		bi->generate_fn(&bix);

334
		sectors = bv.bv_len / bi->sector_size;
335 336 337
		sector += sectors;
		prot_buf += sectors * bi->tuple_size;
		total += sectors * bi->tuple_size;
338
		BUG_ON(total > bio->bi_integrity->bip_iter.bi_size);
339

340
		kunmap_atomic(kaddr);
341 342 343
	}
}

344 345 346 347 348 349 350 351
static inline unsigned short blk_integrity_tuple_size(struct blk_integrity *bi)
{
	if (bi)
		return bi->tuple_size;

	return 0;
}

352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
/**
 * bio_integrity_prep - Prepare bio for integrity I/O
 * @bio:	bio to prepare
 *
 * Description: Allocates a buffer for integrity metadata, maps the
 * pages and attaches them to a bio.  The bio must have data
 * direction, target device and start sector set priot to calling.  In
 * the WRITE case, integrity metadata will be generated using the
 * block device's integrity function.  In the READ case, the buffer
 * will be prepared for DMA and a suitable end_io handler set up.
 */
int bio_integrity_prep(struct bio *bio)
{
	struct bio_integrity_payload *bip;
	struct blk_integrity *bi;
	struct request_queue *q;
	void *buf;
	unsigned long start, end;
	unsigned int len, nr_pages;
	unsigned int bytes, offset, i;
	unsigned int sectors;

	bi = bdev_get_integrity(bio->bi_bdev);
	q = bdev_get_queue(bio->bi_bdev);
	BUG_ON(bi == NULL);
	BUG_ON(bio_integrity(bio));

	sectors = bio_integrity_hw_sectors(bi, bio_sectors(bio));

	/* Allocate kernel buffer for protection data */
	len = sectors * blk_integrity_tuple_size(bi);
383
	buf = kmalloc(len, GFP_NOIO | q->bounce_gfp);
384 385
	if (unlikely(buf == NULL)) {
		printk(KERN_ERR "could not allocate integrity buffer\n");
386
		return -ENOMEM;
387 388 389 390 391 392 393 394 395 396 397 398 399 400
	}

	end = (((unsigned long) buf) + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
	start = ((unsigned long) buf) >> PAGE_SHIFT;
	nr_pages = end - start;

	/* Allocate bio integrity payload and integrity vectors */
	bip = bio_integrity_alloc(bio, GFP_NOIO, nr_pages);
	if (unlikely(bip == NULL)) {
		printk(KERN_ERR "could not allocate data integrity bioset\n");
		kfree(buf);
		return -EIO;
	}

401
	bip->bip_owns_buf = 1;
402
	bip->bip_buf = buf;
403 404
	bip->bip_iter.bi_size = len;
	bip->bip_iter.bi_sector = bio->bi_iter.bi_sector;
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457

	/* Map it */
	offset = offset_in_page(buf);
	for (i = 0 ; i < nr_pages ; i++) {
		int ret;
		bytes = PAGE_SIZE - offset;

		if (len <= 0)
			break;

		if (bytes > len)
			bytes = len;

		ret = bio_integrity_add_page(bio, virt_to_page(buf),
					     bytes, offset);

		if (ret == 0)
			return 0;

		if (ret < bytes)
			break;

		buf += bytes;
		len -= bytes;
		offset = 0;
	}

	/* Install custom I/O completion handler if read verify is enabled */
	if (bio_data_dir(bio) == READ) {
		bip->bip_end_io = bio->bi_end_io;
		bio->bi_end_io = bio_integrity_endio;
	}

	/* Auto-generate integrity metadata if this is a write */
	if (bio_data_dir(bio) == WRITE)
		bio_integrity_generate(bio);

	return 0;
}
EXPORT_SYMBOL(bio_integrity_prep);

/**
 * bio_integrity_verify - Verify integrity metadata for a bio
 * @bio:	bio to verify
 *
 * Description: This function is called to verify the integrity of a
 * bio.	 The data in the bio io_vec is compared to the integrity
 * metadata returned by the HBA.
 */
static int bio_integrity_verify(struct bio *bio)
{
	struct blk_integrity *bi = bdev_get_integrity(bio->bi_bdev);
	struct blk_integrity_exchg bix;
458
	struct bio_vec *bv;
459
	sector_t sector = bio->bi_integrity->bip_iter.bi_sector;
460
	unsigned int sectors, total, ret;
461
	void *prot_buf = bio->bi_integrity->bip_buf;
462
	int i;
463 464 465 466 467

	ret = total = 0;
	bix.disk_name = bio->bi_bdev->bd_disk->disk_name;
	bix.sector_size = bi->sector_size;

468 469 470 471 472
	bio_for_each_segment_all(bv, bio, i) {
		void *kaddr = kmap_atomic(bv->bv_page);

		bix.data_buf = kaddr + bv->bv_offset;
		bix.data_size = bv->bv_len;
473 474 475 476 477 478
		bix.prot_buf = prot_buf;
		bix.sector = sector;

		ret = bi->verify_fn(&bix);

		if (ret) {
479
			kunmap_atomic(kaddr);
480
			return ret;
481 482
		}

483
		sectors = bv->bv_len / bi->sector_size;
484 485 486
		sector += sectors;
		prot_buf += sectors * bi->tuple_size;
		total += sectors * bi->tuple_size;
487
		BUG_ON(total > bio->bi_integrity->bip_iter.bi_size);
488

489
		kunmap_atomic(kaddr);
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
	}

	return ret;
}

/**
 * bio_integrity_verify_fn - Integrity I/O completion worker
 * @work:	Work struct stored in bio to be verified
 *
 * Description: This workqueue function is called to complete a READ
 * request.  The function verifies the transferred integrity metadata
 * and then calls the original bio end_io function.
 */
static void bio_integrity_verify_fn(struct work_struct *work)
{
505
	struct bio_integrity_payload *bip =
506 507
		container_of(work, struct bio_integrity_payload, bip_work);
	struct bio *bio = bip->bip_bio;
508
	int error;
509

510
	error = bio_integrity_verify(bio);
511 512 513

	/* Restore original bio completion handler */
	bio->bi_end_io = bip->bip_end_io;
K
Kent Overstreet 已提交
514
	bio_endio_nodec(bio, error);
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
}

/**
 * bio_integrity_endio - Integrity I/O completion function
 * @bio:	Protected bio
 * @error:	Pointer to errno
 *
 * Description: Completion for integrity I/O
 *
 * Normally I/O completion is done in interrupt context.  However,
 * verifying I/O integrity is a time-consuming task which must be run
 * in process context.	This function postpones completion
 * accordingly.
 */
void bio_integrity_endio(struct bio *bio, int error)
{
	struct bio_integrity_payload *bip = bio->bi_integrity;

	BUG_ON(bip->bip_bio != bio);

535 536 537 538 539 540 541 542 543 544 545
	/* In case of an I/O error there is no point in verifying the
	 * integrity metadata.  Restore original bio end_io handler
	 * and run it.
	 */
	if (error) {
		bio->bi_end_io = bip->bip_end_io;
		bio_endio(bio, error);

		return;
	}

546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
	INIT_WORK(&bip->bip_work, bio_integrity_verify_fn);
	queue_work(kintegrityd_wq, &bip->bip_work);
}
EXPORT_SYMBOL(bio_integrity_endio);

/**
 * bio_integrity_advance - Advance integrity vector
 * @bio:	bio whose integrity vector to update
 * @bytes_done:	number of data bytes that have been completed
 *
 * Description: This function calculates how many integrity bytes the
 * number of completed data bytes correspond to and advances the
 * integrity vector accordingly.
 */
void bio_integrity_advance(struct bio *bio, unsigned int bytes_done)
{
	struct bio_integrity_payload *bip = bio->bi_integrity;
	struct blk_integrity *bi = bdev_get_integrity(bio->bi_bdev);
564
	unsigned bytes = bio_integrity_bytes(bi, bytes_done >> 9);
565

566
	bvec_iter_advance(bip->bip_vec, &bip->bip_iter, bytes);
567 568 569 570 571 572 573 574 575 576 577 578 579 580
}
EXPORT_SYMBOL(bio_integrity_advance);

/**
 * bio_integrity_trim - Trim integrity vector
 * @bio:	bio whose integrity vector to update
 * @offset:	offset to first data sector
 * @sectors:	number of data sectors
 *
 * Description: Used to trim the integrity vector in a cloned bio.
 * The ivec will be advanced corresponding to 'offset' data sectors
 * and the length will be truncated corresponding to 'len' data
 * sectors.
 */
581 582
void bio_integrity_trim(struct bio *bio, unsigned int offset,
			unsigned int sectors)
583 584 585 586
{
	struct bio_integrity_payload *bip = bio->bi_integrity;
	struct blk_integrity *bi = bdev_get_integrity(bio->bi_bdev);

587 588
	bio_integrity_advance(bio, offset << 9);
	bip->bip_iter.bi_size = bio_integrity_bytes(bi, sectors);
589 590 591 592 593 594 595
}
EXPORT_SYMBOL(bio_integrity_trim);

/**
 * bio_integrity_clone - Callback for cloning bios with integrity metadata
 * @bio:	New bio
 * @bio_src:	Original bio
596
 * @gfp_mask:	Memory allocation mask
597 598 599
 *
 * Description:	Called to allocate a bip when cloning a bio
 */
600
int bio_integrity_clone(struct bio *bio, struct bio *bio_src,
601
			gfp_t gfp_mask)
602 603 604 605 606 607
{
	struct bio_integrity_payload *bip_src = bio_src->bi_integrity;
	struct bio_integrity_payload *bip;

	BUG_ON(bip_src == NULL);

608
	bip = bio_integrity_alloc(bio, gfp_mask, bip_src->bip_vcnt);
609 610 611 612 613 614 615 616

	if (bip == NULL)
		return -EIO;

	memcpy(bip->bip_vec, bip_src->bip_vec,
	       bip_src->bip_vcnt * sizeof(struct bio_vec));

	bip->bip_vcnt = bip_src->bip_vcnt;
617
	bip->bip_iter = bip_src->bip_iter;
618 619 620 621 622

	return 0;
}
EXPORT_SYMBOL(bio_integrity_clone);

623
int bioset_integrity_create(struct bio_set *bs, int pool_size)
624
{
625 626 627
	if (bs->bio_integrity_pool)
		return 0;

628
	bs->bio_integrity_pool = mempool_create_slab_pool(pool_size, bip_slab);
629
	if (!bs->bio_integrity_pool)
630
		return -1;
631

632 633 634
	bs->bvec_integrity_pool = biovec_create_pool(bs, pool_size);
	if (!bs->bvec_integrity_pool) {
		mempool_destroy(bs->bio_integrity_pool);
635
		return -1;
636
	}
637 638 639 640 641 642 643 644 645

	return 0;
}
EXPORT_SYMBOL(bioset_integrity_create);

void bioset_integrity_free(struct bio_set *bs)
{
	if (bs->bio_integrity_pool)
		mempool_destroy(bs->bio_integrity_pool);
646 647

	if (bs->bvec_integrity_pool)
648
		mempool_destroy(bs->bvec_integrity_pool);
649 650 651 652 653
}
EXPORT_SYMBOL(bioset_integrity_free);

void __init bio_integrity_init(void)
{
654 655 656 657 658 659
	/*
	 * kintegrityd won't block much but may burn a lot of CPU cycles.
	 * Make it highpri CPU intensive wq with max concurrency of 1.
	 */
	kintegrityd_wq = alloc_workqueue("kintegrityd", WQ_MEM_RECLAIM |
					 WQ_HIGHPRI | WQ_CPU_INTENSIVE, 1);
660 661
	if (!kintegrityd_wq)
		panic("Failed to create kintegrityd\n");
662

663 664 665 666 667 668
	bip_slab = kmem_cache_create("bio_integrity_payload",
				     sizeof(struct bio_integrity_payload) +
				     sizeof(struct bio_vec) * BIP_INLINE_VECS,
				     0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
	if (!bip_slab)
		panic("Failed to create slab\n");
669
}