compaction.c 28.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * linux/mm/compaction.c
 *
 * Memory compaction for the reduction of external fragmentation. Note that
 * this heavily depends upon page migration to do all the real heavy
 * lifting
 *
 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
 */
#include <linux/swap.h>
#include <linux/migrate.h>
#include <linux/compaction.h>
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
15
#include <linux/sysctl.h>
16
#include <linux/sysfs.h>
17 18
#include "internal.h"

19 20
#if defined CONFIG_COMPACTION || defined CONFIG_CMA

21 22 23
#define CREATE_TRACE_POINTS
#include <trace/events/compaction.h>

24 25 26 27 28 29 30 31 32 33 34 35 36 37
static unsigned long release_freepages(struct list_head *freelist)
{
	struct page *page, *next;
	unsigned long count = 0;

	list_for_each_entry_safe(page, next, freelist, lru) {
		list_del(&page->lru);
		__free_page(page);
		count++;
	}

	return count;
}

38 39 40 41 42 43 44 45 46 47
static void map_pages(struct list_head *list)
{
	struct page *page;

	list_for_each_entry(page, list, lru) {
		arch_alloc_page(page, 0);
		kernel_map_pages(page, 1, 1);
	}
}

48 49 50 51 52
static inline bool migrate_async_suitable(int migratetype)
{
	return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
}

53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
/*
 * Compaction requires the taking of some coarse locks that are potentially
 * very heavily contended. Check if the process needs to be scheduled or
 * if the lock is contended. For async compaction, back out in the event
 * if contention is severe. For sync compaction, schedule.
 *
 * Returns true if the lock is held.
 * Returns false if the lock is released and compaction should abort
 */
static bool compact_checklock_irqsave(spinlock_t *lock, unsigned long *flags,
				      bool locked, struct compact_control *cc)
{
	if (need_resched() || spin_is_contended(lock)) {
		if (locked) {
			spin_unlock_irqrestore(lock, *flags);
			locked = false;
		}

		/* async aborts if taking too long or contended */
		if (!cc->sync) {
			if (cc->contended)
				*cc->contended = true;
			return false;
		}

		cond_resched();
		if (fatal_signal_pending(current))
			return false;
	}

	if (!locked)
		spin_lock_irqsave(lock, *flags);
	return true;
}

static inline bool compact_trylock_irqsave(spinlock_t *lock,
			unsigned long *flags, struct compact_control *cc)
{
	return compact_checklock_irqsave(lock, flags, false, cc);
}

94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
static void compact_capture_page(struct compact_control *cc)
{
	unsigned long flags;
	int mtype, mtype_low, mtype_high;

	if (!cc->page || *cc->page)
		return;

	/*
	 * For MIGRATE_MOVABLE allocations we capture a suitable page ASAP
	 * regardless of the migratetype of the freelist is is captured from.
	 * This is fine because the order for a high-order MIGRATE_MOVABLE
	 * allocation is typically at least a pageblock size and overall
	 * fragmentation is not impaired. Other allocation types must
	 * capture pages from their own migratelist because otherwise they
	 * could pollute other pageblocks like MIGRATE_MOVABLE with
	 * difficult to move pages and making fragmentation worse overall.
	 */
	if (cc->migratetype == MIGRATE_MOVABLE) {
		mtype_low = 0;
		mtype_high = MIGRATE_PCPTYPES;
	} else {
		mtype_low = cc->migratetype;
		mtype_high = cc->migratetype + 1;
	}

	/* Speculatively examine the free lists without zone lock */
	for (mtype = mtype_low; mtype < mtype_high; mtype++) {
		int order;
		for (order = cc->order; order < MAX_ORDER; order++) {
			struct page *page;
			struct free_area *area;
			area = &(cc->zone->free_area[order]);
			if (list_empty(&area->free_list[mtype]))
				continue;

			/* Take the lock and attempt capture of the page */
			if (!compact_trylock_irqsave(&cc->zone->lock, &flags, cc))
				return;
			if (!list_empty(&area->free_list[mtype])) {
				page = list_entry(area->free_list[mtype].next,
							struct page, lru);
				if (capture_free_page(page, cc->order, mtype)) {
					spin_unlock_irqrestore(&cc->zone->lock,
									flags);
					*cc->page = page;
					return;
				}
			}
			spin_unlock_irqrestore(&cc->zone->lock, flags);
		}
	}
}

148 149 150 151 152 153 154 155 156 157
/*
 * Isolate free pages onto a private freelist. Caller must hold zone->lock.
 * If @strict is true, will abort returning 0 on any invalid PFNs or non-free
 * pages inside of the pageblock (even though it may still end up isolating
 * some pages).
 */
static unsigned long isolate_freepages_block(unsigned long blockpfn,
				unsigned long end_pfn,
				struct list_head *freelist,
				bool strict)
158
{
159
	int nr_scanned = 0, total_isolated = 0;
160 161 162 163 164 165 166 167 168
	struct page *cursor;

	cursor = pfn_to_page(blockpfn);

	/* Isolate free pages. This assumes the block is valid */
	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
		int isolated, i;
		struct page *page = cursor;

169 170 171
		if (!pfn_valid_within(blockpfn)) {
			if (strict)
				return 0;
172
			continue;
173
		}
174
		nr_scanned++;
175

176 177 178
		if (!PageBuddy(page)) {
			if (strict)
				return 0;
179
			continue;
180
		}
181 182 183

		/* Found a free page, break it into order-0 pages */
		isolated = split_free_page(page);
184 185
		if (!isolated && strict)
			return 0;
186 187 188 189 190 191 192 193 194 195 196 197 198
		total_isolated += isolated;
		for (i = 0; i < isolated; i++) {
			list_add(&page->lru, freelist);
			page++;
		}

		/* If a page was split, advance to the end of it */
		if (isolated) {
			blockpfn += isolated - 1;
			cursor += isolated - 1;
		}
	}

199
	trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
200 201 202
	return total_isolated;
}

203 204 205 206 207 208 209 210 211 212 213 214 215
/**
 * isolate_freepages_range() - isolate free pages.
 * @start_pfn: The first PFN to start isolating.
 * @end_pfn:   The one-past-last PFN.
 *
 * Non-free pages, invalid PFNs, or zone boundaries within the
 * [start_pfn, end_pfn) range are considered errors, cause function to
 * undo its actions and return zero.
 *
 * Otherwise, function returns one-past-the-last PFN of isolated page
 * (which may be greater then end_pfn if end fell in a middle of
 * a free page).
 */
216
unsigned long
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
isolate_freepages_range(unsigned long start_pfn, unsigned long end_pfn)
{
	unsigned long isolated, pfn, block_end_pfn, flags;
	struct zone *zone = NULL;
	LIST_HEAD(freelist);

	if (pfn_valid(start_pfn))
		zone = page_zone(pfn_to_page(start_pfn));

	for (pfn = start_pfn; pfn < end_pfn; pfn += isolated) {
		if (!pfn_valid(pfn) || zone != page_zone(pfn_to_page(pfn)))
			break;

		/*
		 * On subsequent iterations ALIGN() is actually not needed,
		 * but we keep it that we not to complicate the code.
		 */
		block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
		block_end_pfn = min(block_end_pfn, end_pfn);

		spin_lock_irqsave(&zone->lock, flags);
		isolated = isolate_freepages_block(pfn, block_end_pfn,
						   &freelist, true);
		spin_unlock_irqrestore(&zone->lock, flags);

		/*
		 * In strict mode, isolate_freepages_block() returns 0 if
		 * there are any holes in the block (ie. invalid PFNs or
		 * non-free pages).
		 */
		if (!isolated)
			break;

		/*
		 * If we managed to isolate pages, it is always (1 << n) *
		 * pageblock_nr_pages for some non-negative n.  (Max order
		 * page may span two pageblocks).
		 */
	}

	/* split_free_page does not map the pages */
	map_pages(&freelist);

	if (pfn < end_pfn) {
		/* Loop terminated early, cleanup. */
		release_freepages(&freelist);
		return 0;
	}

	/* We don't use freelists for anything. */
	return pfn;
}

270
/* Update the number of anon and file isolated pages in the zone */
271
static void acct_isolated(struct zone *zone, bool locked, struct compact_control *cc)
272 273
{
	struct page *page;
274
	unsigned int count[2] = { 0, };
275

276 277
	list_for_each_entry(page, &cc->migratepages, lru)
		count[!!page_is_file_cache(page)]++;
278

279 280 281 282 283 284 285 286
	/* If locked we can use the interrupt unsafe versions */
	if (locked) {
		__mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
		__mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
	} else {
		mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
		mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
	}
287 288 289 290 291
}

/* Similar to reclaim, but different enough that they don't share logic */
static bool too_many_isolated(struct zone *zone)
{
292
	unsigned long active, inactive, isolated;
293 294 295

	inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
					zone_page_state(zone, NR_INACTIVE_ANON);
296 297
	active = zone_page_state(zone, NR_ACTIVE_FILE) +
					zone_page_state(zone, NR_ACTIVE_ANON);
298 299 300
	isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
					zone_page_state(zone, NR_ISOLATED_ANON);

301
	return isolated > (inactive + active) / 2;
302 303
}

304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
/**
 * isolate_migratepages_range() - isolate all migrate-able pages in range.
 * @zone:	Zone pages are in.
 * @cc:		Compaction control structure.
 * @low_pfn:	The first PFN of the range.
 * @end_pfn:	The one-past-the-last PFN of the range.
 *
 * Isolate all pages that can be migrated from the range specified by
 * [low_pfn, end_pfn).  Returns zero if there is a fatal signal
 * pending), otherwise PFN of the first page that was not scanned
 * (which may be both less, equal to or more then end_pfn).
 *
 * Assumes that cc->migratepages is empty and cc->nr_migratepages is
 * zero.
 *
 * Apart from cc->migratepages and cc->nr_migratetypes this function
 * does not modify any cc's fields, in particular it does not modify
 * (or read for that matter) cc->migrate_pfn.
322
 */
323
unsigned long
324 325
isolate_migratepages_range(struct zone *zone, struct compact_control *cc,
			   unsigned long low_pfn, unsigned long end_pfn)
326
{
327
	unsigned long last_pageblock_nr = 0, pageblock_nr;
328
	unsigned long nr_scanned = 0, nr_isolated = 0;
329
	struct list_head *migratelist = &cc->migratepages;
330
	isolate_mode_t mode = 0;
331
	struct lruvec *lruvec;
332 333
	unsigned long flags;
	bool locked;
334 335 336 337 338 339 340

	/*
	 * Ensure that there are not too many pages isolated from the LRU
	 * list by either parallel reclaimers or compaction. If there are,
	 * delay for some time until fewer pages are isolated
	 */
	while (unlikely(too_many_isolated(zone))) {
341
		/* async migration should just abort */
342
		if (!cc->sync)
343
			return 0;
344

345 346 347
		congestion_wait(BLK_RW_ASYNC, HZ/10);

		if (fatal_signal_pending(current))
348
			return 0;
349 350 351
	}

	/* Time to isolate some pages for migration */
352
	cond_resched();
353 354
	spin_lock_irqsave(&zone->lru_lock, flags);
	locked = true;
355 356
	for (; low_pfn < end_pfn; low_pfn++) {
		struct page *page;
357 358 359

		/* give a chance to irqs before checking need_resched() */
		if (!((low_pfn+1) % SWAP_CLUSTER_MAX)) {
360
			spin_unlock_irqrestore(&zone->lru_lock, flags);
361 362
			locked = false;
		}
363 364 365 366 367 368

		/* Check if it is ok to still hold the lock */
		locked = compact_checklock_irqsave(&zone->lru_lock, &flags,
								locked, cc);
		if (!locked)
			break;
369

370 371 372 373 374 375 376 377 378 379 380 381 382
		/*
		 * migrate_pfn does not necessarily start aligned to a
		 * pageblock. Ensure that pfn_valid is called when moving
		 * into a new MAX_ORDER_NR_PAGES range in case of large
		 * memory holes within the zone
		 */
		if ((low_pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
			if (!pfn_valid(low_pfn)) {
				low_pfn += MAX_ORDER_NR_PAGES - 1;
				continue;
			}
		}

383 384
		if (!pfn_valid_within(low_pfn))
			continue;
385
		nr_scanned++;
386

387 388 389 390 391 392
		/*
		 * Get the page and ensure the page is within the same zone.
		 * See the comment in isolate_freepages about overlapping
		 * nodes. It is deliberate that the new zone lock is not taken
		 * as memory compaction should not move pages between nodes.
		 */
393
		page = pfn_to_page(low_pfn);
394 395 396 397
		if (page_zone(page) != zone)
			continue;

		/* Skip if free */
398 399 400
		if (PageBuddy(page))
			continue;

401 402 403 404 405 406
		/*
		 * For async migration, also only scan in MOVABLE blocks. Async
		 * migration is optimistic to see if the minimum amount of work
		 * satisfies the allocation
		 */
		pageblock_nr = low_pfn >> pageblock_order;
407
		if (!cc->sync && last_pageblock_nr != pageblock_nr &&
408
		    !migrate_async_suitable(get_pageblock_migratetype(page))) {
409 410 411 412 413 414
			low_pfn += pageblock_nr_pages;
			low_pfn = ALIGN(low_pfn, pageblock_nr_pages) - 1;
			last_pageblock_nr = pageblock_nr;
			continue;
		}

415 416 417 418 419 420 421 422 423 424 425 426 427
		if (!PageLRU(page))
			continue;

		/*
		 * PageLRU is set, and lru_lock excludes isolation,
		 * splitting and collapsing (collapsing has already
		 * happened if PageLRU is set).
		 */
		if (PageTransHuge(page)) {
			low_pfn += (1 << compound_order(page)) - 1;
			continue;
		}

428
		if (!cc->sync)
429 430
			mode |= ISOLATE_ASYNC_MIGRATE;

431 432
		lruvec = mem_cgroup_page_lruvec(page, zone);

433
		/* Try isolate the page */
434
		if (__isolate_lru_page(page, mode) != 0)
435 436
			continue;

437 438
		VM_BUG_ON(PageTransCompound(page));

439
		/* Successfully isolated */
440
		del_page_from_lru_list(page, lruvec, page_lru(page));
441 442
		list_add(&page->lru, migratelist);
		cc->nr_migratepages++;
443
		nr_isolated++;
444 445

		/* Avoid isolating too much */
446 447
		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
			++low_pfn;
448
			break;
449
		}
450 451
	}

452
	acct_isolated(zone, locked, cc);
453

454 455
	if (locked)
		spin_unlock_irqrestore(&zone->lru_lock, flags);
456

457 458
	trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);

459 460 461
	return low_pfn;
}

462 463 464
#endif /* CONFIG_COMPACTION || CONFIG_CMA */
#ifdef CONFIG_COMPACTION

465 466
/* Returns true if the page is within a block suitable for migration to */
static bool suitable_migration_target(struct page *page)
467 468 469 470 471 472
{

	int migratetype = get_pageblock_migratetype(page);

	/* Don't interfere with memory hot-remove or the min_free_kbytes blocks */
	if (migratetype == MIGRATE_ISOLATE || migratetype == MIGRATE_RESERVE)
473
		return false;
474 475 476

	/* If the page is a large free page, then allow migration */
	if (PageBuddy(page) && page_order(page) >= pageblock_order)
477
		return true;
478

479
	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
480 481
	if (migrate_async_suitable(migratetype))
		return true;
482 483

	/* Otherwise skip the block */
484
	return false;
485 486
}

487 488 489 490 491 492 493 494 495 496 497 498 499 500
/*
 * Returns the start pfn of the last page block in a zone.  This is the starting
 * point for full compaction of a zone.  Compaction searches for free pages from
 * the end of each zone, while isolate_freepages_block scans forward inside each
 * page block.
 */
static unsigned long start_free_pfn(struct zone *zone)
{
	unsigned long free_pfn;
	free_pfn = zone->zone_start_pfn + zone->spanned_pages;
	free_pfn &= ~(pageblock_nr_pages-1);
	return free_pfn;
}

501
/*
502 503
 * Based on information in the current compact_control, find blocks
 * suitable for isolating free pages from and then isolate them.
504
 */
505 506
static void isolate_freepages(struct zone *zone,
				struct compact_control *cc)
507
{
508 509 510 511 512
	struct page *page;
	unsigned long high_pfn, low_pfn, pfn, zone_end_pfn, end_pfn;
	unsigned long flags;
	int nr_freepages = cc->nr_freepages;
	struct list_head *freelist = &cc->freepages;
513

514 515 516 517 518 519 520
	/*
	 * Initialise the free scanner. The starting point is where we last
	 * scanned from (or the end of the zone if starting). The low point
	 * is the end of the pageblock the migration scanner is using.
	 */
	pfn = cc->free_pfn;
	low_pfn = cc->migrate_pfn + pageblock_nr_pages;
521

522 523 524 525 526 527
	/*
	 * Take care that if the migration scanner is at the end of the zone
	 * that the free scanner does not accidentally move to the next zone
	 * in the next isolation cycle.
	 */
	high_pfn = min(low_pfn, pfn);
528

529
	zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages;
530

531 532 533 534 535 536 537 538
	/*
	 * Isolate free pages until enough are available to migrate the
	 * pages on cc->migratepages. We stop searching if the migrate
	 * and free page scanners meet or enough free pages are isolated.
	 */
	for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages;
					pfn -= pageblock_nr_pages) {
		unsigned long isolated;
539

540 541
		if (!pfn_valid(pfn))
			continue;
542

543 544 545 546 547 548 549 550 551 552 553 554
		/*
		 * Check for overlapping nodes/zones. It's possible on some
		 * configurations to have a setup like
		 * node0 node1 node0
		 * i.e. it's possible that all pages within a zones range of
		 * pages do not belong to a single zone.
		 */
		page = pfn_to_page(pfn);
		if (page_zone(page) != zone)
			continue;

		/* Check the block is suitable for migration */
555
		if (!suitable_migration_target(page))
556
			continue;
557

558 559 560 561 562 563 564
		/*
		 * Found a block suitable for isolating free pages from. Now
		 * we disabled interrupts, double check things are ok and
		 * isolate the pages. This is to minimise the time IRQs
		 * are disabled
		 */
		isolated = 0;
565 566 567 568 569 570 571 572 573 574

		/*
		 * The zone lock must be held to isolate freepages. This
		 * unfortunately this is a very coarse lock and can be
		 * heavily contended if there are parallel allocations
		 * or parallel compactions. For async compaction do not
		 * spin on the lock
		 */
		if (!compact_trylock_irqsave(&zone->lock, &flags, cc))
			break;
575
		if (suitable_migration_target(page)) {
576 577 578 579
			end_pfn = min(pfn + pageblock_nr_pages, zone_end_pfn);
			isolated = isolate_freepages_block(pfn, end_pfn,
							   freelist, false);
			nr_freepages += isolated;
580
		}
581 582 583 584 585 586 587
		spin_unlock_irqrestore(&zone->lock, flags);

		/*
		 * Record the highest PFN we isolated pages from. When next
		 * looking for free pages, the search will restart here as
		 * page migration may have returned some pages to the allocator
		 */
588
		if (isolated) {
589
			high_pfn = max(high_pfn, pfn);
590 591 592 593 594 595 596 597 598

			/*
			 * If the free scanner has wrapped, update
			 * compact_cached_free_pfn to point to the highest
			 * pageblock with free pages. This reduces excessive
			 * scanning of full pageblocks near the end of the
			 * zone
			 */
			if (cc->order > 0 && cc->wrapped)
599 600
				zone->compact_cached_free_pfn = high_pfn;
		}
601 602 603 604 605 606 607
	}

	/* split_free_page does not map the pages */
	map_pages(freelist);

	cc->free_pfn = high_pfn;
	cc->nr_freepages = nr_freepages;
608 609 610 611 612

	/* If compact_cached_free_pfn is reset then set it now */
	if (cc->order > 0 && !cc->wrapped &&
			zone->compact_cached_free_pfn == start_free_pfn(zone))
		zone->compact_cached_free_pfn = high_pfn;
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
}

/*
 * This is a migrate-callback that "allocates" freepages by taking pages
 * from the isolated freelists in the block we are migrating to.
 */
static struct page *compaction_alloc(struct page *migratepage,
					unsigned long data,
					int **result)
{
	struct compact_control *cc = (struct compact_control *)data;
	struct page *freepage;

	/* Isolate free pages if necessary */
	if (list_empty(&cc->freepages)) {
		isolate_freepages(cc->zone, cc);

		if (list_empty(&cc->freepages))
			return NULL;
	}

	freepage = list_entry(cc->freepages.next, struct page, lru);
	list_del(&freepage->lru);
	cc->nr_freepages--;

	return freepage;
}

/*
 * We cannot control nr_migratepages and nr_freepages fully when migration is
 * running as migrate_pages() has no knowledge of compact_control. When
 * migration is complete, we count the number of pages on the lists by hand.
 */
static void update_nr_listpages(struct compact_control *cc)
{
	int nr_migratepages = 0;
	int nr_freepages = 0;
	struct page *page;

	list_for_each_entry(page, &cc->migratepages, lru)
		nr_migratepages++;
	list_for_each_entry(page, &cc->freepages, lru)
		nr_freepages++;

	cc->nr_migratepages = nr_migratepages;
	cc->nr_freepages = nr_freepages;
}

661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
/* possible outcome of isolate_migratepages */
typedef enum {
	ISOLATE_ABORT,		/* Abort compaction now */
	ISOLATE_NONE,		/* No pages isolated, continue scanning */
	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
} isolate_migrate_t;

/*
 * Isolate all pages that can be migrated from the block pointed to by
 * the migrate scanner within compact_control.
 */
static isolate_migrate_t isolate_migratepages(struct zone *zone,
					struct compact_control *cc)
{
	unsigned long low_pfn, end_pfn;

	/* Do not scan outside zone boundaries */
	low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);

	/* Only scan within a pageblock boundary */
	end_pfn = ALIGN(low_pfn + pageblock_nr_pages, pageblock_nr_pages);

	/* Do not cross the free scanner or scan within a memory hole */
	if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
		cc->migrate_pfn = end_pfn;
		return ISOLATE_NONE;
	}

	/* Perform the isolation */
	low_pfn = isolate_migratepages_range(zone, cc, low_pfn, end_pfn);
	if (!low_pfn)
		return ISOLATE_ABORT;

	cc->migrate_pfn = low_pfn;

	return ISOLATE_SUCCESS;
}

699
static int compact_finished(struct zone *zone,
700
			    struct compact_control *cc)
701
{
702
	unsigned long watermark;
703

704 705 706
	if (fatal_signal_pending(current))
		return COMPACT_PARTIAL;

707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
	/*
	 * A full (order == -1) compaction run starts at the beginning and
	 * end of a zone; it completes when the migrate and free scanner meet.
	 * A partial (order > 0) compaction can start with the free scanner
	 * at a random point in the zone, and may have to restart.
	 */
	if (cc->free_pfn <= cc->migrate_pfn) {
		if (cc->order > 0 && !cc->wrapped) {
			/* We started partway through; restart at the end. */
			unsigned long free_pfn = start_free_pfn(zone);
			zone->compact_cached_free_pfn = free_pfn;
			cc->free_pfn = free_pfn;
			cc->wrapped = 1;
			return COMPACT_CONTINUE;
		}
		return COMPACT_COMPLETE;
	}

	/* We wrapped around and ended up where we started. */
	if (cc->wrapped && cc->free_pfn <= cc->start_free_pfn)
727 728
		return COMPACT_COMPLETE;

729 730 731 732
	/*
	 * order == -1 is expected when compacting via
	 * /proc/sys/vm/compact_memory
	 */
733 734 735
	if (cc->order == -1)
		return COMPACT_CONTINUE;

736 737 738 739 740 741 742
	/* Compaction run is not finished if the watermark is not met */
	watermark = low_wmark_pages(zone);
	watermark += (1 << cc->order);

	if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
		return COMPACT_CONTINUE;

743
	/* Direct compactor: Is a suitable page free? */
744 745 746
	if (cc->page) {
		/* Was a suitable page captured? */
		if (*cc->page)
747
			return COMPACT_PARTIAL;
748 749 750 751 752 753 754 755 756 757 758 759
	} else {
		unsigned int order;
		for (order = cc->order; order < MAX_ORDER; order++) {
			struct free_area *area = &zone->free_area[cc->order];
			/* Job done if page is free of the right migratetype */
			if (!list_empty(&area->free_list[cc->migratetype]))
				return COMPACT_PARTIAL;

			/* Job done if allocation would set block type */
			if (cc->order >= pageblock_order && area->nr_free)
				return COMPACT_PARTIAL;
		}
760 761
	}

762 763 764
	return COMPACT_CONTINUE;
}

765 766 767 768 769 770 771 772 773 774 775 776
/*
 * compaction_suitable: Is this suitable to run compaction on this zone now?
 * Returns
 *   COMPACT_SKIPPED  - If there are too few free pages for compaction
 *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
 *   COMPACT_CONTINUE - If compaction should run now
 */
unsigned long compaction_suitable(struct zone *zone, int order)
{
	int fragindex;
	unsigned long watermark;

777 778 779 780 781 782 783
	/*
	 * order == -1 is expected when compacting via
	 * /proc/sys/vm/compact_memory
	 */
	if (order == -1)
		return COMPACT_CONTINUE;

784 785 786 787 788 789 790 791 792 793 794 795 796
	/*
	 * Watermarks for order-0 must be met for compaction. Note the 2UL.
	 * This is because during migration, copies of pages need to be
	 * allocated and for a short time, the footprint is higher
	 */
	watermark = low_wmark_pages(zone) + (2UL << order);
	if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
		return COMPACT_SKIPPED;

	/*
	 * fragmentation index determines if allocation failures are due to
	 * low memory or external fragmentation
	 *
797 798
	 * index of -1000 implies allocations might succeed depending on
	 * watermarks
799 800 801 802 803 804 805 806 807
	 * index towards 0 implies failure is due to lack of memory
	 * index towards 1000 implies failure is due to fragmentation
	 *
	 * Only compact if a failure would be due to fragmentation.
	 */
	fragindex = fragmentation_index(zone, order);
	if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
		return COMPACT_SKIPPED;

808 809
	if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
	    0, 0))
810 811 812 813 814
		return COMPACT_PARTIAL;

	return COMPACT_CONTINUE;
}

815 816 817 818
static int compact_zone(struct zone *zone, struct compact_control *cc)
{
	int ret;

819 820 821 822 823 824 825 826 827 828 829
	ret = compaction_suitable(zone, cc->order);
	switch (ret) {
	case COMPACT_PARTIAL:
	case COMPACT_SKIPPED:
		/* Compaction is likely to fail */
		return ret;
	case COMPACT_CONTINUE:
		/* Fall through to compaction */
		;
	}

830 831
	/* Setup to move all movable pages to the end of the zone */
	cc->migrate_pfn = zone->zone_start_pfn;
832 833 834 835 836 837 838 839 840

	if (cc->order > 0) {
		/* Incremental compaction. Start where the last one stopped. */
		cc->free_pfn = zone->compact_cached_free_pfn;
		cc->start_free_pfn = cc->free_pfn;
	} else {
		/* Order == -1 starts at the end of the zone. */
		cc->free_pfn = start_free_pfn(zone);
	}
841 842 843 844 845

	migrate_prep_local();

	while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
		unsigned long nr_migrate, nr_remaining;
846
		int err;
847

848 849 850 851 852
		switch (isolate_migratepages(zone, cc)) {
		case ISOLATE_ABORT:
			ret = COMPACT_PARTIAL;
			goto out;
		case ISOLATE_NONE:
853
			continue;
854 855 856
		case ISOLATE_SUCCESS:
			;
		}
857 858

		nr_migrate = cc->nr_migratepages;
859
		err = migrate_pages(&cc->migratepages, compaction_alloc,
860 861
				(unsigned long)cc, false,
				cc->sync ? MIGRATE_SYNC_LIGHT : MIGRATE_ASYNC);
862 863 864 865 866 867 868
		update_nr_listpages(cc);
		nr_remaining = cc->nr_migratepages;

		count_vm_event(COMPACTBLOCKS);
		count_vm_events(COMPACTPAGES, nr_migrate - nr_remaining);
		if (nr_remaining)
			count_vm_events(COMPACTPAGEFAILED, nr_remaining);
869 870
		trace_mm_compaction_migratepages(nr_migrate - nr_remaining,
						nr_remaining);
871 872

		/* Release LRU pages not migrated */
873
		if (err) {
874 875
			putback_lru_pages(&cc->migratepages);
			cc->nr_migratepages = 0;
876 877 878 879
			if (err == -ENOMEM) {
				ret = COMPACT_PARTIAL;
				goto out;
			}
880
		}
881 882 883

		/* Capture a page now if it is a suitable size */
		compact_capture_page(cc);
884 885
	}

886
out:
887 888 889 890 891 892
	/* Release free pages and check accounting */
	cc->nr_freepages -= release_freepages(&cc->freepages);
	VM_BUG_ON(cc->nr_freepages != 0);

	return ret;
}
893

894
static unsigned long compact_zone_order(struct zone *zone,
895
				 int order, gfp_t gfp_mask,
896 897
				 bool sync, bool *contended,
				 struct page **page)
898 899 900 901 902 903 904
{
	struct compact_control cc = {
		.nr_freepages = 0,
		.nr_migratepages = 0,
		.order = order,
		.migratetype = allocflags_to_migratetype(gfp_mask),
		.zone = zone,
905
		.sync = sync,
906
		.contended = contended,
907
		.page = page,
908 909 910 911
	};
	INIT_LIST_HEAD(&cc.freepages);
	INIT_LIST_HEAD(&cc.migratepages);

912
	return compact_zone(zone, &cc);
913 914
}

915 916
int sysctl_extfrag_threshold = 500;

917 918 919 920 921 922
/**
 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
 * @zonelist: The zonelist used for the current allocation
 * @order: The order of the current allocation
 * @gfp_mask: The GFP mask of the current allocation
 * @nodemask: The allowed nodes to allocate from
923
 * @sync: Whether migration is synchronous or not
924 925 926 927
 *
 * This is the main entry point for direct page compaction.
 */
unsigned long try_to_compact_pages(struct zonelist *zonelist,
928
			int order, gfp_t gfp_mask, nodemask_t *nodemask,
929
			bool sync, bool *contended, struct page **page)
930 931 932 933 934 935 936 937
{
	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
	int may_enter_fs = gfp_mask & __GFP_FS;
	int may_perform_io = gfp_mask & __GFP_IO;
	struct zoneref *z;
	struct zone *zone;
	int rc = COMPACT_SKIPPED;

938
	/* Check if the GFP flags allow compaction */
939
	if (!order || !may_enter_fs || !may_perform_io)
940 941 942 943 944 945 946 947 948
		return rc;

	count_vm_event(COMPACTSTALL);

	/* Compact each zone in the list */
	for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
								nodemask) {
		int status;

949
		status = compact_zone_order(zone, order, gfp_mask, sync,
950
						contended, page);
951 952
		rc = max(status, rc);

953 954
		/* If a normal allocation would succeed, stop compacting */
		if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
955 956 957 958 959 960 961
			break;
	}

	return rc;
}


962
/* Compact all zones within a node */
963
static int __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
964 965 966 967 968 969 970 971 972 973
{
	int zoneid;
	struct zone *zone;

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {

		zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

974 975 976 977 978
		cc->nr_freepages = 0;
		cc->nr_migratepages = 0;
		cc->zone = zone;
		INIT_LIST_HEAD(&cc->freepages);
		INIT_LIST_HEAD(&cc->migratepages);
979

980
		if (cc->order == -1 || !compaction_deferred(zone, cc->order))
981
			compact_zone(zone, cc);
982

983 984 985
		if (cc->order > 0) {
			int ok = zone_watermark_ok(zone, cc->order,
						low_wmark_pages(zone), 0, 0);
986
			if (ok && cc->order >= zone->compact_order_failed)
987 988
				zone->compact_order_failed = cc->order + 1;
			/* Currently async compaction is never deferred. */
989
			else if (!ok && cc->sync)
990 991 992
				defer_compaction(zone, cc->order);
		}

993 994
		VM_BUG_ON(!list_empty(&cc->freepages));
		VM_BUG_ON(!list_empty(&cc->migratepages));
995 996 997 998 999
	}

	return 0;
}

1000 1001 1002 1003
int compact_pgdat(pg_data_t *pgdat, int order)
{
	struct compact_control cc = {
		.order = order,
1004
		.sync = false,
1005
		.page = NULL,
1006 1007 1008 1009 1010 1011 1012 1013 1014
	};

	return __compact_pgdat(pgdat, &cc);
}

static int compact_node(int nid)
{
	struct compact_control cc = {
		.order = -1,
1015
		.sync = true,
1016
		.page = NULL,
1017 1018
	};

1019
	return __compact_pgdat(NODE_DATA(nid), &cc);
1020 1021
}

1022 1023 1024 1025 1026
/* Compact all nodes in the system */
static int compact_nodes(void)
{
	int nid;

1027 1028 1029
	/* Flush pending updates to the LRU lists */
	lru_add_drain_all();

1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
	for_each_online_node(nid)
		compact_node(nid);

	return COMPACT_COMPLETE;
}

/* The written value is actually unused, all memory is compacted */
int sysctl_compact_memory;

/* This is the entry point for compacting all nodes via /proc/sys/vm */
int sysctl_compaction_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	if (write)
		return compact_nodes();

	return 0;
}
1048

1049 1050 1051 1052 1053 1054 1055 1056
int sysctl_extfrag_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	proc_dointvec_minmax(table, write, buffer, length, ppos);

	return 0;
}

1057
#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1058 1059
ssize_t sysfs_compact_node(struct device *dev,
			struct device_attribute *attr,
1060 1061
			const char *buf, size_t count)
{
1062 1063 1064 1065 1066 1067 1068 1069
	int nid = dev->id;

	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
		/* Flush pending updates to the LRU lists */
		lru_add_drain_all();

		compact_node(nid);
	}
1070 1071 1072

	return count;
}
1073
static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1074 1075 1076

int compaction_register_node(struct node *node)
{
1077
	return device_create_file(&node->dev, &dev_attr_compact);
1078 1079 1080 1081
}

void compaction_unregister_node(struct node *node)
{
1082
	return device_remove_file(&node->dev, &dev_attr_compact);
1083 1084
}
#endif /* CONFIG_SYSFS && CONFIG_NUMA */
1085 1086

#endif /* CONFIG_COMPACTION */