inode.c 97.7 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  Goal-directed block allocation by Stephen Tweedie
 *	(sct@redhat.com), 1993, 1998
 *  Big-endian to little-endian byte-swapping/bitmaps by
 *        David S. Miller (davem@caip.rutgers.edu), 1995
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
22
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 24 25 26 27
 */

#include <linux/module.h>
#include <linux/fs.h>
#include <linux/time.h>
28 29
#include <linux/ext4_jbd2.h>
#include <linux/jbd2.h>
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
#include <linux/mpage.h>
#include <linux/uio.h>
#include <linux/bio.h>
#include "xattr.h"
#include "acl.h"

/*
 * Test whether an inode is a fast symlink.
 */
45
static int ext4_inode_is_fast_symlink(struct inode *inode)
46
{
47
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
48 49 50 51 52 53
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
54
 * The ext4 forget function must perform a revoke if we are freeing data
55 56 57 58 59 60 61
 * which has been journaled.  Metadata (eg. indirect blocks) must be
 * revoked in all cases.
 *
 * "bh" may be NULL: a metadata block may have been freed from memory
 * but there may still be a record of it in the journal, and that record
 * still needs to be revoked.
 */
62 63
int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
			struct buffer_head *bh, ext4_fsblk_t blocknr)
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
{
	int err;

	might_sleep();

	BUFFER_TRACE(bh, "enter");

	jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
		  "data mode %lx\n",
		  bh, is_metadata, inode->i_mode,
		  test_opt(inode->i_sb, DATA_FLAGS));

	/* Never use the revoke function if we are doing full data
	 * journaling: there is no need to, and a V1 superblock won't
	 * support it.  Otherwise, only skip the revoke on un-journaled
	 * data blocks. */

81 82
	if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
	    (!is_metadata && !ext4_should_journal_data(inode))) {
83
		if (bh) {
84
			BUFFER_TRACE(bh, "call jbd2_journal_forget");
85
			return ext4_journal_forget(handle, bh);
86 87 88 89 90 91 92
		}
		return 0;
	}

	/*
	 * data!=journal && (is_metadata || should_journal_data(inode))
	 */
93 94
	BUFFER_TRACE(bh, "call ext4_journal_revoke");
	err = ext4_journal_revoke(handle, blocknr, bh);
95
	if (err)
96
		ext4_abort(inode->i_sb, __FUNCTION__,
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
			   "error %d when attempting revoke", err);
	BUFFER_TRACE(bh, "exit");
	return err;
}

/*
 * Work out how many blocks we need to proceed with the next chunk of a
 * truncate transaction.
 */
static unsigned long blocks_for_truncate(struct inode *inode)
{
	unsigned long needed;

	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);

	/* Give ourselves just enough room to cope with inodes in which
	 * i_blocks is corrupt: we've seen disk corruptions in the past
	 * which resulted in random data in an inode which looked enough
115
	 * like a regular file for ext4 to try to delete it.  Things
116 117 118 119 120 121 122
	 * will go a bit crazy if that happens, but at least we should
	 * try not to panic the whole kernel. */
	if (needed < 2)
		needed = 2;

	/* But we need to bound the transaction so we don't overflow the
	 * journal. */
123 124
	if (needed > EXT4_MAX_TRANS_DATA)
		needed = EXT4_MAX_TRANS_DATA;
125

126
	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
}

/*
 * Truncate transactions can be complex and absolutely huge.  So we need to
 * be able to restart the transaction at a conventient checkpoint to make
 * sure we don't overflow the journal.
 *
 * start_transaction gets us a new handle for a truncate transaction,
 * and extend_transaction tries to extend the existing one a bit.  If
 * extend fails, we need to propagate the failure up and restart the
 * transaction in the top-level truncate loop. --sct
 */
static handle_t *start_transaction(struct inode *inode)
{
	handle_t *result;

143
	result = ext4_journal_start(inode, blocks_for_truncate(inode));
144 145 146
	if (!IS_ERR(result))
		return result;

147
	ext4_std_error(inode->i_sb, PTR_ERR(result));
148 149 150 151 152 153 154 155 156 157 158
	return result;
}

/*
 * Try to extend this transaction for the purposes of truncation.
 *
 * Returns 0 if we managed to create more room.  If we can't create more
 * room, and the transaction must be restarted we return 1.
 */
static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
{
159
	if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
160
		return 0;
161
	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
162 163 164 165 166 167 168 169 170
		return 0;
	return 1;
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
171
static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
172 173
{
	jbd_debug(2, "restarting handle %p\n", handle);
174
	return ext4_journal_restart(handle, blocks_for_truncate(inode));
175 176 177 178 179
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
180
void ext4_delete_inode (struct inode * inode)
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
{
	handle_t *handle;

	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

	handle = start_transaction(inode);
	if (IS_ERR(handle)) {
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
196
		ext4_orphan_del(NULL, inode);
197 198 199 200 201 202 203
		goto no_delete;
	}

	if (IS_SYNC(inode))
		handle->h_sync = 1;
	inode->i_size = 0;
	if (inode->i_blocks)
204
		ext4_truncate(inode);
205
	/*
206
	 * Kill off the orphan record which ext4_truncate created.
207
	 * AKPM: I think this can be inside the above `if'.
208
	 * Note that ext4_orphan_del() has to be able to cope with the
209
	 * deletion of a non-existent orphan - this is because we don't
210
	 * know if ext4_truncate() actually created an orphan record.
211 212
	 * (Well, we could do this if we need to, but heck - it works)
	 */
213 214
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
215 216 217 218 219 220 221 222

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
223
	if (ext4_mark_inode_dirty(handle, inode))
224 225 226
		/* If that failed, just do the required in-core inode clear. */
		clear_inode(inode);
	else
227 228
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
	return;
no_delete:
	clear_inode(inode);	/* We must guarantee clearing of inode... */
}

typedef struct {
	__le32	*p;
	__le32	key;
	struct buffer_head *bh;
} Indirect;

static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
{
	p->key = *(p->p = v);
	p->bh = bh;
}

static int verify_chain(Indirect *from, Indirect *to)
{
	while (from <= to && from->key == *from->p)
		from++;
	return (from > to);
}

/**
254
 *	ext4_block_to_path - parse the block number into array of offsets
255 256 257
 *	@inode: inode in question (we are only interested in its superblock)
 *	@i_block: block number to be parsed
 *	@offsets: array to store the offsets in
D
Dave Kleikamp 已提交
258 259
 *	@boundary: set this non-zero if the referred-to block is likely to be
 *	       followed (on disk) by an indirect block.
260
 *
261
 *	To store the locations of file's data ext4 uses a data structure common
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
 *	for UNIX filesystems - tree of pointers anchored in the inode, with
 *	data blocks at leaves and indirect blocks in intermediate nodes.
 *	This function translates the block number into path in that tree -
 *	return value is the path length and @offsets[n] is the offset of
 *	pointer to (n+1)th node in the nth one. If @block is out of range
 *	(negative or too large) warning is printed and zero returned.
 *
 *	Note: function doesn't find node addresses, so no IO is needed. All
 *	we need to know is the capacity of indirect blocks (taken from the
 *	inode->i_sb).
 */

/*
 * Portability note: the last comparison (check that we fit into triple
 * indirect block) is spelled differently, because otherwise on an
 * architecture with 32-bit longs and 8Kb pages we might get into trouble
 * if our filesystem had 8Kb blocks. We might use long long, but that would
 * kill us on x86. Oh, well, at least the sign propagation does not matter -
 * i_block would have to be negative in the very beginning, so we would not
 * get there at all.
 */

284
static int ext4_block_to_path(struct inode *inode,
285 286
			long i_block, int offsets[4], int *boundary)
{
287 288 289
	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
	const long direct_blocks = EXT4_NDIR_BLOCKS,
290 291 292 293 294 295
		indirect_blocks = ptrs,
		double_blocks = (1 << (ptrs_bits * 2));
	int n = 0;
	int final = 0;

	if (i_block < 0) {
296
		ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0");
297 298 299 300
	} else if (i_block < direct_blocks) {
		offsets[n++] = i_block;
		final = direct_blocks;
	} else if ( (i_block -= direct_blocks) < indirect_blocks) {
301
		offsets[n++] = EXT4_IND_BLOCK;
302 303 304
		offsets[n++] = i_block;
		final = ptrs;
	} else if ((i_block -= indirect_blocks) < double_blocks) {
305
		offsets[n++] = EXT4_DIND_BLOCK;
306 307 308 309
		offsets[n++] = i_block >> ptrs_bits;
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
310
		offsets[n++] = EXT4_TIND_BLOCK;
311 312 313 314 315
		offsets[n++] = i_block >> (ptrs_bits * 2);
		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else {
316
		ext4_warning(inode->i_sb, "ext4_block_to_path", "block > big");
317 318 319 320 321 322 323
	}
	if (boundary)
		*boundary = final - 1 - (i_block & (ptrs - 1));
	return n;
}

/**
324
 *	ext4_get_branch - read the chain of indirect blocks leading to data
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
 *	@inode: inode in question
 *	@depth: depth of the chain (1 - direct pointer, etc.)
 *	@offsets: offsets of pointers in inode/indirect blocks
 *	@chain: place to store the result
 *	@err: here we store the error value
 *
 *	Function fills the array of triples <key, p, bh> and returns %NULL
 *	if everything went OK or the pointer to the last filled triple
 *	(incomplete one) otherwise. Upon the return chain[i].key contains
 *	the number of (i+1)-th block in the chain (as it is stored in memory,
 *	i.e. little-endian 32-bit), chain[i].p contains the address of that
 *	number (it points into struct inode for i==0 and into the bh->b_data
 *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 *	block for i>0 and NULL for i==0. In other words, it holds the block
 *	numbers of the chain, addresses they were taken from (and where we can
 *	verify that chain did not change) and buffer_heads hosting these
 *	numbers.
 *
 *	Function stops when it stumbles upon zero pointer (absent block)
 *		(pointer to last triple returned, *@err == 0)
 *	or when it gets an IO error reading an indirect block
 *		(ditto, *@err == -EIO)
 *	or when it notices that chain had been changed while it was reading
 *		(ditto, *@err == -EAGAIN)
 *	or when it reads all @depth-1 indirect blocks successfully and finds
 *	the whole chain, all way to the data (returns %NULL, *err == 0).
 */
352
static Indirect *ext4_get_branch(struct inode *inode, int depth, int *offsets,
353 354 355 356 357 358 359 360
				 Indirect chain[4], int *err)
{
	struct super_block *sb = inode->i_sb;
	Indirect *p = chain;
	struct buffer_head *bh;

	*err = 0;
	/* i_data is not going away, no lock needed */
361
	add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets);
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
	if (!p->key)
		goto no_block;
	while (--depth) {
		bh = sb_bread(sb, le32_to_cpu(p->key));
		if (!bh)
			goto failure;
		/* Reader: pointers */
		if (!verify_chain(chain, p))
			goto changed;
		add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
		/* Reader: end */
		if (!p->key)
			goto no_block;
	}
	return NULL;

changed:
	brelse(bh);
	*err = -EAGAIN;
	goto no_block;
failure:
	*err = -EIO;
no_block:
	return p;
}

/**
389
 *	ext4_find_near - find a place for allocation with sufficient locality
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
 *	@inode: owner
 *	@ind: descriptor of indirect block.
 *
 *	This function returns the prefered place for block allocation.
 *	It is used when heuristic for sequential allocation fails.
 *	Rules are:
 *	  + if there is a block to the left of our position - allocate near it.
 *	  + if pointer will live in indirect block - allocate near that block.
 *	  + if pointer will live in inode - allocate in the same
 *	    cylinder group.
 *
 * In the latter case we colour the starting block by the callers PID to
 * prevent it from clashing with concurrent allocations for a different inode
 * in the same block group.   The PID is used here so that functionally related
 * files will be close-by on-disk.
 *
 *	Caller must make sure that @ind is valid and will stay that way.
 */
408
static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
409
{
410
	struct ext4_inode_info *ei = EXT4_I(inode);
411 412
	__le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
	__le32 *p;
413 414
	ext4_fsblk_t bg_start;
	ext4_grpblk_t colour;
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429

	/* Try to find previous block */
	for (p = ind->p - 1; p >= start; p--) {
		if (*p)
			return le32_to_cpu(*p);
	}

	/* No such thing, so let's try location of indirect block */
	if (ind->bh)
		return ind->bh->b_blocknr;

	/*
	 * It is going to be referred to from the inode itself? OK, just put it
	 * into the same cylinder group then.
	 */
430
	bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
431
	colour = (current->pid % 16) *
432
			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
433 434 435 436
	return bg_start + colour;
}

/**
437
 *	ext4_find_goal - find a prefered place for allocation.
438 439 440 441 442 443 444 445 446 447
 *	@inode: owner
 *	@block:  block we want
 *	@chain:  chain of indirect blocks
 *	@partial: pointer to the last triple within a chain
 *	@goal:	place to store the result.
 *
 *	Normally this function find the prefered place for block allocation,
 *	stores it in *@goal and returns zero.
 */

448
static ext4_fsblk_t ext4_find_goal(struct inode *inode, long block,
449 450
		Indirect chain[4], Indirect *partial)
{
451
	struct ext4_block_alloc_info *block_i;
452

453
	block_i =  EXT4_I(inode)->i_block_alloc_info;
454 455 456 457 458 459 460 461 462 463

	/*
	 * try the heuristic for sequential allocation,
	 * failing that at least try to get decent locality.
	 */
	if (block_i && (block == block_i->last_alloc_logical_block + 1)
		&& (block_i->last_alloc_physical_block != 0)) {
		return block_i->last_alloc_physical_block + 1;
	}

464
	return ext4_find_near(inode, partial);
465 466 467
}

/**
468
 *	ext4_blks_to_allocate: Look up the block map and count the number
469 470 471 472 473 474 475 476 477 478
 *	of direct blocks need to be allocated for the given branch.
 *
 *	@branch: chain of indirect blocks
 *	@k: number of blocks need for indirect blocks
 *	@blks: number of data blocks to be mapped.
 *	@blocks_to_boundary:  the offset in the indirect block
 *
 *	return the total number of blocks to be allocate, including the
 *	direct and indirect blocks.
 */
479
static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
		int blocks_to_boundary)
{
	unsigned long count = 0;

	/*
	 * Simple case, [t,d]Indirect block(s) has not allocated yet
	 * then it's clear blocks on that path have not allocated
	 */
	if (k > 0) {
		/* right now we don't handle cross boundary allocation */
		if (blks < blocks_to_boundary + 1)
			count += blks;
		else
			count += blocks_to_boundary + 1;
		return count;
	}

	count++;
	while (count < blks && count <= blocks_to_boundary &&
		le32_to_cpu(*(branch[0].p + count)) == 0) {
		count++;
	}
	return count;
}

/**
506
 *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
507 508 509 510 511 512 513 514
 *	@indirect_blks: the number of blocks need to allocate for indirect
 *			blocks
 *
 *	@new_blocks: on return it will store the new block numbers for
 *	the indirect blocks(if needed) and the first direct block,
 *	@blks:	on return it will store the total number of allocated
 *		direct blocks
 */
515 516 517
static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
			ext4_fsblk_t goal, int indirect_blks, int blks,
			ext4_fsblk_t new_blocks[4], int *err)
518 519 520 521
{
	int target, i;
	unsigned long count = 0;
	int index = 0;
522
	ext4_fsblk_t current_block = 0;
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
	int ret = 0;

	/*
	 * Here we try to allocate the requested multiple blocks at once,
	 * on a best-effort basis.
	 * To build a branch, we should allocate blocks for
	 * the indirect blocks(if not allocated yet), and at least
	 * the first direct block of this branch.  That's the
	 * minimum number of blocks need to allocate(required)
	 */
	target = blks + indirect_blks;

	while (1) {
		count = target;
		/* allocating blocks for indirect blocks and direct blocks */
538
		current_block = ext4_new_blocks(handle,inode,goal,&count,err);
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
		if (*err)
			goto failed_out;

		target -= count;
		/* allocate blocks for indirect blocks */
		while (index < indirect_blks && count) {
			new_blocks[index++] = current_block++;
			count--;
		}

		if (count > 0)
			break;
	}

	/* save the new block number for the first direct block */
	new_blocks[index] = current_block;

	/* total number of blocks allocated for direct blocks */
	ret = count;
	*err = 0;
	return ret;
failed_out:
	for (i = 0; i <index; i++)
562
		ext4_free_blocks(handle, inode, new_blocks[i], 1);
563 564 565 566
	return ret;
}

/**
567
 *	ext4_alloc_branch - allocate and set up a chain of blocks.
568 569 570 571 572 573 574 575 576 577
 *	@inode: owner
 *	@indirect_blks: number of allocated indirect blocks
 *	@blks: number of allocated direct blocks
 *	@offsets: offsets (in the blocks) to store the pointers to next.
 *	@branch: place to store the chain in.
 *
 *	This function allocates blocks, zeroes out all but the last one,
 *	links them into chain and (if we are synchronous) writes them to disk.
 *	In other words, it prepares a branch that can be spliced onto the
 *	inode. It stores the information about that chain in the branch[], in
578
 *	the same format as ext4_get_branch() would do. We are calling it after
579 580
 *	we had read the existing part of chain and partial points to the last
 *	triple of that (one with zero ->key). Upon the exit we have the same
581
 *	picture as after the successful ext4_get_block(), except that in one
582 583 584 585 586 587
 *	place chain is disconnected - *branch->p is still zero (we did not
 *	set the last link), but branch->key contains the number that should
 *	be placed into *branch->p to fill that gap.
 *
 *	If allocation fails we free all blocks we've allocated (and forget
 *	their buffer_heads) and return the error value the from failed
588
 *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
589 590
 *	as described above and return 0.
 */
591 592
static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
			int indirect_blks, int *blks, ext4_fsblk_t goal,
593 594 595 596 597 598 599
			int *offsets, Indirect *branch)
{
	int blocksize = inode->i_sb->s_blocksize;
	int i, n = 0;
	int err = 0;
	struct buffer_head *bh;
	int num;
600 601
	ext4_fsblk_t new_blocks[4];
	ext4_fsblk_t current_block;
602

603
	num = ext4_alloc_blocks(handle, inode, goal, indirect_blks,
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
				*blks, new_blocks, &err);
	if (err)
		return err;

	branch[0].key = cpu_to_le32(new_blocks[0]);
	/*
	 * metadata blocks and data blocks are allocated.
	 */
	for (n = 1; n <= indirect_blks;  n++) {
		/*
		 * Get buffer_head for parent block, zero it out
		 * and set the pointer to new one, then send
		 * parent to disk.
		 */
		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
		branch[n].bh = bh;
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
622
		err = ext4_journal_get_create_access(handle, bh);
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
		if (err) {
			unlock_buffer(bh);
			brelse(bh);
			goto failed;
		}

		memset(bh->b_data, 0, blocksize);
		branch[n].p = (__le32 *) bh->b_data + offsets[n];
		branch[n].key = cpu_to_le32(new_blocks[n]);
		*branch[n].p = branch[n].key;
		if ( n == indirect_blks) {
			current_block = new_blocks[n];
			/*
			 * End of chain, update the last new metablock of
			 * the chain to point to the new allocated
			 * data blocks numbers
			 */
			for (i=1; i < num; i++)
				*(branch[n].p + i) = cpu_to_le32(++current_block);
		}
		BUFFER_TRACE(bh, "marking uptodate");
		set_buffer_uptodate(bh);
		unlock_buffer(bh);

647 648
		BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
		err = ext4_journal_dirty_metadata(handle, bh);
649 650 651 652 653 654 655 656
		if (err)
			goto failed;
	}
	*blks = num;
	return err;
failed:
	/* Allocation failed, free what we already allocated */
	for (i = 1; i <= n ; i++) {
657
		BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
658
		ext4_journal_forget(handle, branch[i].bh);
659 660
	}
	for (i = 0; i <indirect_blks; i++)
661
		ext4_free_blocks(handle, inode, new_blocks[i], 1);
662

663
	ext4_free_blocks(handle, inode, new_blocks[i], num);
664 665 666 667 668

	return err;
}

/**
669
 * ext4_splice_branch - splice the allocated branch onto inode.
670 671 672
 * @inode: owner
 * @block: (logical) number of block we are adding
 * @chain: chain of indirect blocks (with a missing link - see
673
 *	ext4_alloc_branch)
674 675 676 677 678 679 680 681
 * @where: location of missing link
 * @num:   number of indirect blocks we are adding
 * @blks:  number of direct blocks we are adding
 *
 * This function fills the missing link and does all housekeeping needed in
 * inode (->i_blocks, etc.). In case of success we end up with the full
 * chain to new block and return 0.
 */
682
static int ext4_splice_branch(handle_t *handle, struct inode *inode,
683 684 685 686
			long block, Indirect *where, int num, int blks)
{
	int i;
	int err = 0;
687 688
	struct ext4_block_alloc_info *block_i;
	ext4_fsblk_t current_block;
689

690
	block_i = EXT4_I(inode)->i_block_alloc_info;
691 692 693 694 695 696 697
	/*
	 * If we're splicing into a [td]indirect block (as opposed to the
	 * inode) then we need to get write access to the [td]indirect block
	 * before the splice.
	 */
	if (where->bh) {
		BUFFER_TRACE(where->bh, "get_write_access");
698
		err = ext4_journal_get_write_access(handle, where->bh);
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
		if (err)
			goto err_out;
	}
	/* That's it */

	*where->p = where->key;

	/*
	 * Update the host buffer_head or inode to point to more just allocated
	 * direct blocks blocks
	 */
	if (num == 0 && blks > 1) {
		current_block = le32_to_cpu(where->key) + 1;
		for (i = 1; i < blks; i++)
			*(where->p + i ) = cpu_to_le32(current_block++);
	}

	/*
	 * update the most recently allocated logical & physical block
	 * in i_block_alloc_info, to assist find the proper goal block for next
	 * allocation
	 */
	if (block_i) {
		block_i->last_alloc_logical_block = block + blks - 1;
		block_i->last_alloc_physical_block =
				le32_to_cpu(where[num].key) + blks - 1;
	}

	/* We are done with atomic stuff, now do the rest of housekeeping */

K
Kalpak Shah 已提交
729
	inode->i_ctime = ext4_current_time(inode);
730
	ext4_mark_inode_dirty(handle, inode);
731 732 733 734 735 736 737 738 739

	/* had we spliced it onto indirect block? */
	if (where->bh) {
		/*
		 * If we spliced it onto an indirect block, we haven't
		 * altered the inode.  Note however that if it is being spliced
		 * onto an indirect block at the very end of the file (the
		 * file is growing) then we *will* alter the inode to reflect
		 * the new i_size.  But that is not done here - it is done in
740
		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
741 742
		 */
		jbd_debug(5, "splicing indirect only\n");
743 744
		BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
		err = ext4_journal_dirty_metadata(handle, where->bh);
745 746 747 748 749 750 751 752 753 754 755 756 757
		if (err)
			goto err_out;
	} else {
		/*
		 * OK, we spliced it into the inode itself on a direct block.
		 * Inode was dirtied above.
		 */
		jbd_debug(5, "splicing direct\n");
	}
	return err;

err_out:
	for (i = 1; i <= num; i++) {
758
		BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
759 760
		ext4_journal_forget(handle, where[i].bh);
		ext4_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
761
	}
762
	ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785

	return err;
}

/*
 * Allocation strategy is simple: if we have to allocate something, we will
 * have to go the whole way to leaf. So let's do it before attaching anything
 * to tree, set linkage between the newborn blocks, write them if sync is
 * required, recheck the path, free and repeat if check fails, otherwise
 * set the last missing link (that will protect us from any truncate-generated
 * removals - all blocks on the path are immune now) and possibly force the
 * write on the parent block.
 * That has a nice additional property: no special recovery from the failed
 * allocations is needed - we simply release blocks and do not touch anything
 * reachable from inode.
 *
 * `handle' can be NULL if create == 0.
 *
 * The BKL may not be held on entry here.  Be sure to take it early.
 * return > 0, # of blocks mapped or allocated.
 * return = 0, if plain lookup failed.
 * return < 0, error case.
 */
786
int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
787 788 789 790 791 792 793 794
		sector_t iblock, unsigned long maxblocks,
		struct buffer_head *bh_result,
		int create, int extend_disksize)
{
	int err = -EIO;
	int offsets[4];
	Indirect chain[4];
	Indirect *partial;
795
	ext4_fsblk_t goal;
796 797 798
	int indirect_blks;
	int blocks_to_boundary = 0;
	int depth;
799
	struct ext4_inode_info *ei = EXT4_I(inode);
800
	int count = 0;
801
	ext4_fsblk_t first_block = 0;
802 803


A
Alex Tomas 已提交
804
	J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
805
	J_ASSERT(handle != NULL || create == 0);
806
	depth = ext4_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
807 808 809 810

	if (depth == 0)
		goto out;

811
	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
812 813 814 815 816 817 818 819

	/* Simplest case - block found, no allocation needed */
	if (!partial) {
		first_block = le32_to_cpu(chain[depth - 1].key);
		clear_buffer_new(bh_result);
		count++;
		/*map more blocks*/
		while (count < maxblocks && count <= blocks_to_boundary) {
820
			ext4_fsblk_t blk;
821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852

			if (!verify_chain(chain, partial)) {
				/*
				 * Indirect block might be removed by
				 * truncate while we were reading it.
				 * Handling of that case: forget what we've
				 * got now. Flag the err as EAGAIN, so it
				 * will reread.
				 */
				err = -EAGAIN;
				count = 0;
				break;
			}
			blk = le32_to_cpu(*(chain[depth-1].p + count));

			if (blk == first_block + count)
				count++;
			else
				break;
		}
		if (err != -EAGAIN)
			goto got_it;
	}

	/* Next simple case - plain lookup or failed read of indirect block */
	if (!create || err == -EIO)
		goto cleanup;

	mutex_lock(&ei->truncate_mutex);

	/*
	 * If the indirect block is missing while we are reading
853
	 * the chain(ext4_get_branch() returns -EAGAIN err), or
854 855 856 857 858 859 860 861 862 863 864 865 866 867
	 * if the chain has been changed after we grab the semaphore,
	 * (either because another process truncated this branch, or
	 * another get_block allocated this branch) re-grab the chain to see if
	 * the request block has been allocated or not.
	 *
	 * Since we already block the truncate/other get_block
	 * at this point, we will have the current copy of the chain when we
	 * splice the branch into the tree.
	 */
	if (err == -EAGAIN || !verify_chain(chain, partial)) {
		while (partial > chain) {
			brelse(partial->bh);
			partial--;
		}
868
		partial = ext4_get_branch(inode, depth, offsets, chain, &err);
869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
		if (!partial) {
			count++;
			mutex_unlock(&ei->truncate_mutex);
			if (err)
				goto cleanup;
			clear_buffer_new(bh_result);
			goto got_it;
		}
	}

	/*
	 * Okay, we need to do block allocation.  Lazily initialize the block
	 * allocation info here if necessary
	*/
	if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
884
		ext4_init_block_alloc_info(inode);
885

886
	goal = ext4_find_goal(inode, iblock, chain, partial);
887 888 889 890 891 892 893 894

	/* the number of blocks need to allocate for [d,t]indirect blocks */
	indirect_blks = (chain + depth) - partial - 1;

	/*
	 * Next look up the indirect map to count the totoal number of
	 * direct blocks to allocate for this branch.
	 */
895
	count = ext4_blks_to_allocate(partial, indirect_blks,
896 897
					maxblocks, blocks_to_boundary);
	/*
898
	 * Block out ext4_truncate while we alter the tree
899
	 */
900
	err = ext4_alloc_branch(handle, inode, indirect_blks, &count, goal,
901 902 903
				offsets + (partial - chain), partial);

	/*
904
	 * The ext4_splice_branch call will free and forget any buffers
905 906 907 908 909 910
	 * on the new chain if there is a failure, but that risks using
	 * up transaction credits, especially for bitmaps where the
	 * credits cannot be returned.  Can we handle this somehow?  We
	 * may need to return -EAGAIN upwards in the worst case.  --sct
	 */
	if (!err)
911
		err = ext4_splice_branch(handle, inode, iblock,
912 913 914 915
					partial, indirect_blks, count);
	/*
	 * i_disksize growing is protected by truncate_mutex.  Don't forget to
	 * protect it if you're about to implement concurrent
916
	 * ext4_get_block() -bzzz
917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
	*/
	if (!err && extend_disksize && inode->i_size > ei->i_disksize)
		ei->i_disksize = inode->i_size;
	mutex_unlock(&ei->truncate_mutex);
	if (err)
		goto cleanup;

	set_buffer_new(bh_result);
got_it:
	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
	if (count > blocks_to_boundary)
		set_buffer_boundary(bh_result);
	err = count;
	/* Clean up and exit */
	partial = chain + depth - 1;	/* the whole chain */
cleanup:
	while (partial > chain) {
		BUFFER_TRACE(partial->bh, "call brelse");
		brelse(partial->bh);
		partial--;
	}
	BUFFER_TRACE(bh_result, "returned");
out:
	return err;
}

943
#define DIO_CREDITS (EXT4_RESERVE_TRANS_BLOCKS + 32)
944

945
static int ext4_get_block(struct inode *inode, sector_t iblock,
946 947
			struct buffer_head *bh_result, int create)
{
948
	handle_t *handle = ext4_journal_current_handle();
949 950 951 952 953 954 955 956 957 958 959 960 961 962
	int ret = 0;
	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;

	if (!create)
		goto get_block;		/* A read */

	if (max_blocks == 1)
		goto get_block;		/* A single block get */

	if (handle->h_transaction->t_state == T_LOCKED) {
		/*
		 * Huge direct-io writes can hold off commits for long
		 * periods of time.  Let this commit run.
		 */
963 964
		ext4_journal_stop(handle);
		handle = ext4_journal_start(inode, DIO_CREDITS);
965 966 967 968 969
		if (IS_ERR(handle))
			ret = PTR_ERR(handle);
		goto get_block;
	}

970
	if (handle->h_buffer_credits <= EXT4_RESERVE_TRANS_BLOCKS) {
971 972 973
		/*
		 * Getting low on buffer credits...
		 */
974
		ret = ext4_journal_extend(handle, DIO_CREDITS);
975 976 977 978
		if (ret > 0) {
			/*
			 * Couldn't extend the transaction.  Start a new one.
			 */
979
			ret = ext4_journal_restart(handle, DIO_CREDITS);
980 981 982 983 984
		}
	}

get_block:
	if (ret == 0) {
A
Alex Tomas 已提交
985
		ret = ext4_get_blocks_wrap(handle, inode, iblock,
986 987 988 989 990 991 992 993 994 995 996 997
					max_blocks, bh_result, create, 0);
		if (ret > 0) {
			bh_result->b_size = (ret << inode->i_blkbits);
			ret = 0;
		}
	}
	return ret;
}

/*
 * `handle' can be NULL if create is zero
 */
998
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
999 1000 1001 1002 1003 1004 1005 1006 1007 1008
				long block, int create, int *errp)
{
	struct buffer_head dummy;
	int fatal = 0, err;

	J_ASSERT(handle != NULL || create == 0);

	dummy.b_state = 0;
	dummy.b_blocknr = -1000;
	buffer_trace_init(&dummy.b_history);
A
Alex Tomas 已提交
1009
	err = ext4_get_blocks_wrap(handle, inode, block, 1,
1010 1011
					&dummy, create, 1);
	/*
1012
	 * ext4_get_blocks_handle() returns number of blocks
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
	 * mapped. 0 in case of a HOLE.
	 */
	if (err > 0) {
		if (err > 1)
			WARN_ON(1);
		err = 0;
	}
	*errp = err;
	if (!err && buffer_mapped(&dummy)) {
		struct buffer_head *bh;
		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
		if (!bh) {
			*errp = -EIO;
			goto err;
		}
		if (buffer_new(&dummy)) {
			J_ASSERT(create != 0);
			J_ASSERT(handle != 0);

			/*
			 * Now that we do not always journal data, we should
			 * keep in mind whether this should always journal the
			 * new buffer as metadata.  For now, regular file
1036
			 * writes use ext4_get_block instead, so it's not a
1037 1038 1039 1040
			 * problem.
			 */
			lock_buffer(bh);
			BUFFER_TRACE(bh, "call get_create_access");
1041
			fatal = ext4_journal_get_create_access(handle, bh);
1042 1043 1044 1045 1046
			if (!fatal && !buffer_uptodate(bh)) {
				memset(bh->b_data,0,inode->i_sb->s_blocksize);
				set_buffer_uptodate(bh);
			}
			unlock_buffer(bh);
1047 1048
			BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
			err = ext4_journal_dirty_metadata(handle, bh);
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
			if (!fatal)
				fatal = err;
		} else {
			BUFFER_TRACE(bh, "not a new buffer");
		}
		if (fatal) {
			*errp = fatal;
			brelse(bh);
			bh = NULL;
		}
		return bh;
	}
err:
	return NULL;
}

1065
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1066 1067 1068 1069
			       int block, int create, int *err)
{
	struct buffer_head * bh;

1070
	bh = ext4_getblk(handle, inode, block, create, err);
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
	ll_rw_block(READ_META, 1, &bh);
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

static int walk_page_buffers(	handle_t *handle,
				struct buffer_head *head,
				unsigned from,
				unsigned to,
				int *partial,
				int (*fn)(	handle_t *handle,
						struct buffer_head *bh))
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

	for (	bh = head, block_start = 0;
		ret == 0 && (bh != head || !block_start);
		block_start = block_end, bh = next)
	{
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
1119
 * close off a transaction and start a new one between the ext4_get_block()
1120
 * and the commit_write().  So doing the jbd2_journal_start at the start of
1121 1122
 * prepare_write() is the right place.
 *
1123 1124
 * Also, this function can nest inside ext4_writepage() ->
 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1125 1126 1127 1128
 * has generated enough buffer credits to do the whole page.  So we won't
 * block on the journal in that case, which is good, because the caller may
 * be PF_MEMALLOC.
 *
1129
 * By accident, ext4 can be reentered when a transaction is open via
1130 1131 1132 1133 1134 1135
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
1136
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1137 1138 1139 1140 1141 1142 1143 1144 1145
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
static int do_journal_get_write_access(handle_t *handle,
					struct buffer_head *bh)
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
1146
	return ext4_journal_get_write_access(handle, bh);
1147 1148
}

N
Nick Piggin 已提交
1149 1150 1151
static int ext4_write_begin(struct file *file, struct address_space *mapping,
				loff_t pos, unsigned len, unsigned flags,
				struct page **pagep, void **fsdata)
1152
{
N
Nick Piggin 已提交
1153
 	struct inode *inode = mapping->host;
1154
	int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1155 1156
	handle_t *handle;
	int retries = 0;
N
Nick Piggin 已提交
1157 1158 1159 1160 1161 1162 1163
 	struct page *page;
 	pgoff_t index;
 	unsigned from, to;

 	index = pos >> PAGE_CACHE_SHIFT;
 	from = pos & (PAGE_CACHE_SIZE - 1);
 	to = from + len;
1164 1165

retry:
N
Nick Piggin 已提交
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
 	page = __grab_cache_page(mapping, index);
 	if (!page)
 		return -ENOMEM;
 	*pagep = page;

  	handle = ext4_journal_start(inode, needed_blocks);
  	if (IS_ERR(handle)) {
 		unlock_page(page);
 		page_cache_release(page);
  		ret = PTR_ERR(handle);
  		goto out;
1177
	}
1178

N
Nick Piggin 已提交
1179 1180 1181 1182
	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
							ext4_get_block);

	if (!ret && ext4_should_journal_data(inode)) {
1183 1184 1185
		ret = walk_page_buffers(handle, page_buffers(page),
				from, to, NULL, do_journal_get_write_access);
	}
N
Nick Piggin 已提交
1186 1187

	if (ret) {
1188
		ext4_journal_stop(handle);
N
Nick Piggin 已提交
1189 1190 1191 1192
 		unlock_page(page);
 		page_cache_release(page);
	}

1193
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1194
		goto retry;
1195
out:
1196 1197 1198
	return ret;
}

1199
int ext4_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1200
{
1201
	int err = jbd2_journal_dirty_data(handle, bh);
1202
	if (err)
1203
		ext4_journal_abort_handle(__FUNCTION__, __FUNCTION__,
N
Nick Piggin 已提交
1204
						bh, handle, err);
1205 1206 1207
	return err;
}

N
Nick Piggin 已提交
1208 1209
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1210 1211 1212 1213
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
1214
	return ext4_journal_dirty_metadata(handle, bh);
1215 1216
}

N
Nick Piggin 已提交
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
/*
 * Generic write_end handler for ordered and writeback ext4 journal modes.
 * We can't use generic_write_end, because that unlocks the page and we need to
 * unlock the page after ext4_journal_stop, but ext4_journal_stop must run
 * after block_write_end.
 */
static int ext4_generic_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
{
	struct inode *inode = file->f_mapping->host;

	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);

	if (pos+copied > inode->i_size) {
		i_size_write(inode, pos+copied);
		mark_inode_dirty(inode);
	}

	return copied;
}

1240 1241 1242 1243
/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
1244
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1245 1246
 * buffers are managed internally.
 */
N
Nick Piggin 已提交
1247 1248 1249 1250
static int ext4_ordered_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
1251
{
1252
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1253 1254
	struct inode *inode = file->f_mapping->host;
	unsigned from, to;
1255 1256
	int ret = 0, ret2;

N
Nick Piggin 已提交
1257 1258 1259
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

1260
	ret = walk_page_buffers(handle, page_buffers(page),
1261
		from, to, NULL, ext4_journal_dirty_data);
1262 1263 1264

	if (ret == 0) {
		/*
N
Nick Piggin 已提交
1265
		 * generic_write_end() will run mark_inode_dirty() if i_size
1266 1267 1268 1269 1270
		 * changes.  So let's piggyback the i_disksize mark_inode_dirty
		 * into that.
		 */
		loff_t new_i_size;

N
Nick Piggin 已提交
1271
		new_i_size = pos + copied;
1272 1273
		if (new_i_size > EXT4_I(inode)->i_disksize)
			EXT4_I(inode)->i_disksize = new_i_size;
N
Nick Piggin 已提交
1274 1275 1276 1277
		copied = ext4_generic_write_end(file, mapping, pos, len, copied,
							page, fsdata);
		if (copied < 0)
			ret = copied;
1278
	}
1279
	ret2 = ext4_journal_stop(handle);
1280 1281
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1282 1283 1284 1285
	unlock_page(page);
	page_cache_release(page);

	return ret ? ret : copied;
1286 1287
}

N
Nick Piggin 已提交
1288 1289 1290 1291
static int ext4_writeback_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
1292
{
1293
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1294
	struct inode *inode = file->f_mapping->host;
1295 1296 1297
	int ret = 0, ret2;
	loff_t new_i_size;

N
Nick Piggin 已提交
1298
	new_i_size = pos + copied;
1299 1300
	if (new_i_size > EXT4_I(inode)->i_disksize)
		EXT4_I(inode)->i_disksize = new_i_size;
1301

N
Nick Piggin 已提交
1302 1303 1304 1305
	copied = ext4_generic_write_end(file, mapping, pos, len, copied,
							page, fsdata);
	if (copied < 0)
		ret = copied;
1306

1307
	ret2 = ext4_journal_stop(handle);
1308 1309
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1310 1311 1312 1313
	unlock_page(page);
	page_cache_release(page);

	return ret ? ret : copied;
1314 1315
}

N
Nick Piggin 已提交
1316 1317 1318 1319
static int ext4_journalled_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
1320
{
1321
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1322
	struct inode *inode = mapping->host;
1323 1324
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
1325
	unsigned from, to;
1326

N
Nick Piggin 已提交
1327 1328 1329 1330 1331 1332 1333 1334
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

	if (copied < len) {
		if (!PageUptodate(page))
			copied = 0;
		page_zero_new_buffers(page, from+copied, to);
	}
1335 1336

	ret = walk_page_buffers(handle, page_buffers(page), from,
N
Nick Piggin 已提交
1337
				to, &partial, write_end_fn);
1338 1339
	if (!partial)
		SetPageUptodate(page);
N
Nick Piggin 已提交
1340 1341
	if (pos+copied > inode->i_size)
		i_size_write(inode, pos+copied);
1342 1343 1344 1345
	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
	if (inode->i_size > EXT4_I(inode)->i_disksize) {
		EXT4_I(inode)->i_disksize = inode->i_size;
		ret2 = ext4_mark_inode_dirty(handle, inode);
1346 1347 1348
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1349

1350
	ret2 = ext4_journal_stop(handle);
1351 1352
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1353 1354 1355 1356
	unlock_page(page);
	page_cache_release(page);

	return ret ? ret : copied;
1357 1358 1359 1360 1361 1362 1363
}

/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
1364
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
1365 1366 1367 1368 1369 1370 1371 1372
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
1373
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
1374 1375 1376 1377 1378
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

1379
	if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
1391
		 * NB. EXT4_STATE_JDATA is not set on files other than
1392 1393 1394 1395 1396 1397
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

1398 1399
		EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
		journal = EXT4_JOURNAL(inode);
1400 1401 1402
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
1403 1404 1405 1406 1407

		if (err)
			return 0;
	}

1408
	return generic_block_bmap(mapping,block,ext4_get_block);
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
}

static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

1423
static int jbd2_journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1424 1425
{
	if (buffer_mapped(bh))
1426
		return ext4_journal_dirty_data(handle, bh);
1427 1428 1429 1430 1431 1432
	return 0;
}

/*
 * Note that we always start a transaction even if we're not journalling
 * data.  This is to preserve ordering: any hole instantiation within
1433
 * __block_write_full_page -> ext4_get_block() should be journalled
1434 1435 1436 1437 1438 1439 1440
 * along with the data so we don't crash and then get metadata which
 * refers to old data.
 *
 * In all journalling modes block_write_full_page() will start the I/O.
 *
 * Problem:
 *
1441 1442
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
1443 1444 1445
 *
 * Similar for:
 *
1446
 *	ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1447
 *
1448
 * Same applies to ext4_get_block().  We will deadlock on various things like
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
 * lock_journal and i_truncate_mutex.
 *
 * Setting PF_MEMALLOC here doesn't work - too many internal memory
 * allocations fail.
 *
 * 16May01: If we're reentered then journal_current_handle() will be
 *	    non-zero. We simply *return*.
 *
 * 1 July 2001: @@@ FIXME:
 *   In journalled data mode, a data buffer may be metadata against the
 *   current transaction.  But the same file is part of a shared mapping
 *   and someone does a writepage() on it.
 *
 *   We will move the buffer onto the async_data list, but *after* it has
 *   been dirtied. So there's a small window where we have dirty data on
 *   BJ_Metadata.
 *
 *   Note that this only applies to the last partial page in the file.  The
 *   bit which block_write_full_page() uses prepare/commit for.  (That's
 *   broken code anyway: it's wrong for msync()).
 *
 *   It's a rare case: affects the final partial page, for journalled data
 *   where the file is subject to bith write() and writepage() in the same
 *   transction.  To fix it we'll need a custom block_write_full_page().
 *   We'll probably need that anyway for journalling writepage() output.
 *
 * We don't honour synchronous mounts for writepage().  That would be
 * disastrous.  Any write() or metadata operation will sync the fs for
 * us.
 *
 * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
 * we don't need to open a transaction here.
 */
1482
static int ext4_ordered_writepage(struct page *page,
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
				struct writeback_control *wbc)
{
	struct inode *inode = page->mapping->host;
	struct buffer_head *page_bufs;
	handle_t *handle = NULL;
	int ret = 0;
	int err;

	J_ASSERT(PageLocked(page));

	/*
	 * We give up here if we're reentered, because it might be for a
	 * different filesystem.
	 */
1497
	if (ext4_journal_current_handle())
1498 1499
		goto out_fail;

1500
	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514

	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out_fail;
	}

	if (!page_has_buffers(page)) {
		create_empty_buffers(page, inode->i_sb->s_blocksize,
				(1 << BH_Dirty)|(1 << BH_Uptodate));
	}
	page_bufs = page_buffers(page);
	walk_page_buffers(handle, page_bufs, 0,
			PAGE_CACHE_SIZE, NULL, bget_one);

1515
	ret = block_write_full_page(page, ext4_get_block, wbc);
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530

	/*
	 * The page can become unlocked at any point now, and
	 * truncate can then come in and change things.  So we
	 * can't touch *page from now on.  But *page_bufs is
	 * safe due to elevated refcount.
	 */

	/*
	 * And attach them to the current transaction.  But only if
	 * block_write_full_page() succeeded.  Otherwise they are unmapped,
	 * and generally junk.
	 */
	if (ret == 0) {
		err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1531
					NULL, jbd2_journal_dirty_data_fn);
1532 1533 1534 1535 1536
		if (!ret)
			ret = err;
	}
	walk_page_buffers(handle, page_bufs, 0,
			PAGE_CACHE_SIZE, NULL, bput_one);
1537
	err = ext4_journal_stop(handle);
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
	if (!ret)
		ret = err;
	return ret;

out_fail:
	redirty_page_for_writepage(wbc, page);
	unlock_page(page);
	return ret;
}

1548
static int ext4_writeback_writepage(struct page *page,
1549 1550 1551 1552 1553 1554 1555
				struct writeback_control *wbc)
{
	struct inode *inode = page->mapping->host;
	handle_t *handle = NULL;
	int ret = 0;
	int err;

1556
	if (ext4_journal_current_handle())
1557 1558
		goto out_fail;

1559
	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1560 1561 1562 1563 1564
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out_fail;
	}

1565 1566
	if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
		ret = nobh_writepage(page, ext4_get_block, wbc);
1567
	else
1568
		ret = block_write_full_page(page, ext4_get_block, wbc);
1569

1570
	err = ext4_journal_stop(handle);
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
	if (!ret)
		ret = err;
	return ret;

out_fail:
	redirty_page_for_writepage(wbc, page);
	unlock_page(page);
	return ret;
}

1581
static int ext4_journalled_writepage(struct page *page,
1582 1583 1584 1585 1586 1587 1588
				struct writeback_control *wbc)
{
	struct inode *inode = page->mapping->host;
	handle_t *handle = NULL;
	int ret = 0;
	int err;

1589
	if (ext4_journal_current_handle())
1590 1591
		goto no_write;

1592
	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto no_write;
	}

	if (!page_has_buffers(page) || PageChecked(page)) {
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
		ClearPageChecked(page);
		ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
1605
					ext4_get_block);
1606
		if (ret != 0) {
1607
			ext4_journal_stop(handle);
1608 1609 1610 1611 1612 1613
			goto out_unlock;
		}
		ret = walk_page_buffers(handle, page_buffers(page), 0,
			PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);

		err = walk_page_buffers(handle, page_buffers(page), 0,
N
Nick Piggin 已提交
1614
				PAGE_CACHE_SIZE, NULL, write_end_fn);
1615 1616
		if (ret == 0)
			ret = err;
1617
		EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1618 1619 1620 1621 1622 1623 1624
		unlock_page(page);
	} else {
		/*
		 * It may be a page full of checkpoint-mode buffers.  We don't
		 * really know unless we go poke around in the buffer_heads.
		 * But block_write_full_page will do the right thing.
		 */
1625
		ret = block_write_full_page(page, ext4_get_block, wbc);
1626
	}
1627
	err = ext4_journal_stop(handle);
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
	if (!ret)
		ret = err;
out:
	return ret;

no_write:
	redirty_page_for_writepage(wbc, page);
out_unlock:
	unlock_page(page);
	goto out;
}

1640
static int ext4_readpage(struct file *file, struct page *page)
1641
{
1642
	return mpage_readpage(page, ext4_get_block);
1643 1644 1645
}

static int
1646
ext4_readpages(struct file *file, struct address_space *mapping,
1647 1648
		struct list_head *pages, unsigned nr_pages)
{
1649
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
1650 1651
}

1652
static void ext4_invalidatepage(struct page *page, unsigned long offset)
1653
{
1654
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
1655 1656 1657 1658 1659 1660 1661

	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

1662
	jbd2_journal_invalidatepage(journal, page, offset);
1663 1664
}

1665
static int ext4_releasepage(struct page *page, gfp_t wait)
1666
{
1667
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
1668 1669 1670 1671

	WARN_ON(PageChecked(page));
	if (!page_has_buffers(page))
		return 0;
1672
	return jbd2_journal_try_to_free_buffers(journal, page, wait);
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
}

/*
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 * If the O_DIRECT write is intantiating holes inside i_size and the machine
 * crashes then stale disk data _may_ be exposed inside the file.
 */
1683
static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
1684 1685 1686 1687 1688
			const struct iovec *iov, loff_t offset,
			unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
1689
	struct ext4_inode_info *ei = EXT4_I(inode);
1690 1691 1692 1693 1694 1695 1696 1697
	handle_t *handle = NULL;
	ssize_t ret;
	int orphan = 0;
	size_t count = iov_length(iov, nr_segs);

	if (rw == WRITE) {
		loff_t final_size = offset + count;

1698
		handle = ext4_journal_start(inode, DIO_CREDITS);
1699 1700 1701 1702 1703
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
			goto out;
		}
		if (final_size > inode->i_size) {
1704
			ret = ext4_orphan_add(handle, inode);
1705 1706 1707 1708 1709 1710 1711 1712 1713
			if (ret)
				goto out_stop;
			orphan = 1;
			ei->i_disksize = inode->i_size;
		}
	}

	ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
				 offset, nr_segs,
1714
				 ext4_get_block, NULL);
1715 1716

	/*
1717
	 * Reacquire the handle: ext4_get_block() can restart the transaction
1718
	 */
1719
	handle = ext4_journal_current_handle();
1720 1721 1722 1723 1724 1725

out_stop:
	if (handle) {
		int err;

		if (orphan && inode->i_nlink)
1726
			ext4_orphan_del(handle, inode);
1727 1728 1729 1730 1731 1732 1733 1734 1735
		if (orphan && ret > 0) {
			loff_t end = offset + ret;
			if (end > inode->i_size) {
				ei->i_disksize = end;
				i_size_write(inode, end);
				/*
				 * We're going to return a positive `ret'
				 * here due to non-zero-length I/O, so there's
				 * no way of reporting error returns from
1736
				 * ext4_mark_inode_dirty() to userspace.  So
1737 1738
				 * ignore it.
				 */
1739
				ext4_mark_inode_dirty(handle, inode);
1740 1741
			}
		}
1742
		err = ext4_journal_stop(handle);
1743 1744 1745 1746 1747 1748 1749 1750
		if (ret == 0)
			ret = err;
	}
out:
	return ret;
}

/*
1751
 * Pages can be marked dirty completely asynchronously from ext4's journalling
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
1763
static int ext4_journalled_set_page_dirty(struct page *page)
1764 1765 1766 1767 1768
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

1769 1770 1771 1772
static const struct address_space_operations ext4_ordered_aops = {
	.readpage	= ext4_readpage,
	.readpages	= ext4_readpages,
	.writepage	= ext4_ordered_writepage,
1773
	.sync_page	= block_sync_page,
N
Nick Piggin 已提交
1774 1775
	.write_begin	= ext4_write_begin,
	.write_end	= ext4_ordered_write_end,
1776 1777 1778 1779
	.bmap		= ext4_bmap,
	.invalidatepage	= ext4_invalidatepage,
	.releasepage	= ext4_releasepage,
	.direct_IO	= ext4_direct_IO,
1780 1781 1782
	.migratepage	= buffer_migrate_page,
};

1783 1784 1785 1786
static const struct address_space_operations ext4_writeback_aops = {
	.readpage	= ext4_readpage,
	.readpages	= ext4_readpages,
	.writepage	= ext4_writeback_writepage,
1787
	.sync_page	= block_sync_page,
N
Nick Piggin 已提交
1788 1789
	.write_begin	= ext4_write_begin,
	.write_end	= ext4_writeback_write_end,
1790 1791 1792 1793
	.bmap		= ext4_bmap,
	.invalidatepage	= ext4_invalidatepage,
	.releasepage	= ext4_releasepage,
	.direct_IO	= ext4_direct_IO,
1794 1795 1796
	.migratepage	= buffer_migrate_page,
};

1797 1798 1799 1800
static const struct address_space_operations ext4_journalled_aops = {
	.readpage	= ext4_readpage,
	.readpages	= ext4_readpages,
	.writepage	= ext4_journalled_writepage,
1801
	.sync_page	= block_sync_page,
N
Nick Piggin 已提交
1802 1803
	.write_begin	= ext4_write_begin,
	.write_end	= ext4_journalled_write_end,
1804 1805 1806 1807
	.set_page_dirty	= ext4_journalled_set_page_dirty,
	.bmap		= ext4_bmap,
	.invalidatepage	= ext4_invalidatepage,
	.releasepage	= ext4_releasepage,
1808 1809
};

1810
void ext4_set_aops(struct inode *inode)
1811
{
1812 1813 1814 1815
	if (ext4_should_order_data(inode))
		inode->i_mapping->a_ops = &ext4_ordered_aops;
	else if (ext4_should_writeback_data(inode))
		inode->i_mapping->a_ops = &ext4_writeback_aops;
1816
	else
1817
		inode->i_mapping->a_ops = &ext4_journalled_aops;
1818 1819 1820
}

/*
1821
 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
1822 1823 1824 1825
 * up to the end of the block which corresponds to `from'.
 * This required during truncate. We need to physically zero the tail end
 * of that block so it doesn't yield old data if the file is later grown.
 */
A
Alex Tomas 已提交
1826
int ext4_block_truncate_page(handle_t *handle, struct page *page,
1827 1828
		struct address_space *mapping, loff_t from)
{
1829
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
	unsigned offset = from & (PAGE_CACHE_SIZE-1);
	unsigned blocksize, iblock, length, pos;
	struct inode *inode = mapping->host;
	struct buffer_head *bh;
	int err = 0;

	blocksize = inode->i_sb->s_blocksize;
	length = blocksize - (offset & (blocksize - 1));
	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

	/*
	 * For "nobh" option,  we can only work if we don't need to
	 * read-in the page - otherwise we create buffers to do the IO.
	 */
	if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
1845
	     ext4_should_writeback_data(inode) && PageUptodate(page)) {
1846
		zero_user_page(page, offset, length, KM_USER0);
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
		set_page_dirty(page);
		goto unlock;
	}

	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	err = 0;
	if (buffer_freed(bh)) {
		BUFFER_TRACE(bh, "freed: skip");
		goto unlock;
	}

	if (!buffer_mapped(bh)) {
		BUFFER_TRACE(bh, "unmapped");
1871
		ext4_get_block(inode, iblock, bh, 0);
1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
		/* unmapped? It's a hole - nothing to do */
		if (!buffer_mapped(bh)) {
			BUFFER_TRACE(bh, "still unmapped");
			goto unlock;
		}
	}

	/* Ok, it's mapped. Make sure it's up-to-date */
	if (PageUptodate(page))
		set_buffer_uptodate(bh);

	if (!buffer_uptodate(bh)) {
		err = -EIO;
		ll_rw_block(READ, 1, &bh);
		wait_on_buffer(bh);
		/* Uhhuh. Read error. Complain and punt. */
		if (!buffer_uptodate(bh))
			goto unlock;
	}

1892
	if (ext4_should_journal_data(inode)) {
1893
		BUFFER_TRACE(bh, "get write access");
1894
		err = ext4_journal_get_write_access(handle, bh);
1895 1896 1897 1898
		if (err)
			goto unlock;
	}

1899
	zero_user_page(page, offset, length, KM_USER0);
1900 1901 1902 1903

	BUFFER_TRACE(bh, "zeroed end of block");

	err = 0;
1904 1905
	if (ext4_should_journal_data(inode)) {
		err = ext4_journal_dirty_metadata(handle, bh);
1906
	} else {
1907 1908
		if (ext4_should_order_data(inode))
			err = ext4_journal_dirty_data(handle, bh);
1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
		mark_buffer_dirty(bh);
	}

unlock:
	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * Probably it should be a library function... search for first non-zero word
 * or memcmp with zero_page, whatever is better for particular architecture.
 * Linus?
 */
static inline int all_zeroes(__le32 *p, __le32 *q)
{
	while (p < q)
		if (*p++)
			return 0;
	return 1;
}

/**
1932
 *	ext4_find_shared - find the indirect blocks for partial truncation.
1933 1934
 *	@inode:	  inode in question
 *	@depth:	  depth of the affected branch
1935
 *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
1936 1937 1938
 *	@chain:	  place to store the pointers to partial indirect blocks
 *	@top:	  place to the (detached) top of branch
 *
1939
 *	This is a helper function used by ext4_truncate().
1940 1941 1942 1943 1944 1945 1946
 *
 *	When we do truncate() we may have to clean the ends of several
 *	indirect blocks but leave the blocks themselves alive. Block is
 *	partially truncated if some data below the new i_size is refered
 *	from it (and it is on the path to the first completely truncated
 *	data block, indeed).  We have to free the top of that path along
 *	with everything to the right of the path. Since no allocation
1947
 *	past the truncation point is possible until ext4_truncate()
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
 *	finishes, we may safely do the latter, but top of branch may
 *	require special attention - pageout below the truncation point
 *	might try to populate it.
 *
 *	We atomically detach the top of branch from the tree, store the
 *	block number of its root in *@top, pointers to buffer_heads of
 *	partially truncated blocks - in @chain[].bh and pointers to
 *	their last elements that should not be removed - in
 *	@chain[].p. Return value is the pointer to last filled element
 *	of @chain.
 *
 *	The work left to caller to do the actual freeing of subtrees:
 *		a) free the subtree starting from *@top
 *		b) free the subtrees whose roots are stored in
 *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
 *		c) free the subtrees growing from the inode past the @chain[0].
 *			(no partially truncated stuff there).  */

1966
static Indirect *ext4_find_shared(struct inode *inode, int depth,
1967 1968 1969 1970 1971 1972 1973 1974 1975
			int offsets[4], Indirect chain[4], __le32 *top)
{
	Indirect *partial, *p;
	int k, err;

	*top = 0;
	/* Make k index the deepest non-null offest + 1 */
	for (k = depth; k > 1 && !offsets[k-1]; k--)
		;
1976
	partial = ext4_get_branch(inode, k, offsets, chain, &err);
1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
	/* Writer: pointers */
	if (!partial)
		partial = chain + k-1;
	/*
	 * If the branch acquired continuation since we've looked at it -
	 * fine, it should all survive and (new) top doesn't belong to us.
	 */
	if (!partial->key && *partial->p)
		/* Writer: end */
		goto no_top;
	for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
		;
	/*
	 * OK, we've found the last block that must survive. The rest of our
	 * branch should be detached before unlocking. However, if that rest
	 * of branch is all ours and does not grow immediately from the inode
	 * it's easier to cheat and just decrement partial->p.
	 */
	if (p == chain + k - 1 && p > chain) {
		p->p--;
	} else {
		*top = *p->p;
1999
		/* Nope, don't do this in ext4.  Must leave the tree intact */
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
#if 0
		*p->p = 0;
#endif
	}
	/* Writer: end */

	while(partial > p) {
		brelse(partial->bh);
		partial--;
	}
no_top:
	return partial;
}

/*
 * Zero a number of block pointers in either an inode or an indirect block.
 * If we restart the transaction we must again get write access to the
 * indirect block for further modification.
 *
 * We release `count' blocks on disk, but (last - first) may be greater
 * than `count' because there can be holes in there.
 */
2022 2023
static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
		struct buffer_head *bh, ext4_fsblk_t block_to_free,
2024 2025 2026 2027 2028
		unsigned long count, __le32 *first, __le32 *last)
{
	__le32 *p;
	if (try_to_extend_transaction(handle, inode)) {
		if (bh) {
2029 2030
			BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
			ext4_journal_dirty_metadata(handle, bh);
2031
		}
2032 2033
		ext4_mark_inode_dirty(handle, inode);
		ext4_journal_test_restart(handle, inode);
2034 2035
		if (bh) {
			BUFFER_TRACE(bh, "retaking write access");
2036
			ext4_journal_get_write_access(handle, bh);
2037 2038 2039 2040 2041
		}
	}

	/*
	 * Any buffers which are on the journal will be in memory. We find
2042
	 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
2043
	 * on them.  We've already detached each block from the file, so
2044
	 * bforget() in jbd2_journal_forget() should be safe.
2045
	 *
2046
	 * AKPM: turn on bforget in jbd2_journal_forget()!!!
2047 2048 2049 2050 2051 2052 2053 2054
	 */
	for (p = first; p < last; p++) {
		u32 nr = le32_to_cpu(*p);
		if (nr) {
			struct buffer_head *bh;

			*p = 0;
			bh = sb_find_get_block(inode->i_sb, nr);
2055
			ext4_forget(handle, 0, inode, bh, nr);
2056 2057 2058
		}
	}

2059
	ext4_free_blocks(handle, inode, block_to_free, count);
2060 2061 2062
}

/**
2063
 * ext4_free_data - free a list of data blocks
2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
 * @handle:	handle for this transaction
 * @inode:	inode we are dealing with
 * @this_bh:	indirect buffer_head which contains *@first and *@last
 * @first:	array of block numbers
 * @last:	points immediately past the end of array
 *
 * We are freeing all blocks refered from that array (numbers are stored as
 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
 *
 * We accumulate contiguous runs of blocks to free.  Conveniently, if these
 * blocks are contiguous then releasing them at one time will only affect one
 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
 * actually use a lot of journal space.
 *
 * @this_bh will be %NULL if @first and @last point into the inode's direct
 * block pointers.
 */
2081
static void ext4_free_data(handle_t *handle, struct inode *inode,
2082 2083 2084
			   struct buffer_head *this_bh,
			   __le32 *first, __le32 *last)
{
2085
	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
2086 2087 2088 2089
	unsigned long count = 0;	    /* Number of blocks in the run */
	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
					       corresponding to
					       block_to_free */
2090
	ext4_fsblk_t nr;		    /* Current block # */
2091 2092 2093 2094 2095 2096
	__le32 *p;			    /* Pointer into inode/ind
					       for current block */
	int err;

	if (this_bh) {				/* For indirect block */
		BUFFER_TRACE(this_bh, "get_write_access");
2097
		err = ext4_journal_get_write_access(handle, this_bh);
2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
		/* Important: if we can't update the indirect pointers
		 * to the blocks, we can't free them. */
		if (err)
			return;
	}

	for (p = first; p < last; p++) {
		nr = le32_to_cpu(*p);
		if (nr) {
			/* accumulate blocks to free if they're contiguous */
			if (count == 0) {
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			} else if (nr == block_to_free + count) {
				count++;
			} else {
2115
				ext4_clear_blocks(handle, inode, this_bh,
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
						  block_to_free,
						  count, block_to_free_p, p);
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			}
		}
	}

	if (count > 0)
2126
		ext4_clear_blocks(handle, inode, this_bh, block_to_free,
2127 2128 2129
				  count, block_to_free_p, p);

	if (this_bh) {
2130 2131
		BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
		ext4_journal_dirty_metadata(handle, this_bh);
2132 2133 2134 2135
	}
}

/**
2136
 *	ext4_free_branches - free an array of branches
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
 *	@handle: JBD handle for this transaction
 *	@inode:	inode we are dealing with
 *	@parent_bh: the buffer_head which contains *@first and *@last
 *	@first:	array of block numbers
 *	@last:	pointer immediately past the end of array
 *	@depth:	depth of the branches to free
 *
 *	We are freeing all blocks refered from these branches (numbers are
 *	stored as little-endian 32-bit) and updating @inode->i_blocks
 *	appropriately.
 */
2148
static void ext4_free_branches(handle_t *handle, struct inode *inode,
2149 2150 2151
			       struct buffer_head *parent_bh,
			       __le32 *first, __le32 *last, int depth)
{
2152
	ext4_fsblk_t nr;
2153 2154 2155 2156 2157 2158 2159
	__le32 *p;

	if (is_handle_aborted(handle))
		return;

	if (depth--) {
		struct buffer_head *bh;
2160
		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
		p = last;
		while (--p >= first) {
			nr = le32_to_cpu(*p);
			if (!nr)
				continue;		/* A hole */

			/* Go read the buffer for the next level down */
			bh = sb_bread(inode->i_sb, nr);

			/*
			 * A read failure? Report error and clear slot
			 * (should be rare).
			 */
			if (!bh) {
2175
				ext4_error(inode->i_sb, "ext4_free_branches",
2176
					   "Read failure, inode=%lu, block=%llu",
2177 2178 2179 2180 2181 2182
					   inode->i_ino, nr);
				continue;
			}

			/* This zaps the entire block.  Bottom up. */
			BUFFER_TRACE(bh, "free child branches");
2183
			ext4_free_branches(handle, inode, bh,
2184 2185 2186 2187 2188 2189 2190 2191
					   (__le32*)bh->b_data,
					   (__le32*)bh->b_data + addr_per_block,
					   depth);

			/*
			 * We've probably journalled the indirect block several
			 * times during the truncate.  But it's no longer
			 * needed and we now drop it from the transaction via
2192
			 * jbd2_journal_revoke().
2193 2194 2195
			 *
			 * That's easy if it's exclusively part of this
			 * transaction.  But if it's part of the committing
2196
			 * transaction then jbd2_journal_forget() will simply
2197
			 * brelse() it.  That means that if the underlying
2198
			 * block is reallocated in ext4_get_block(),
2199 2200 2201 2202 2203 2204 2205 2206
			 * unmap_underlying_metadata() will find this block
			 * and will try to get rid of it.  damn, damn.
			 *
			 * If this block has already been committed to the
			 * journal, a revoke record will be written.  And
			 * revoke records must be emitted *before* clearing
			 * this block's bit in the bitmaps.
			 */
2207
			ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227

			/*
			 * Everything below this this pointer has been
			 * released.  Now let this top-of-subtree go.
			 *
			 * We want the freeing of this indirect block to be
			 * atomic in the journal with the updating of the
			 * bitmap block which owns it.  So make some room in
			 * the journal.
			 *
			 * We zero the parent pointer *after* freeing its
			 * pointee in the bitmaps, so if extend_transaction()
			 * for some reason fails to put the bitmap changes and
			 * the release into the same transaction, recovery
			 * will merely complain about releasing a free block,
			 * rather than leaking blocks.
			 */
			if (is_handle_aborted(handle))
				return;
			if (try_to_extend_transaction(handle, inode)) {
2228 2229
				ext4_mark_inode_dirty(handle, inode);
				ext4_journal_test_restart(handle, inode);
2230 2231
			}

2232
			ext4_free_blocks(handle, inode, nr, 1);
2233 2234 2235 2236 2237 2238 2239

			if (parent_bh) {
				/*
				 * The block which we have just freed is
				 * pointed to by an indirect block: journal it
				 */
				BUFFER_TRACE(parent_bh, "get_write_access");
2240
				if (!ext4_journal_get_write_access(handle,
2241 2242 2243
								   parent_bh)){
					*p = 0;
					BUFFER_TRACE(parent_bh,
2244 2245
					"call ext4_journal_dirty_metadata");
					ext4_journal_dirty_metadata(handle,
2246 2247 2248 2249 2250 2251 2252
								    parent_bh);
				}
			}
		}
	} else {
		/* We have reached the bottom of the tree. */
		BUFFER_TRACE(parent_bh, "free data blocks");
2253
		ext4_free_data(handle, inode, parent_bh, first, last);
2254 2255 2256 2257
	}
}

/*
2258
 * ext4_truncate()
2259
 *
2260 2261
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
 * simultaneously on behalf of the same inode.
 *
 * As we work through the truncate and commmit bits of it to the journal there
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
2278
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
2279
 * that this inode's truncate did not complete and it will again call
2280 2281
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
2282
 * that's fine - as long as they are linked from the inode, the post-crash
2283
 * ext4_truncate() run will find them and release them.
2284
 */
2285
void ext4_truncate(struct inode *inode)
2286 2287
{
	handle_t *handle;
2288
	struct ext4_inode_info *ei = EXT4_I(inode);
2289
	__le32 *i_data = ei->i_data;
2290
	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
	struct address_space *mapping = inode->i_mapping;
	int offsets[4];
	Indirect chain[4];
	Indirect *partial;
	__le32 nr = 0;
	int n;
	long last_block;
	unsigned blocksize = inode->i_sb->s_blocksize;
	struct page *page;

	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
	    S_ISLNK(inode->i_mode)))
		return;
2304
	if (ext4_inode_is_fast_symlink(inode))
2305 2306 2307 2308 2309 2310
		return;
	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
		return;

	/*
	 * We have to lock the EOF page here, because lock_page() nests
2311
	 * outside jbd2_journal_start().
2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322
	 */
	if ((inode->i_size & (blocksize - 1)) == 0) {
		/* Block boundary? Nothing to do */
		page = NULL;
	} else {
		page = grab_cache_page(mapping,
				inode->i_size >> PAGE_CACHE_SHIFT);
		if (!page)
			return;
	}

A
Alex Tomas 已提交
2323 2324 2325
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
		return ext4_ext_truncate(inode, page);

2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
	handle = start_transaction(inode);
	if (IS_ERR(handle)) {
		if (page) {
			clear_highpage(page);
			flush_dcache_page(page);
			unlock_page(page);
			page_cache_release(page);
		}
		return;		/* AKPM: return what? */
	}

	last_block = (inode->i_size + blocksize-1)
2338
					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
2339 2340

	if (page)
2341
		ext4_block_truncate_page(handle, page, mapping, inode->i_size);
2342

2343
	n = ext4_block_to_path(inode, last_block, offsets, NULL);
2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
	if (n == 0)
		goto out_stop;	/* error */

	/*
	 * OK.  This truncate is going to happen.  We add the inode to the
	 * orphan list, so that if this truncate spans multiple transactions,
	 * and we crash, we will resume the truncate when the filesystem
	 * recovers.  It also marks the inode dirty, to catch the new size.
	 *
	 * Implication: the file must always be in a sane, consistent
	 * truncatable state while each transaction commits.
	 */
2356
	if (ext4_orphan_add(handle, inode))
2357 2358 2359 2360 2361 2362 2363
		goto out_stop;

	/*
	 * The orphan list entry will now protect us from any crash which
	 * occurs before the truncate completes, so it is now safe to propagate
	 * the new, shorter inode size (held for now in i_size) into the
	 * on-disk inode. We do this via i_disksize, which is the value which
2364
	 * ext4 *really* writes onto the disk inode.
2365 2366 2367 2368
	 */
	ei->i_disksize = inode->i_size;

	/*
2369
	 * From here we block out all ext4_get_block() callers who want to
2370 2371 2372 2373 2374
	 * modify the block allocation tree.
	 */
	mutex_lock(&ei->truncate_mutex);

	if (n == 1) {		/* direct blocks */
2375 2376
		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
			       i_data + EXT4_NDIR_BLOCKS);
2377 2378 2379
		goto do_indirects;
	}

2380
	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
2381 2382 2383 2384
	/* Kill the top of shared branch (not detached) */
	if (nr) {
		if (partial == chain) {
			/* Shared branch grows from the inode */
2385
			ext4_free_branches(handle, inode, NULL,
2386 2387 2388 2389 2390 2391 2392 2393 2394
					   &nr, &nr+1, (chain+n-1) - partial);
			*partial->p = 0;
			/*
			 * We mark the inode dirty prior to restart,
			 * and prior to stop.  No need for it here.
			 */
		} else {
			/* Shared branch grows from an indirect block */
			BUFFER_TRACE(partial->bh, "get_write_access");
2395
			ext4_free_branches(handle, inode, partial->bh,
2396 2397 2398 2399 2400 2401
					partial->p,
					partial->p+1, (chain+n-1) - partial);
		}
	}
	/* Clear the ends of indirect blocks on the shared branch */
	while (partial > chain) {
2402
		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
2403 2404 2405 2406 2407 2408 2409 2410 2411 2412
				   (__le32*)partial->bh->b_data+addr_per_block,
				   (chain+n-1) - partial);
		BUFFER_TRACE(partial->bh, "call brelse");
		brelse (partial->bh);
		partial--;
	}
do_indirects:
	/* Kill the remaining (whole) subtrees */
	switch (offsets[0]) {
	default:
2413
		nr = i_data[EXT4_IND_BLOCK];
2414
		if (nr) {
2415 2416
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
			i_data[EXT4_IND_BLOCK] = 0;
2417
		}
2418 2419
	case EXT4_IND_BLOCK:
		nr = i_data[EXT4_DIND_BLOCK];
2420
		if (nr) {
2421 2422
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
			i_data[EXT4_DIND_BLOCK] = 0;
2423
		}
2424 2425
	case EXT4_DIND_BLOCK:
		nr = i_data[EXT4_TIND_BLOCK];
2426
		if (nr) {
2427 2428
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
			i_data[EXT4_TIND_BLOCK] = 0;
2429
		}
2430
	case EXT4_TIND_BLOCK:
2431 2432 2433
		;
	}

2434
	ext4_discard_reservation(inode);
2435 2436

	mutex_unlock(&ei->truncate_mutex);
K
Kalpak Shah 已提交
2437
	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
2438
	ext4_mark_inode_dirty(handle, inode);
2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450

	/*
	 * In a multi-transaction truncate, we only make the final transaction
	 * synchronous
	 */
	if (IS_SYNC(inode))
		handle->h_sync = 1;
out_stop:
	/*
	 * If this was a simple ftruncate(), and the file will remain alive
	 * then we need to clear up the orphan record which we created above.
	 * However, if this was a real unlink then we were called by
2451
	 * ext4_delete_inode(), and we allow that function to clean up the
2452 2453 2454
	 * orphan info for us.
	 */
	if (inode->i_nlink)
2455
		ext4_orphan_del(handle, inode);
2456

2457
	ext4_journal_stop(handle);
2458 2459
}

2460 2461
static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
		unsigned long ino, struct ext4_iloc *iloc)
2462 2463 2464
{
	unsigned long desc, group_desc, block_group;
	unsigned long offset;
2465
	ext4_fsblk_t block;
2466
	struct buffer_head *bh;
2467
	struct ext4_group_desc * gdp;
2468

2469
	if (!ext4_valid_inum(sb, ino)) {
2470 2471 2472 2473 2474 2475 2476 2477
		/*
		 * This error is already checked for in namei.c unless we are
		 * looking at an NFS filehandle, in which case no error
		 * report is needed
		 */
		return 0;
	}

2478 2479 2480
	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
	if (block_group >= EXT4_SB(sb)->s_groups_count) {
		ext4_error(sb,"ext4_get_inode_block","group >= groups count");
2481 2482 2483
		return 0;
	}
	smp_rmb();
2484 2485 2486
	group_desc = block_group >> EXT4_DESC_PER_BLOCK_BITS(sb);
	desc = block_group & (EXT4_DESC_PER_BLOCK(sb) - 1);
	bh = EXT4_SB(sb)->s_group_desc[group_desc];
2487
	if (!bh) {
2488
		ext4_error (sb, "ext4_get_inode_block",
2489 2490 2491 2492
			    "Descriptor not loaded");
		return 0;
	}

2493 2494
	gdp = (struct ext4_group_desc *)((__u8 *)bh->b_data +
		desc * EXT4_DESC_SIZE(sb));
2495 2496 2497
	/*
	 * Figure out the offset within the block group inode table
	 */
2498 2499
	offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
		EXT4_INODE_SIZE(sb);
2500 2501
	block = ext4_inode_table(sb, gdp) +
		(offset >> EXT4_BLOCK_SIZE_BITS(sb));
2502 2503

	iloc->block_group = block_group;
2504
	iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
2505 2506 2507 2508
	return block;
}

/*
2509
 * ext4_get_inode_loc returns with an extra refcount against the inode's
2510 2511 2512 2513
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
2514 2515
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
2516
{
2517
	ext4_fsblk_t block;
2518 2519
	struct buffer_head *bh;

2520
	block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2521 2522 2523 2524 2525
	if (!block)
		return -EIO;

	bh = sb_getblk(inode->i_sb, block);
	if (!bh) {
2526
		ext4_error (inode->i_sb, "ext4_get_inode_loc",
2527
				"unable to read inode block - "
2528
				"inode=%lu, block=%llu",
2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546
				 inode->i_ino, block);
		return -EIO;
	}
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
2547
			struct ext4_group_desc *desc;
2548 2549 2550 2551 2552 2553
			int inodes_per_buffer;
			int inode_offset, i;
			int block_group;
			int start;

			block_group = (inode->i_ino - 1) /
2554
					EXT4_INODES_PER_GROUP(inode->i_sb);
2555
			inodes_per_buffer = bh->b_size /
2556
				EXT4_INODE_SIZE(inode->i_sb);
2557
			inode_offset = ((inode->i_ino - 1) %
2558
					EXT4_INODES_PER_GROUP(inode->i_sb));
2559 2560 2561
			start = inode_offset & ~(inodes_per_buffer - 1);

			/* Is the inode bitmap in cache? */
2562
			desc = ext4_get_group_desc(inode->i_sb,
2563 2564 2565 2566 2567
						block_group, NULL);
			if (!desc)
				goto make_io;

			bitmap_bh = sb_getblk(inode->i_sb,
2568
				ext4_inode_bitmap(inode->i_sb, desc));
2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583
			if (!bitmap_bh)
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
			for (i = start; i < start + inodes_per_buffer; i++) {
				if (i == inode_offset)
					continue;
2584
				if (ext4_test_bit(i, bitmap_bh->b_data))
2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
					break;
			}
			brelse(bitmap_bh);
			if (i == start + inodes_per_buffer) {
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
		submit_bh(READ_META, bh);
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
2608
			ext4_error(inode->i_sb, "ext4_get_inode_loc",
2609
					"unable to read inode block - "
2610
					"inode=%lu, block=%llu",
2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
					inode->i_ino, block);
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

2621
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
2622 2623
{
	/* We have all inode data except xattrs in memory here. */
2624 2625
	return __ext4_get_inode_loc(inode, iloc,
		!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
2626 2627
}

2628
void ext4_set_inode_flags(struct inode *inode)
2629
{
2630
	unsigned int flags = EXT4_I(inode)->i_flags;
2631 2632

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2633
	if (flags & EXT4_SYNC_FL)
2634
		inode->i_flags |= S_SYNC;
2635
	if (flags & EXT4_APPEND_FL)
2636
		inode->i_flags |= S_APPEND;
2637
	if (flags & EXT4_IMMUTABLE_FL)
2638
		inode->i_flags |= S_IMMUTABLE;
2639
	if (flags & EXT4_NOATIME_FL)
2640
		inode->i_flags |= S_NOATIME;
2641
	if (flags & EXT4_DIRSYNC_FL)
2642 2643 2644
		inode->i_flags |= S_DIRSYNC;
}

2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
	unsigned int flags = ei->vfs_inode.i_flags;

	ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
			EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
	if (flags & S_SYNC)
		ei->i_flags |= EXT4_SYNC_FL;
	if (flags & S_APPEND)
		ei->i_flags |= EXT4_APPEND_FL;
	if (flags & S_IMMUTABLE)
		ei->i_flags |= EXT4_IMMUTABLE_FL;
	if (flags & S_NOATIME)
		ei->i_flags |= EXT4_NOATIME_FL;
	if (flags & S_DIRSYNC)
		ei->i_flags |= EXT4_DIRSYNC_FL;
}

2664
void ext4_read_inode(struct inode * inode)
2665
{
2666 2667 2668
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
	struct ext4_inode_info *ei = EXT4_I(inode);
2669 2670 2671
	struct buffer_head *bh;
	int block;

2672 2673 2674
#ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
	ei->i_acl = EXT4_ACL_NOT_CACHED;
	ei->i_default_acl = EXT4_ACL_NOT_CACHED;
2675 2676 2677
#endif
	ei->i_block_alloc_info = NULL;

2678
	if (__ext4_get_inode_loc(inode, &iloc, 0))
2679 2680
		goto bad_inode;
	bh = iloc.bh;
2681
	raw_inode = ext4_raw_inode(&iloc);
2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
	if(!(test_opt (inode->i_sb, NO_UID32))) {
		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
	}
	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
	inode->i_size = le32_to_cpu(raw_inode->i_size);

	ei->i_state = 0;
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
2702
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713
			/* this inode is deleted */
			brelse (bh);
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2714
#ifdef EXT4_FRAGMENTS
2715 2716 2717 2718 2719
	ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
	ei->i_frag_no = raw_inode->i_frag;
	ei->i_frag_size = raw_inode->i_fsize;
#endif
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
2720 2721
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
2722 2723
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736
	if (!S_ISREG(inode->i_mode)) {
		ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
	} else {
		inode->i_size |=
			((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
	}
	ei->i_disksize = inode->i_size;
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
2737
	for (block = 0; block < EXT4_N_BLOCKS; block++)
2738 2739 2740
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

2741 2742
	if (inode->i_ino >= EXT4_FIRST_INO(inode->i_sb) + 1 &&
	    EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
2743 2744
		/*
		 * When mke2fs creates big inodes it does not zero out
2745
		 * the unused bytes above EXT4_GOOD_OLD_INODE_SIZE,
2746 2747 2748
		 * so ignore those first few inodes.
		 */
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
2749
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
2750 2751
		    EXT4_INODE_SIZE(inode->i_sb)) {
			brelse (bh);
2752
			goto bad_inode;
2753
		}
2754 2755
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
2756 2757
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
2758 2759
		} else {
			__le32 *magic = (void *)raw_inode +
2760
					EXT4_GOOD_OLD_INODE_SIZE +
2761
					ei->i_extra_isize;
2762 2763
			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
				 ei->i_state |= EXT4_STATE_XATTR;
2764 2765 2766 2767
		}
	} else
		ei->i_extra_isize = 0;

K
Kalpak Shah 已提交
2768 2769 2770 2771 2772
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

2773
	if (S_ISREG(inode->i_mode)) {
2774 2775 2776
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
2777
	} else if (S_ISDIR(inode->i_mode)) {
2778 2779
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
2780
	} else if (S_ISLNK(inode->i_mode)) {
2781 2782
		if (ext4_inode_is_fast_symlink(inode))
			inode->i_op = &ext4_fast_symlink_inode_operations;
2783
		else {
2784 2785
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
2786 2787
		}
	} else {
2788
		inode->i_op = &ext4_special_inode_operations;
2789 2790 2791 2792 2793 2794 2795 2796
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
	}
	brelse (iloc.bh);
2797
	ext4_set_inode_flags(inode);
2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811
	return;

bad_inode:
	make_bad_inode(inode);
	return;
}

/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
2812
static int ext4_do_update_inode(handle_t *handle,
2813
				struct inode *inode,
2814
				struct ext4_iloc *iloc)
2815
{
2816 2817
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
2818 2819 2820 2821 2822
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
2823 2824
	if (ei->i_state & EXT4_STATE_NEW)
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
2825

2826
	ext4_get_inode_flags(ei);
2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
	if(!(test_opt(inode->i_sb, NO_UID32))) {
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
		if(!ei->i_dtime) {
			raw_inode->i_uid_high =
				cpu_to_le16(high_16_bits(inode->i_uid));
			raw_inode->i_gid_high =
				cpu_to_le16(high_16_bits(inode->i_gid));
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
		raw_inode->i_uid_low =
			cpu_to_le16(fs_high2lowuid(inode->i_uid));
		raw_inode->i_gid_low =
			cpu_to_le16(fs_high2lowgid(inode->i_gid));
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
	raw_inode->i_size = cpu_to_le32(ei->i_disksize);
K
Kalpak Shah 已提交
2854 2855 2856 2857 2858 2859

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

2860 2861 2862
	raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
	raw_inode->i_flags = cpu_to_le32(ei->i_flags);
2863
#ifdef EXT4_FRAGMENTS
2864 2865 2866 2867
	raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
	raw_inode->i_frag = ei->i_frag_no;
	raw_inode->i_fsize = ei->i_frag_size;
#endif
2868 2869
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
2870 2871
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
2872 2873 2874 2875 2876 2877 2878 2879
	raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
	if (!S_ISREG(inode->i_mode)) {
		raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
	} else {
		raw_inode->i_size_high =
			cpu_to_le32(ei->i_disksize >> 32);
		if (ei->i_disksize > 0x7fffffffULL) {
			struct super_block *sb = inode->i_sb;
2880 2881 2882 2883
			if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
			    EXT4_SB(sb)->s_es->s_rev_level ==
					cpu_to_le32(EXT4_GOOD_OLD_REV)) {
2884 2885 2886
			       /* If this is the first large file
				* created, add a flag to the superblock.
				*/
2887 2888
				err = ext4_journal_get_write_access(handle,
						EXT4_SB(sb)->s_sbh);
2889 2890
				if (err)
					goto out_brelse;
2891 2892 2893
				ext4_update_dynamic_rev(sb);
				EXT4_SET_RO_COMPAT_FEATURE(sb,
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
2894 2895
				sb->s_dirt = 1;
				handle->h_sync = 1;
2896 2897
				err = ext4_journal_dirty_metadata(handle,
						EXT4_SB(sb)->s_sbh);
2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912
			}
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
2913
	} else for (block = 0; block < EXT4_N_BLOCKS; block++)
2914 2915 2916 2917 2918
		raw_inode->i_block[block] = ei->i_data[block];

	if (ei->i_extra_isize)
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);

2919 2920
	BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
	rc = ext4_journal_dirty_metadata(handle, bh);
2921 2922
	if (!err)
		err = rc;
2923
	ei->i_state &= ~EXT4_STATE_NEW;
2924 2925 2926

out_brelse:
	brelse (bh);
2927
	ext4_std_error(inode->i_sb, err);
2928 2929 2930 2931
	return err;
}

/*
2932
 * ext4_write_inode()
2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
 *   trasnaction to commit.
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
2949
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
2966
int ext4_write_inode(struct inode *inode, int wait)
2967 2968 2969 2970
{
	if (current->flags & PF_MEMALLOC)
		return 0;

2971
	if (ext4_journal_current_handle()) {
M
Mingming Cao 已提交
2972
		jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
2973 2974 2975 2976 2977 2978 2979
		dump_stack();
		return -EIO;
	}

	if (!wait)
		return 0;

2980
	return ext4_force_commit(inode->i_sb);
2981 2982 2983
}

/*
2984
 * ext4_setattr()
2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
 * Called with inode->sem down.
 */
3000
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
3016 3017
		handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
					EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
3018 3019 3020 3021 3022 3023
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
		error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
		if (error) {
3024
			ext4_journal_stop(handle);
3025 3026 3027 3028 3029 3030 3031 3032
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
3033 3034
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
3035 3036 3037 3038 3039 3040
	}

	if (S_ISREG(inode->i_mode) &&
	    attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
		handle_t *handle;

3041
		handle = ext4_journal_start(inode, 3);
3042 3043 3044 3045 3046
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}

3047 3048 3049
		error = ext4_orphan_add(handle, inode);
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
3050 3051
		if (!error)
			error = rc;
3052
		ext4_journal_stop(handle);
3053 3054 3055 3056
	}

	rc = inode_setattr(inode, attr);

3057
	/* If inode_setattr's call to ext4_truncate failed to get a
3058 3059 3060
	 * transaction handle at all, we need to clean up the in-core
	 * orphan list manually. */
	if (inode->i_nlink)
3061
		ext4_orphan_del(NULL, inode);
3062 3063

	if (!rc && (ia_valid & ATTR_MODE))
3064
		rc = ext4_acl_chmod(inode);
3065 3066

err_out:
3067
	ext4_std_error(inode->i_sb, error);
3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085
	if (!error)
		error = rc;
	return error;
}


/*
 * How many blocks doth make a writepage()?
 *
 * With N blocks per page, it may be:
 * N data blocks
 * 2 indirect block
 * 2 dindirect
 * 1 tindirect
 * N+5 bitmap blocks (from the above)
 * N+5 group descriptor summary blocks
 * 1 inode block
 * 1 superblock.
3086
 * 2 * EXT4_SINGLEDATA_TRANS_BLOCKS for the quote files
3087
 *
3088
 * 3 * (N + 5) + 2 + 2 * EXT4_SINGLEDATA_TRANS_BLOCKS
3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100
 *
 * With ordered or writeback data it's the same, less the N data blocks.
 *
 * If the inode's direct blocks can hold an integral number of pages then a
 * page cannot straddle two indirect blocks, and we can only touch one indirect
 * and dindirect block, and the "5" above becomes "3".
 *
 * This still overestimates under most circumstances.  If we were to pass the
 * start and end offsets in here as well we could do block_to_path() on each
 * block and work out the exact number of indirects which are touched.  Pah.
 */

A
Alex Tomas 已提交
3101
int ext4_writepage_trans_blocks(struct inode *inode)
3102
{
3103 3104
	int bpp = ext4_journal_blocks_per_page(inode);
	int indirects = (EXT4_NDIR_BLOCKS % bpp) ? 5 : 3;
3105 3106
	int ret;

A
Alex Tomas 已提交
3107 3108 3109
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
		return ext4_ext_writepage_trans_blocks(inode, bpp);

3110
	if (ext4_should_journal_data(inode))
3111 3112 3113 3114 3115 3116 3117
		ret = 3 * (bpp + indirects) + 2;
	else
		ret = 2 * (bpp + indirects) + 2;

#ifdef CONFIG_QUOTA
	/* We know that structure was already allocated during DQUOT_INIT so
	 * we will be updating only the data blocks + inodes */
3118
	ret += 2*EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
3119 3120 3121 3122 3123 3124
#endif

	return ret;
}

/*
3125
 * The caller must have previously called ext4_reserve_inode_write().
3126 3127
 * Give this, we know that the caller already has write access to iloc->bh.
 */
3128 3129
int ext4_mark_iloc_dirty(handle_t *handle,
		struct inode *inode, struct ext4_iloc *iloc)
3130 3131 3132 3133 3134 3135
{
	int err = 0;

	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

3136
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
3137
	err = ext4_do_update_inode(handle, inode, iloc);
3138 3139 3140 3141 3142 3143 3144 3145 3146 3147
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
3148 3149
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
3150 3151 3152
{
	int err = 0;
	if (handle) {
3153
		err = ext4_get_inode_loc(inode, iloc);
3154 3155
		if (!err) {
			BUFFER_TRACE(iloc->bh, "get_write_access");
3156
			err = ext4_journal_get_write_access(handle, iloc->bh);
3157 3158 3159 3160 3161 3162
			if (err) {
				brelse(iloc->bh);
				iloc->bh = NULL;
			}
		}
	}
3163
	ext4_std_error(inode->i_sb, err);
3164 3165 3166
	return err;
}

3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
int ext4_expand_extra_isize(struct inode *inode, unsigned int new_extra_isize,
			struct ext4_iloc iloc, handle_t *handle)
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;
	struct ext4_xattr_entry *entry;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);
	entry = IFIRST(header);

	/* No extended attributes present */
	if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
		header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 *
 * Is this efficient/effective?  Well, we're being nice to the system
 * by cleaning up our inodes proactively so they can be reaped
 * without I/O.  But we are potentially leaving up to five seconds'
 * worth of inodes floating about which prune_icache wants us to
 * write out.  One way to fix that would be to get prune_icache()
 * to do a write_super() to free up some memory.  It has the desired
 * effect.
 */
3221
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
3222
{
3223
	struct ext4_iloc iloc;
3224 3225 3226
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
3227 3228

	might_sleep();
3229
	err = ext4_reserve_inode_write(handle, inode, &iloc);
3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255
	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
	    !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
				EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
				if (mnt_count != sbi->s_es->s_mnt_count) {
					ext4_warning(inode->i_sb, __FUNCTION__,
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
					mnt_count = sbi->s_es->s_mnt_count;
				}
			}
		}
	}
3256
	if (!err)
3257
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
3258 3259 3260 3261
	return err;
}

/*
3262
 * ext4_dirty_inode() is called from __mark_inode_dirty()
3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
3275
void ext4_dirty_inode(struct inode *inode)
3276
{
3277
	handle_t *current_handle = ext4_journal_current_handle();
3278 3279
	handle_t *handle;

3280
	handle = ext4_journal_start(inode, 2);
3281 3282 3283 3284 3285 3286 3287 3288 3289 3290
	if (IS_ERR(handle))
		goto out;
	if (current_handle &&
		current_handle->h_transaction != handle->h_transaction) {
		/* This task has a transaction open against a different fs */
		printk(KERN_EMERG "%s: transactions do not match!\n",
		       __FUNCTION__);
	} else {
		jbd_debug(5, "marking dirty.  outer handle=%p\n",
				current_handle);
3291
		ext4_mark_inode_dirty(handle, inode);
3292
	}
3293
	ext4_journal_stop(handle);
3294 3295 3296 3297 3298 3299 3300 3301
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
3302
 * ext4_reserve_inode_write, this leaves behind no bh reference and
3303 3304 3305
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
3306
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
3307
{
3308
	struct ext4_iloc iloc;
3309 3310 3311

	int err = 0;
	if (handle) {
3312
		err = ext4_get_inode_loc(inode, &iloc);
3313 3314
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
3315
			err = jbd2_journal_get_write_access(handle, iloc.bh);
3316
			if (!err)
3317
				err = ext4_journal_dirty_metadata(handle,
3318 3319 3320 3321
								  iloc.bh);
			brelse(iloc.bh);
		}
	}
3322
	ext4_std_error(inode->i_sb, err);
3323 3324 3325 3326
	return err;
}
#endif

3327
int ext4_change_inode_journal_flag(struct inode *inode, int val)
3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

3343
	journal = EXT4_JOURNAL(inode);
3344
	if (is_journal_aborted(journal))
3345 3346
		return -EROFS;

3347 3348
	jbd2_journal_lock_updates(journal);
	jbd2_journal_flush(journal);
3349 3350 3351 3352 3353 3354 3355 3356 3357 3358

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
3359
		EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
3360
	else
3361 3362
		EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
	ext4_set_aops(inode);
3363

3364
	jbd2_journal_unlock_updates(journal);
3365 3366 3367

	/* Finally we can mark the inode as dirty. */

3368
	handle = ext4_journal_start(inode, 1);
3369 3370 3371
	if (IS_ERR(handle))
		return PTR_ERR(handle);

3372
	err = ext4_mark_inode_dirty(handle, inode);
3373
	handle->h_sync = 1;
3374 3375
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
3376 3377 3378

	return err;
}