calib.c 36.2 KB
Newer Older
1 2 3 4 5 6 7
/******************************************************************************
 *
 * This file is provided under a dual BSD/GPLv2 license.  When using or
 * redistributing this file, you may do so under either license.
 *
 * GPL LICENSE SUMMARY
 *
8
 * Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved.
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of version 2 of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
 * USA
 *
 * The full GNU General Public License is included in this distribution
25
 * in the file called COPYING.
26 27
 *
 * Contact Information:
28
 *  Intel Linux Wireless <linuxwifi@intel.com>
29 30 31 32
 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 *
 * BSD LICENSE
 *
33
 * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 *  * Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *  * Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *  * Neither the name Intel Corporation nor the names of its
 *    contributors may be used to endorse or promote products derived
 *    from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *****************************************************************************/

63
#include <linux/slab.h>
64 65
#include <net/mac80211.h>

66
#include "iwl-trans.h"
67 68 69 70

#include "dev.h"
#include "calib.h"
#include "agn.h"
71

72 73 74 75
/*****************************************************************************
 * INIT calibrations framework
 *****************************************************************************/

76 77 78 79 80 81 82 83
/* Opaque calibration results */
struct iwl_calib_result {
	struct list_head list;
	size_t cmd_len;
	struct iwl_calib_hdr hdr;
	/* data follows */
};

W
Winkler, Tomas 已提交
84 85 86 87 88 89 90 91 92
struct statistics_general_data {
	u32 beacon_silence_rssi_a;
	u32 beacon_silence_rssi_b;
	u32 beacon_silence_rssi_c;
	u32 beacon_energy_a;
	u32 beacon_energy_b;
	u32 beacon_energy_c;
};

93
int iwl_send_calib_results(struct iwl_priv *priv)
94 95 96 97
{
	struct iwl_host_cmd hcmd = {
		.id = REPLY_PHY_CALIBRATION_CMD,
	};
98
	struct iwl_calib_result *res;
99

100
	list_for_each_entry(res, &priv->calib_results, list) {
101 102
		int ret;

103 104
		hcmd.len[0] = res->cmd_len;
		hcmd.data[0] = &res->hdr;
105
		hcmd.dataflags[0] = IWL_HCMD_DFL_NOCOPY;
106
		ret = iwl_dvm_send_cmd(priv, &hcmd);
107
		if (ret) {
108
			IWL_ERR(priv, "Error %d on calib cmd %d\n",
109
				ret, res->hdr.op_code);
110
			return ret;
111
		}
112
	}
113

114
	return 0;
115 116
}

117
int iwl_calib_set(struct iwl_priv *priv,
118
		  const struct iwl_calib_hdr *cmd, int len)
119
{
120 121 122 123 124
	struct iwl_calib_result *res, *tmp;

	res = kmalloc(sizeof(*res) + len - sizeof(struct iwl_calib_hdr),
		      GFP_ATOMIC);
	if (!res)
125
		return -ENOMEM;
126 127 128
	memcpy(&res->hdr, cmd, len);
	res->cmd_len = len;

129
	list_for_each_entry(tmp, &priv->calib_results, list) {
130 131 132 133 134 135 136 137
		if (tmp->hdr.op_code == res->hdr.op_code) {
			list_replace(&tmp->list, &res->list);
			kfree(tmp);
			return 0;
		}
	}

	/* wasn't in list already */
138
	list_add_tail(&res->list, &priv->calib_results);
139 140 141 142

	return 0;
}

143
void iwl_calib_free_results(struct iwl_priv *priv)
144
{
145
	struct iwl_calib_result *res, *tmp;
146

147
	list_for_each_entry_safe(res, tmp, &priv->calib_results, list) {
148 149
		list_del(&res->list);
		kfree(res);
150 151 152 153 154 155 156
	}
}

/*****************************************************************************
 * RUNTIME calibrations framework
 *****************************************************************************/

157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
/* "false alarms" are signals that our DSP tries to lock onto,
 *   but then determines that they are either noise, or transmissions
 *   from a distant wireless network (also "noise", really) that get
 *   "stepped on" by stronger transmissions within our own network.
 * This algorithm attempts to set a sensitivity level that is high
 *   enough to receive all of our own network traffic, but not so
 *   high that our DSP gets too busy trying to lock onto non-network
 *   activity/noise. */
static int iwl_sens_energy_cck(struct iwl_priv *priv,
				   u32 norm_fa,
				   u32 rx_enable_time,
				   struct statistics_general_data *rx_info)
{
	u32 max_nrg_cck = 0;
	int i = 0;
	u8 max_silence_rssi = 0;
	u32 silence_ref = 0;
	u8 silence_rssi_a = 0;
	u8 silence_rssi_b = 0;
	u8 silence_rssi_c = 0;
	u32 val;

	/* "false_alarms" values below are cross-multiplications to assess the
	 *   numbers of false alarms within the measured period of actual Rx
	 *   (Rx is off when we're txing), vs the min/max expected false alarms
	 *   (some should be expected if rx is sensitive enough) in a
	 *   hypothetical listening period of 200 time units (TU), 204.8 msec:
	 *
	 * MIN_FA/fixed-time < false_alarms/actual-rx-time < MAX_FA/beacon-time
	 *
	 * */
	u32 false_alarms = norm_fa * 200 * 1024;
	u32 max_false_alarms = MAX_FA_CCK * rx_enable_time;
	u32 min_false_alarms = MIN_FA_CCK * rx_enable_time;
	struct iwl_sensitivity_data *data = NULL;
192
	const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221

	data = &(priv->sensitivity_data);

	data->nrg_auto_corr_silence_diff = 0;

	/* Find max silence rssi among all 3 receivers.
	 * This is background noise, which may include transmissions from other
	 *    networks, measured during silence before our network's beacon */
	silence_rssi_a = (u8)((rx_info->beacon_silence_rssi_a &
			    ALL_BAND_FILTER) >> 8);
	silence_rssi_b = (u8)((rx_info->beacon_silence_rssi_b &
			    ALL_BAND_FILTER) >> 8);
	silence_rssi_c = (u8)((rx_info->beacon_silence_rssi_c &
			    ALL_BAND_FILTER) >> 8);

	val = max(silence_rssi_b, silence_rssi_c);
	max_silence_rssi = max(silence_rssi_a, (u8) val);

	/* Store silence rssi in 20-beacon history table */
	data->nrg_silence_rssi[data->nrg_silence_idx] = max_silence_rssi;
	data->nrg_silence_idx++;
	if (data->nrg_silence_idx >= NRG_NUM_PREV_STAT_L)
		data->nrg_silence_idx = 0;

	/* Find max silence rssi across 20 beacon history */
	for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) {
		val = data->nrg_silence_rssi[i];
		silence_ref = max(silence_ref, val);
	}
222
	IWL_DEBUG_CALIB(priv, "silence a %u, b %u, c %u, 20-bcn max %u\n",
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
			silence_rssi_a, silence_rssi_b, silence_rssi_c,
			silence_ref);

	/* Find max rx energy (min value!) among all 3 receivers,
	 *   measured during beacon frame.
	 * Save it in 10-beacon history table. */
	i = data->nrg_energy_idx;
	val = min(rx_info->beacon_energy_b, rx_info->beacon_energy_c);
	data->nrg_value[i] = min(rx_info->beacon_energy_a, val);

	data->nrg_energy_idx++;
	if (data->nrg_energy_idx >= 10)
		data->nrg_energy_idx = 0;

	/* Find min rx energy (max value) across 10 beacon history.
	 * This is the minimum signal level that we want to receive well.
	 * Add backoff (margin so we don't miss slightly lower energy frames).
	 * This establishes an upper bound (min value) for energy threshold. */
	max_nrg_cck = data->nrg_value[0];
	for (i = 1; i < 10; i++)
		max_nrg_cck = (u32) max(max_nrg_cck, (data->nrg_value[i]));
	max_nrg_cck += 6;

246
	IWL_DEBUG_CALIB(priv, "rx energy a %u, b %u, c %u, 10-bcn max/min %u\n",
247 248 249 250 251 252 253 254 255
			rx_info->beacon_energy_a, rx_info->beacon_energy_b,
			rx_info->beacon_energy_c, max_nrg_cck - 6);

	/* Count number of consecutive beacons with fewer-than-desired
	 *   false alarms. */
	if (false_alarms < min_false_alarms)
		data->num_in_cck_no_fa++;
	else
		data->num_in_cck_no_fa = 0;
256
	IWL_DEBUG_CALIB(priv, "consecutive bcns with few false alarms = %u\n",
257 258 259 260 261
			data->num_in_cck_no_fa);

	/* If we got too many false alarms this time, reduce sensitivity */
	if ((false_alarms > max_false_alarms) &&
		(data->auto_corr_cck > AUTO_CORR_MAX_TH_CCK)) {
262
		IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u\n",
263
		     false_alarms, max_false_alarms);
264
		IWL_DEBUG_CALIB(priv, "... reducing sensitivity\n");
265 266 267 268 269 270
		data->nrg_curr_state = IWL_FA_TOO_MANY;
		/* Store for "fewer than desired" on later beacon */
		data->nrg_silence_ref = silence_ref;

		/* increase energy threshold (reduce nrg value)
		 *   to decrease sensitivity */
271
		data->nrg_th_cck = data->nrg_th_cck - NRG_STEP_CCK;
272 273 274 275 276 277 278 279 280
	/* Else if we got fewer than desired, increase sensitivity */
	} else if (false_alarms < min_false_alarms) {
		data->nrg_curr_state = IWL_FA_TOO_FEW;

		/* Compare silence level with silence level for most recent
		 *   healthy number or too many false alarms */
		data->nrg_auto_corr_silence_diff = (s32)data->nrg_silence_ref -
						   (s32)silence_ref;

281
		IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u, silence diff %d\n",
282 283 284 285 286 287 288 289 290 291 292 293 294
			 false_alarms, min_false_alarms,
			 data->nrg_auto_corr_silence_diff);

		/* Increase value to increase sensitivity, but only if:
		 * 1a) previous beacon did *not* have *too many* false alarms
		 * 1b) AND there's a significant difference in Rx levels
		 *      from a previous beacon with too many, or healthy # FAs
		 * OR 2) We've seen a lot of beacons (100) with too few
		 *       false alarms */
		if ((data->nrg_prev_state != IWL_FA_TOO_MANY) &&
			((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
			(data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {

295
			IWL_DEBUG_CALIB(priv, "... increasing sensitivity\n");
296 297 298 299
			/* Increase nrg value to increase sensitivity */
			val = data->nrg_th_cck + NRG_STEP_CCK;
			data->nrg_th_cck = min((u32)ranges->min_nrg_cck, val);
		} else {
300
			IWL_DEBUG_CALIB(priv, "... but not changing sensitivity\n");
301 302 303 304
		}

	/* Else we got a healthy number of false alarms, keep status quo */
	} else {
305
		IWL_DEBUG_CALIB(priv, " FA in safe zone\n");
306 307 308 309 310 311 312 313
		data->nrg_curr_state = IWL_FA_GOOD_RANGE;

		/* Store for use in "fewer than desired" with later beacon */
		data->nrg_silence_ref = silence_ref;

		/* If previous beacon had too many false alarms,
		 *   give it some extra margin by reducing sensitivity again
		 *   (but don't go below measured energy of desired Rx) */
314
		if (data->nrg_prev_state == IWL_FA_TOO_MANY) {
315
			IWL_DEBUG_CALIB(priv, "... increasing margin\n");
316 317 318 319 320 321 322 323 324 325 326 327 328
			if (data->nrg_th_cck > (max_nrg_cck + NRG_MARGIN))
				data->nrg_th_cck -= NRG_MARGIN;
			else
				data->nrg_th_cck = max_nrg_cck;
		}
	}

	/* Make sure the energy threshold does not go above the measured
	 * energy of the desired Rx signals (reduced by backoff margin),
	 * or else we might start missing Rx frames.
	 * Lower value is higher energy, so we use max()!
	 */
	data->nrg_th_cck = max(max_nrg_cck, data->nrg_th_cck);
329
	IWL_DEBUG_CALIB(priv, "new nrg_th_cck %u\n", data->nrg_th_cck);
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374

	data->nrg_prev_state = data->nrg_curr_state;

	/* Auto-correlation CCK algorithm */
	if (false_alarms > min_false_alarms) {

		/* increase auto_corr values to decrease sensitivity
		 * so the DSP won't be disturbed by the noise
		 */
		if (data->auto_corr_cck < AUTO_CORR_MAX_TH_CCK)
			data->auto_corr_cck = AUTO_CORR_MAX_TH_CCK + 1;
		else {
			val = data->auto_corr_cck + AUTO_CORR_STEP_CCK;
			data->auto_corr_cck =
				min((u32)ranges->auto_corr_max_cck, val);
		}
		val = data->auto_corr_cck_mrc + AUTO_CORR_STEP_CCK;
		data->auto_corr_cck_mrc =
			min((u32)ranges->auto_corr_max_cck_mrc, val);
	} else if ((false_alarms < min_false_alarms) &&
	   ((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
	   (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {

		/* Decrease auto_corr values to increase sensitivity */
		val = data->auto_corr_cck - AUTO_CORR_STEP_CCK;
		data->auto_corr_cck =
			max((u32)ranges->auto_corr_min_cck, val);
		val = data->auto_corr_cck_mrc - AUTO_CORR_STEP_CCK;
		data->auto_corr_cck_mrc =
			max((u32)ranges->auto_corr_min_cck_mrc, val);
	}

	return 0;
}


static int iwl_sens_auto_corr_ofdm(struct iwl_priv *priv,
				       u32 norm_fa,
				       u32 rx_enable_time)
{
	u32 val;
	u32 false_alarms = norm_fa * 200 * 1024;
	u32 max_false_alarms = MAX_FA_OFDM * rx_enable_time;
	u32 min_false_alarms = MIN_FA_OFDM * rx_enable_time;
	struct iwl_sensitivity_data *data = NULL;
375
	const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
376 377 378 379 380 381

	data = &(priv->sensitivity_data);

	/* If we got too many false alarms this time, reduce sensitivity */
	if (false_alarms > max_false_alarms) {

382
		IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u)\n",
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
			     false_alarms, max_false_alarms);

		val = data->auto_corr_ofdm + AUTO_CORR_STEP_OFDM;
		data->auto_corr_ofdm =
			min((u32)ranges->auto_corr_max_ofdm, val);

		val = data->auto_corr_ofdm_mrc + AUTO_CORR_STEP_OFDM;
		data->auto_corr_ofdm_mrc =
			min((u32)ranges->auto_corr_max_ofdm_mrc, val);

		val = data->auto_corr_ofdm_x1 + AUTO_CORR_STEP_OFDM;
		data->auto_corr_ofdm_x1 =
			min((u32)ranges->auto_corr_max_ofdm_x1, val);

		val = data->auto_corr_ofdm_mrc_x1 + AUTO_CORR_STEP_OFDM;
		data->auto_corr_ofdm_mrc_x1 =
			min((u32)ranges->auto_corr_max_ofdm_mrc_x1, val);
	}

	/* Else if we got fewer than desired, increase sensitivity */
	else if (false_alarms < min_false_alarms) {

405
		IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u\n",
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
			     false_alarms, min_false_alarms);

		val = data->auto_corr_ofdm - AUTO_CORR_STEP_OFDM;
		data->auto_corr_ofdm =
			max((u32)ranges->auto_corr_min_ofdm, val);

		val = data->auto_corr_ofdm_mrc - AUTO_CORR_STEP_OFDM;
		data->auto_corr_ofdm_mrc =
			max((u32)ranges->auto_corr_min_ofdm_mrc, val);

		val = data->auto_corr_ofdm_x1 - AUTO_CORR_STEP_OFDM;
		data->auto_corr_ofdm_x1 =
			max((u32)ranges->auto_corr_min_ofdm_x1, val);

		val = data->auto_corr_ofdm_mrc_x1 - AUTO_CORR_STEP_OFDM;
		data->auto_corr_ofdm_mrc_x1 =
			max((u32)ranges->auto_corr_min_ofdm_mrc_x1, val);
	} else {
424
		IWL_DEBUG_CALIB(priv, "min FA %u < norm FA %u < max FA %u OK\n",
425 426 427 428 429
			 min_false_alarms, false_alarms, max_false_alarms);
	}
	return 0;
}

430 431 432
static void iwl_prepare_legacy_sensitivity_tbl(struct iwl_priv *priv,
				struct iwl_sensitivity_data *data,
				__le16 *tbl)
433
{
434
	tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX] =
435
				cpu_to_le16((u16)data->auto_corr_ofdm);
436
	tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX] =
437
				cpu_to_le16((u16)data->auto_corr_ofdm_mrc);
438
	tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX] =
439
				cpu_to_le16((u16)data->auto_corr_ofdm_x1);
440
	tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX] =
441 442
				cpu_to_le16((u16)data->auto_corr_ofdm_mrc_x1);

443
	tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX] =
444
				cpu_to_le16((u16)data->auto_corr_cck);
445
	tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX] =
446 447
				cpu_to_le16((u16)data->auto_corr_cck_mrc);

448
	tbl[HD_MIN_ENERGY_CCK_DET_INDEX] =
449
				cpu_to_le16((u16)data->nrg_th_cck);
450
	tbl[HD_MIN_ENERGY_OFDM_DET_INDEX] =
451 452
				cpu_to_le16((u16)data->nrg_th_ofdm);

453
	tbl[HD_BARKER_CORR_TH_ADD_MIN_INDEX] =
454
				cpu_to_le16(data->barker_corr_th_min);
455
	tbl[HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX] =
456
				cpu_to_le16(data->barker_corr_th_min_mrc);
457
	tbl[HD_OFDM_ENERGY_TH_IN_INDEX] =
458
				cpu_to_le16(data->nrg_th_cca);
459

460
	IWL_DEBUG_CALIB(priv, "ofdm: ac %u mrc %u x1 %u mrc_x1 %u thresh %u\n",
461 462 463 464
			data->auto_corr_ofdm, data->auto_corr_ofdm_mrc,
			data->auto_corr_ofdm_x1, data->auto_corr_ofdm_mrc_x1,
			data->nrg_th_ofdm);

465
	IWL_DEBUG_CALIB(priv, "cck: ac %u mrc %u thresh %u\n",
466 467
			data->auto_corr_cck, data->auto_corr_cck_mrc,
			data->nrg_th_cck);
468 469 470 471 472 473 474 475 476
}

/* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
static int iwl_sensitivity_write(struct iwl_priv *priv)
{
	struct iwl_sensitivity_cmd cmd;
	struct iwl_sensitivity_data *data = NULL;
	struct iwl_host_cmd cmd_out = {
		.id = SENSITIVITY_CMD,
477
		.len = { sizeof(struct iwl_sensitivity_cmd), },
478
		.flags = CMD_ASYNC,
479
		.data = { &cmd, },
480 481 482 483 484 485 486
	};

	data = &(priv->sensitivity_data);

	memset(&cmd, 0, sizeof(cmd));

	iwl_prepare_legacy_sensitivity_tbl(priv, data, &cmd.table[0]);
487 488 489 490 491 492 493

	/* Update uCode's "work" table, and copy it to DSP */
	cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE;

	/* Don't send command to uCode if nothing has changed */
	if (!memcmp(&cmd.table[0], &(priv->sensitivity_tbl[0]),
		    sizeof(u16)*HD_TABLE_SIZE)) {
494
		IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n");
495 496 497 498 499 500 501
		return 0;
	}

	/* Copy table for comparison next time */
	memcpy(&(priv->sensitivity_tbl[0]), &(cmd.table[0]),
	       sizeof(u16)*HD_TABLE_SIZE);

502
	return iwl_dvm_send_cmd(priv, &cmd_out);
503 504
}

505 506 507 508 509 510 511
/* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
static int iwl_enhance_sensitivity_write(struct iwl_priv *priv)
{
	struct iwl_enhance_sensitivity_cmd cmd;
	struct iwl_sensitivity_data *data = NULL;
	struct iwl_host_cmd cmd_out = {
		.id = SENSITIVITY_CMD,
512
		.len = { sizeof(struct iwl_enhance_sensitivity_cmd), },
513
		.flags = CMD_ASYNC,
514
		.data = { &cmd, },
515 516 517 518 519 520 521 522
	};

	data = &(priv->sensitivity_data);

	memset(&cmd, 0, sizeof(cmd));

	iwl_prepare_legacy_sensitivity_tbl(priv, data, &cmd.enhance_table[0]);

523
	if (priv->lib->hd_v2) {
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
		cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX] =
			HD_INA_NON_SQUARE_DET_OFDM_DATA_V2;
		cmd.enhance_table[HD_INA_NON_SQUARE_DET_CCK_INDEX] =
			HD_INA_NON_SQUARE_DET_CCK_DATA_V2;
		cmd.enhance_table[HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX] =
			HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V2;
		cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
			HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V2;
		cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
			HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2;
		cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX] =
			HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V2;
		cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX] =
			HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V2;
		cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
			HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V2;
		cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
			HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2;
		cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_INDEX] =
			HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V2;
		cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX] =
			HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V2;
	} else {
		cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX] =
			HD_INA_NON_SQUARE_DET_OFDM_DATA_V1;
		cmd.enhance_table[HD_INA_NON_SQUARE_DET_CCK_INDEX] =
			HD_INA_NON_SQUARE_DET_CCK_DATA_V1;
		cmd.enhance_table[HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX] =
			HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V1;
		cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
			HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V1;
		cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
			HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1;
		cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX] =
			HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V1;
		cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX] =
			HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V1;
		cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
			HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V1;
		cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
			HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1;
		cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_INDEX] =
			HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V1;
		cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX] =
			HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V1;
	}
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590

	/* Update uCode's "work" table, and copy it to DSP */
	cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE;

	/* Don't send command to uCode if nothing has changed */
	if (!memcmp(&cmd.enhance_table[0], &(priv->sensitivity_tbl[0]),
		    sizeof(u16)*HD_TABLE_SIZE) &&
	    !memcmp(&cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX],
		    &(priv->enhance_sensitivity_tbl[0]),
		    sizeof(u16)*ENHANCE_HD_TABLE_ENTRIES)) {
		IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n");
		return 0;
	}

	/* Copy table for comparison next time */
	memcpy(&(priv->sensitivity_tbl[0]), &(cmd.enhance_table[0]),
	       sizeof(u16)*HD_TABLE_SIZE);
	memcpy(&(priv->enhance_sensitivity_tbl[0]),
	       &(cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX]),
	       sizeof(u16)*ENHANCE_HD_TABLE_ENTRIES);

591
	return iwl_dvm_send_cmd(priv, &cmd_out);
592 593
}

594 595 596 597 598
void iwl_init_sensitivity(struct iwl_priv *priv)
{
	int ret = 0;
	int i;
	struct iwl_sensitivity_data *data = NULL;
599
	const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
600

601
	if (priv->calib_disabled & IWL_SENSITIVITY_CALIB_DISABLED)
602 603
		return;

604
	IWL_DEBUG_CALIB(priv, "Start iwl_init_sensitivity\n");
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626

	/* Clear driver's sensitivity algo data */
	data = &(priv->sensitivity_data);

	if (ranges == NULL)
		return;

	memset(data, 0, sizeof(struct iwl_sensitivity_data));

	data->num_in_cck_no_fa = 0;
	data->nrg_curr_state = IWL_FA_TOO_MANY;
	data->nrg_prev_state = IWL_FA_TOO_MANY;
	data->nrg_silence_ref = 0;
	data->nrg_silence_idx = 0;
	data->nrg_energy_idx = 0;

	for (i = 0; i < 10; i++)
		data->nrg_value[i] = 0;

	for (i = 0; i < NRG_NUM_PREV_STAT_L; i++)
		data->nrg_silence_rssi[i] = 0;

627
	data->auto_corr_ofdm =  ranges->auto_corr_min_ofdm;
628 629 630 631 632 633 634
	data->auto_corr_ofdm_mrc = ranges->auto_corr_min_ofdm_mrc;
	data->auto_corr_ofdm_x1  = ranges->auto_corr_min_ofdm_x1;
	data->auto_corr_ofdm_mrc_x1 = ranges->auto_corr_min_ofdm_mrc_x1;
	data->auto_corr_cck = AUTO_CORR_CCK_MIN_VAL_DEF;
	data->auto_corr_cck_mrc = ranges->auto_corr_min_cck_mrc;
	data->nrg_th_cck = ranges->nrg_th_cck;
	data->nrg_th_ofdm = ranges->nrg_th_ofdm;
635 636 637
	data->barker_corr_th_min = ranges->barker_corr_th_min;
	data->barker_corr_th_min_mrc = ranges->barker_corr_th_min_mrc;
	data->nrg_th_cca = ranges->nrg_th_cca;
638 639 640 641 642 643

	data->last_bad_plcp_cnt_ofdm = 0;
	data->last_fa_cnt_ofdm = 0;
	data->last_bad_plcp_cnt_cck = 0;
	data->last_fa_cnt_cck = 0;

644
	if (priv->fw->enhance_sensitivity_table)
645 646 647
		ret |= iwl_enhance_sensitivity_write(priv);
	else
		ret |= iwl_sensitivity_write(priv);
648
	IWL_DEBUG_CALIB(priv, "<<return 0x%X\n", ret);
649 650
}

651
void iwl_sensitivity_calibration(struct iwl_priv *priv)
652 653 654 655 656 657 658 659 660
{
	u32 rx_enable_time;
	u32 fa_cck;
	u32 fa_ofdm;
	u32 bad_plcp_cck;
	u32 bad_plcp_ofdm;
	u32 norm_fa_ofdm;
	u32 norm_fa_cck;
	struct iwl_sensitivity_data *data = NULL;
661 662
	struct statistics_rx_non_phy *rx_info;
	struct statistics_rx_phy *ofdm, *cck;
663 664
	struct statistics_general_data statis;

665
	if (priv->calib_disabled & IWL_SENSITIVITY_CALIB_DISABLED)
666 667
		return;

668 669
	data = &(priv->sensitivity_data);

670
	if (!iwl_is_any_associated(priv)) {
671
		IWL_DEBUG_CALIB(priv, "<< - not associated\n");
672 673 674
		return;
	}

675
	spin_lock_bh(&priv->statistics.lock);
676 677 678
	rx_info = &priv->statistics.rx_non_phy;
	ofdm = &priv->statistics.rx_ofdm;
	cck = &priv->statistics.rx_cck;
679
	if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
680
		IWL_DEBUG_CALIB(priv, "<< invalid data.\n");
681
		spin_unlock_bh(&priv->statistics.lock);
682 683 684 685 686
		return;
	}

	/* Extract Statistics: */
	rx_enable_time = le32_to_cpu(rx_info->channel_load);
687 688 689 690
	fa_cck = le32_to_cpu(cck->false_alarm_cnt);
	fa_ofdm = le32_to_cpu(ofdm->false_alarm_cnt);
	bad_plcp_cck = le32_to_cpu(cck->plcp_err);
	bad_plcp_ofdm = le32_to_cpu(ofdm->plcp_err);
691 692

	statis.beacon_silence_rssi_a =
693
			le32_to_cpu(rx_info->beacon_silence_rssi_a);
694
	statis.beacon_silence_rssi_b =
695
			le32_to_cpu(rx_info->beacon_silence_rssi_b);
696
	statis.beacon_silence_rssi_c =
697
			le32_to_cpu(rx_info->beacon_silence_rssi_c);
698
	statis.beacon_energy_a =
699
			le32_to_cpu(rx_info->beacon_energy_a);
700
	statis.beacon_energy_b =
701
			le32_to_cpu(rx_info->beacon_energy_b);
702
	statis.beacon_energy_c =
703
			le32_to_cpu(rx_info->beacon_energy_c);
704

705
	spin_unlock_bh(&priv->statistics.lock);
706

707
	IWL_DEBUG_CALIB(priv, "rx_enable_time = %u usecs\n", rx_enable_time);
708 709

	if (!rx_enable_time) {
710
		IWL_DEBUG_CALIB(priv, "<< RX Enable Time == 0!\n");
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
		return;
	}

	/* These statistics increase monotonically, and do not reset
	 *   at each beacon.  Calculate difference from last value, or just
	 *   use the new statistics value if it has reset or wrapped around. */
	if (data->last_bad_plcp_cnt_cck > bad_plcp_cck)
		data->last_bad_plcp_cnt_cck = bad_plcp_cck;
	else {
		bad_plcp_cck -= data->last_bad_plcp_cnt_cck;
		data->last_bad_plcp_cnt_cck += bad_plcp_cck;
	}

	if (data->last_bad_plcp_cnt_ofdm > bad_plcp_ofdm)
		data->last_bad_plcp_cnt_ofdm = bad_plcp_ofdm;
	else {
		bad_plcp_ofdm -= data->last_bad_plcp_cnt_ofdm;
		data->last_bad_plcp_cnt_ofdm += bad_plcp_ofdm;
	}

	if (data->last_fa_cnt_ofdm > fa_ofdm)
		data->last_fa_cnt_ofdm = fa_ofdm;
	else {
		fa_ofdm -= data->last_fa_cnt_ofdm;
		data->last_fa_cnt_ofdm += fa_ofdm;
	}

	if (data->last_fa_cnt_cck > fa_cck)
		data->last_fa_cnt_cck = fa_cck;
	else {
		fa_cck -= data->last_fa_cnt_cck;
		data->last_fa_cnt_cck += fa_cck;
	}

	/* Total aborted signal locks */
	norm_fa_ofdm = fa_ofdm + bad_plcp_ofdm;
	norm_fa_cck = fa_cck + bad_plcp_cck;

749
	IWL_DEBUG_CALIB(priv, "cck: fa %u badp %u  ofdm: fa %u badp %u\n", fa_cck,
750 751 752 753
			bad_plcp_cck, fa_ofdm, bad_plcp_ofdm);

	iwl_sens_auto_corr_ofdm(priv, norm_fa_ofdm, rx_enable_time);
	iwl_sens_energy_cck(priv, norm_fa_cck, rx_enable_time, &statis);
754
	if (priv->fw->enhance_sensitivity_table)
755 756 757
		iwl_enhance_sensitivity_write(priv);
	else
		iwl_sensitivity_write(priv);
758 759
}

760 761 762 763 764 765 766 767 768
static inline u8 find_first_chain(u8 mask)
{
	if (mask & ANT_A)
		return CHAIN_A;
	if (mask & ANT_B)
		return CHAIN_B;
	return CHAIN_C;
}

769 770 771 772 773 774 775 776 777 778 779 780 781 782
/**
 * Run disconnected antenna algorithm to find out which antennas are
 * disconnected.
 */
static void iwl_find_disconn_antenna(struct iwl_priv *priv, u32* average_sig,
				     struct iwl_chain_noise_data *data)
{
	u32 active_chains = 0;
	u32 max_average_sig;
	u16 max_average_sig_antenna_i;
	u8 num_tx_chains;
	u8 first_chain;
	u16 i = 0;

783 784 785
	average_sig[0] = data->chain_signal_a / IWL_CAL_NUM_BEACONS;
	average_sig[1] = data->chain_signal_b / IWL_CAL_NUM_BEACONS;
	average_sig[2] = data->chain_signal_c / IWL_CAL_NUM_BEACONS;
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834

	if (average_sig[0] >= average_sig[1]) {
		max_average_sig = average_sig[0];
		max_average_sig_antenna_i = 0;
		active_chains = (1 << max_average_sig_antenna_i);
	} else {
		max_average_sig = average_sig[1];
		max_average_sig_antenna_i = 1;
		active_chains = (1 << max_average_sig_antenna_i);
	}

	if (average_sig[2] >= max_average_sig) {
		max_average_sig = average_sig[2];
		max_average_sig_antenna_i = 2;
		active_chains = (1 << max_average_sig_antenna_i);
	}

	IWL_DEBUG_CALIB(priv, "average_sig: a %d b %d c %d\n",
		     average_sig[0], average_sig[1], average_sig[2]);
	IWL_DEBUG_CALIB(priv, "max_average_sig = %d, antenna %d\n",
		     max_average_sig, max_average_sig_antenna_i);

	/* Compare signal strengths for all 3 receivers. */
	for (i = 0; i < NUM_RX_CHAINS; i++) {
		if (i != max_average_sig_antenna_i) {
			s32 rssi_delta = (max_average_sig - average_sig[i]);

			/* If signal is very weak, compared with
			 * strongest, mark it as disconnected. */
			if (rssi_delta > MAXIMUM_ALLOWED_PATHLOSS)
				data->disconn_array[i] = 1;
			else
				active_chains |= (1 << i);
			IWL_DEBUG_CALIB(priv, "i = %d  rssiDelta = %d  "
			     "disconn_array[i] = %d\n",
			     i, rssi_delta, data->disconn_array[i]);
		}
	}

	/*
	 * The above algorithm sometimes fails when the ucode
	 * reports 0 for all chains. It's not clear why that
	 * happens to start with, but it is then causing trouble
	 * because this can make us enable more chains than the
	 * hardware really has.
	 *
	 * To be safe, simply mask out any chains that we know
	 * are not on the device.
	 */
835
	active_chains &= priv->nvm_data->valid_rx_ant;
836 837 838 839 840 841

	num_tx_chains = 0;
	for (i = 0; i < NUM_RX_CHAINS; i++) {
		/* loops on all the bits of
		 * priv->hw_setting.valid_tx_ant */
		u8 ant_msk = (1 << i);
842
		if (!(priv->nvm_data->valid_tx_ant & ant_msk))
843 844 845 846 847 848
			continue;

		num_tx_chains++;
		if (data->disconn_array[i] == 0)
			/* there is a Tx antenna connected */
			break;
849
		if (num_tx_chains == priv->hw_params.tx_chains_num &&
850 851 852 853 854 855
		    data->disconn_array[i]) {
			/*
			 * If all chains are disconnected
			 * connect the first valid tx chain
			 */
			first_chain =
856
				find_first_chain(priv->nvm_data->valid_tx_ant);
857 858
			data->disconn_array[first_chain] = 0;
			active_chains |= BIT(first_chain);
859 860
			IWL_DEBUG_CALIB(priv,
					"All Tx chains are disconnected W/A - declare %d as connected\n",
861 862 863 864 865
					first_chain);
			break;
		}
	}

866
	if (active_chains != priv->nvm_data->valid_rx_ant &&
867 868 869 870
	    active_chains != priv->chain_noise_data.active_chains)
		IWL_DEBUG_CALIB(priv,
				"Detected that not all antennas are connected! "
				"Connected: %#x, valid: %#x.\n",
871
				active_chains,
872
				priv->nvm_data->valid_rx_ant);
873 874 875 876 877 878 879

	/* Save for use within RXON, TX, SCAN commands, etc. */
	data->active_chains = active_chains;
	IWL_DEBUG_CALIB(priv, "active_chains (bitwise) = 0x%x\n",
			active_chains);
}

W
Wey-Yi Guy 已提交
880
static void iwlagn_gain_computation(struct iwl_priv *priv,
881 882
				    u32 average_noise[NUM_RX_CHAINS],
				    u8 default_chain)
W
Wey-Yi Guy 已提交
883 884 885 886 887 888 889 890 891 892 893 894 895 896
{
	int i;
	s32 delta_g;
	struct iwl_chain_noise_data *data = &priv->chain_noise_data;

	/*
	 * Find Gain Code for the chains based on "default chain"
	 */
	for (i = default_chain + 1; i < NUM_RX_CHAINS; i++) {
		if ((data->disconn_array[i])) {
			data->delta_gain_code[i] = 0;
			continue;
		}

897
		delta_g = (priv->lib->chain_noise_scale *
W
Wey-Yi Guy 已提交
898 899 900 901 902
			((s32)average_noise[default_chain] -
			(s32)average_noise[i])) / 1500;

		/* bound gain by 2 bits value max, 3rd bit is sign */
		data->delta_gain_code[i] =
903
			min(abs(delta_g), CHAIN_NOISE_MAX_DELTA_GAIN_CODE);
W
Wey-Yi Guy 已提交
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925

		if (delta_g < 0)
			/*
			 * set negative sign ...
			 * note to Intel developers:  This is uCode API format,
			 *   not the format of any internal device registers.
			 *   Do not change this format for e.g. 6050 or similar
			 *   devices.  Change format only if more resolution
			 *   (i.e. more than 2 bits magnitude) is needed.
			 */
			data->delta_gain_code[i] |= (1 << 2);
	}

	IWL_DEBUG_CALIB(priv, "Delta gains: ANT_B = %d  ANT_C = %d\n",
			data->delta_gain_code[1], data->delta_gain_code[2]);

	if (!data->radio_write) {
		struct iwl_calib_chain_noise_gain_cmd cmd;

		memset(&cmd, 0, sizeof(cmd));

		iwl_set_calib_hdr(&cmd.hdr,
W
Wey-Yi Guy 已提交
926
			priv->phy_calib_chain_noise_gain_cmd);
W
Wey-Yi Guy 已提交
927 928
		cmd.delta_gain_1 = data->delta_gain_code[1];
		cmd.delta_gain_2 = data->delta_gain_code[2];
929
		iwl_dvm_send_cmd_pdu(priv, REPLY_PHY_CALIBRATION_CMD,
W
Wey-Yi Guy 已提交
930 931 932 933 934 935
			CMD_ASYNC, sizeof(cmd), &cmd);

		data->radio_write = 1;
		data->state = IWL_CHAIN_NOISE_CALIBRATED;
	}
}
936

937
/*
938
 * Accumulate 16 beacons of signal and noise statistics for each of
939 940 941 942
 *   3 receivers/antennas/rx-chains, then figure out:
 * 1)  Which antennas are connected.
 * 2)  Differential rx gain settings to balance the 3 receivers.
 */
943
void iwl_chain_noise_calibration(struct iwl_priv *priv)
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
{
	struct iwl_chain_noise_data *data = NULL;

	u32 chain_noise_a;
	u32 chain_noise_b;
	u32 chain_noise_c;
	u32 chain_sig_a;
	u32 chain_sig_b;
	u32 chain_sig_c;
	u32 average_sig[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
	u32 average_noise[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
	u32 min_average_noise = MIN_AVERAGE_NOISE_MAX_VALUE;
	u16 min_average_noise_antenna_i = INITIALIZATION_VALUE;
	u16 i = 0;
	u16 rxon_chnum = INITIALIZATION_VALUE;
	u16 stat_chnum = INITIALIZATION_VALUE;
	u8 rxon_band24;
	u8 stat_band24;
962
	struct statistics_rx_non_phy *rx_info;
963

964 965 966 967 968 969
	/*
	 * MULTI-FIXME:
	 * When we support multiple interfaces on different channels,
	 * this must be modified/fixed.
	 */
	struct iwl_rxon_context *ctx = &priv->contexts[IWL_RXON_CTX_BSS];
970

971
	if (priv->calib_disabled & IWL_CHAIN_NOISE_CALIB_DISABLED)
972 973
		return;

974 975
	data = &(priv->chain_noise_data);

976 977 978 979
	/*
	 * Accumulate just the first "chain_noise_num_beacons" after
	 * the first association, then we're done forever.
	 */
980 981
	if (data->state != IWL_CHAIN_NOISE_ACCUMULATE) {
		if (data->state == IWL_CHAIN_NOISE_ALIVE)
982
			IWL_DEBUG_CALIB(priv, "Wait for noise calib reset\n");
983 984 985
		return;
	}

986
	spin_lock_bh(&priv->statistics.lock);
987 988 989

	rx_info = &priv->statistics.rx_non_phy;

990
	if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
991
		IWL_DEBUG_CALIB(priv, " << Interference data unavailable\n");
992
		spin_unlock_bh(&priv->statistics.lock);
993 994 995
		return;
	}

996 997
	rxon_band24 = !!(ctx->staging.flags & RXON_FLG_BAND_24G_MSK);
	rxon_chnum = le16_to_cpu(ctx->staging.channel);
998 999 1000
	stat_band24 =
		!!(priv->statistics.flag & STATISTICS_REPLY_FLG_BAND_24G_MSK);
	stat_chnum = le32_to_cpu(priv->statistics.flag) >> 16;
1001 1002 1003 1004

	/* Make sure we accumulate data for just the associated channel
	 *   (even if scanning). */
	if ((rxon_chnum != stat_chnum) || (rxon_band24 != stat_band24)) {
1005
		IWL_DEBUG_CALIB(priv, "Stats not from chan=%d, band24=%d\n",
1006
				rxon_chnum, rxon_band24);
1007
		spin_unlock_bh(&priv->statistics.lock);
1008 1009 1010
		return;
	}

1011 1012 1013 1014
	/*
	 *  Accumulate beacon statistics values across
	 * "chain_noise_num_beacons"
	 */
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
	chain_noise_a = le32_to_cpu(rx_info->beacon_silence_rssi_a) &
				IN_BAND_FILTER;
	chain_noise_b = le32_to_cpu(rx_info->beacon_silence_rssi_b) &
				IN_BAND_FILTER;
	chain_noise_c = le32_to_cpu(rx_info->beacon_silence_rssi_c) &
				IN_BAND_FILTER;

	chain_sig_a = le32_to_cpu(rx_info->beacon_rssi_a) & IN_BAND_FILTER;
	chain_sig_b = le32_to_cpu(rx_info->beacon_rssi_b) & IN_BAND_FILTER;
	chain_sig_c = le32_to_cpu(rx_info->beacon_rssi_c) & IN_BAND_FILTER;

1026
	spin_unlock_bh(&priv->statistics.lock);
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037

	data->beacon_count++;

	data->chain_noise_a = (chain_noise_a + data->chain_noise_a);
	data->chain_noise_b = (chain_noise_b + data->chain_noise_b);
	data->chain_noise_c = (chain_noise_c + data->chain_noise_c);

	data->chain_signal_a = (chain_sig_a + data->chain_signal_a);
	data->chain_signal_b = (chain_sig_b + data->chain_signal_b);
	data->chain_signal_c = (chain_sig_c + data->chain_signal_c);

1038
	IWL_DEBUG_CALIB(priv, "chan=%d, band24=%d, beacon=%d\n",
1039
			rxon_chnum, rxon_band24, data->beacon_count);
1040
	IWL_DEBUG_CALIB(priv, "chain_sig: a %d b %d c %d\n",
1041
			chain_sig_a, chain_sig_b, chain_sig_c);
1042
	IWL_DEBUG_CALIB(priv, "chain_noise: a %d b %d c %d\n",
1043 1044
			chain_noise_a, chain_noise_b, chain_noise_c);

1045
	/* If this is the "chain_noise_num_beacons", determine:
1046 1047
	 * 1)  Disconnected antennas (using signal strengths)
	 * 2)  Differential gain (using silence noise) to balance receivers */
1048
	if (data->beacon_count != IWL_CAL_NUM_BEACONS)
1049 1050 1051
		return;

	/* Analyze signal for disconnected antenna */
1052 1053
	if (priv->lib->bt_params &&
	    priv->lib->bt_params->advanced_bt_coexist) {
1054 1055
		/* Disable disconnected antenna algorithm for advanced
		   bt coex, assuming valid antennas are connected */
1056
		data->active_chains = priv->nvm_data->valid_rx_ant;
1057 1058 1059 1060 1061
		for (i = 0; i < NUM_RX_CHAINS; i++)
			if (!(data->active_chains & (1<<i)))
				data->disconn_array[i] = 1;
	} else
		iwl_find_disconn_antenna(priv, average_sig, data);
1062 1063

	/* Analyze noise for rx balance */
1064 1065 1066
	average_noise[0] = data->chain_noise_a / IWL_CAL_NUM_BEACONS;
	average_noise[1] = data->chain_noise_b / IWL_CAL_NUM_BEACONS;
	average_noise[2] = data->chain_noise_c / IWL_CAL_NUM_BEACONS;
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077

	for (i = 0; i < NUM_RX_CHAINS; i++) {
		if (!(data->disconn_array[i]) &&
		   (average_noise[i] <= min_average_noise)) {
			/* This means that chain i is active and has
			 * lower noise values so far: */
			min_average_noise = average_noise[i];
			min_average_noise_antenna_i = i;
		}
	}

1078
	IWL_DEBUG_CALIB(priv, "average_noise: a %d b %d c %d\n",
1079 1080 1081
			average_noise[0], average_noise[1],
			average_noise[2]);

1082
	IWL_DEBUG_CALIB(priv, "min_average_noise = %d, antenna %d\n",
1083 1084
			min_average_noise, min_average_noise_antenna_i);

1085 1086
	iwlagn_gain_computation(
		priv, average_noise,
1087
		find_first_chain(priv->nvm_data->valid_rx_ant));
1088 1089 1090 1091

	/* Some power changes may have been made during the calibration.
	 * Update and commit the RXON
	 */
1092
	iwl_update_chain_flags(priv);
1093 1094

	data->state = IWL_CHAIN_NOISE_DONE;
1095
	iwl_power_update_mode(priv, false);
1096
}
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110

void iwl_reset_run_time_calib(struct iwl_priv *priv)
{
	int i;
	memset(&(priv->sensitivity_data), 0,
	       sizeof(struct iwl_sensitivity_data));
	memset(&(priv->chain_noise_data), 0,
	       sizeof(struct iwl_chain_noise_data));
	for (i = 0; i < NUM_RX_CHAINS; i++)
		priv->chain_noise_data.delta_gain_code[i] =
				CHAIN_NOISE_DELTA_GAIN_INIT_VAL;

	/* Ask for statistics now, the uCode will send notification
	 * periodically after association */
1111
	iwl_send_statistics_request(priv, CMD_ASYNC, true);
1112
}