volumes.c 62.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 * Copyright (C) 2007 Oracle.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */
#include <linux/sched.h>
#include <linux/bio.h>
20
#include <linux/buffer_head.h>
21
#include <linux/blkdev.h>
22
#include <linux/random.h>
23
#include <asm/div64.h>
24 25 26 27 28 29
#include "ctree.h"
#include "extent_map.h"
#include "disk-io.h"
#include "transaction.h"
#include "print-tree.h"
#include "volumes.h"
30
#include "async-thread.h"
31

32 33 34 35 36 37 38
struct map_lookup {
	u64 type;
	int io_align;
	int io_width;
	int stripe_len;
	int sector_size;
	int num_stripes;
C
Chris Mason 已提交
39
	int sub_stripes;
40
	struct btrfs_bio_stripe stripes[];
41 42 43
};

#define map_lookup_size(n) (sizeof(struct map_lookup) + \
44
			    (sizeof(struct btrfs_bio_stripe) * (n)))
45

46 47 48
static DEFINE_MUTEX(uuid_mutex);
static LIST_HEAD(fs_uuids);

49 50 51 52 53 54 55 56 57 58
void btrfs_lock_volumes(void)
{
	mutex_lock(&uuid_mutex);
}

void btrfs_unlock_volumes(void)
{
	mutex_unlock(&uuid_mutex);
}

59 60 61 62 63 64 65 66 67 68 69 70
static void lock_chunks(struct btrfs_root *root)
{
	mutex_lock(&root->fs_info->alloc_mutex);
	mutex_lock(&root->fs_info->chunk_mutex);
}

static void unlock_chunks(struct btrfs_root *root)
{
	mutex_unlock(&root->fs_info->alloc_mutex);
	mutex_unlock(&root->fs_info->chunk_mutex);
}

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
int btrfs_cleanup_fs_uuids(void)
{
	struct btrfs_fs_devices *fs_devices;
	struct list_head *uuid_cur;
	struct list_head *devices_cur;
	struct btrfs_device *dev;

	list_for_each(uuid_cur, &fs_uuids) {
		fs_devices = list_entry(uuid_cur, struct btrfs_fs_devices,
					list);
		while(!list_empty(&fs_devices->devices)) {
			devices_cur = fs_devices->devices.next;
			dev = list_entry(devices_cur, struct btrfs_device,
					 dev_list);
			if (dev->bdev) {
				close_bdev_excl(dev->bdev);
87
				fs_devices->open_devices--;
88 89
			}
			list_del(&dev->dev_list);
90
			kfree(dev->name);
91 92 93 94 95 96
			kfree(dev);
		}
	}
	return 0;
}

97 98
static struct btrfs_device *__find_device(struct list_head *head, u64 devid,
					  u8 *uuid)
99 100 101 102 103 104
{
	struct btrfs_device *dev;
	struct list_head *cur;

	list_for_each(cur, head) {
		dev = list_entry(cur, struct btrfs_device, dev_list);
105
		if (dev->devid == devid &&
106
		    (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
107
			return dev;
108
		}
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
	}
	return NULL;
}

static struct btrfs_fs_devices *find_fsid(u8 *fsid)
{
	struct list_head *cur;
	struct btrfs_fs_devices *fs_devices;

	list_for_each(cur, &fs_uuids) {
		fs_devices = list_entry(cur, struct btrfs_fs_devices, list);
		if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
			return fs_devices;
	}
	return NULL;
}

126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
/*
 * we try to collect pending bios for a device so we don't get a large
 * number of procs sending bios down to the same device.  This greatly
 * improves the schedulers ability to collect and merge the bios.
 *
 * But, it also turns into a long list of bios to process and that is sure
 * to eventually make the worker thread block.  The solution here is to
 * make some progress and then put this work struct back at the end of
 * the list if the block device is congested.  This way, multiple devices
 * can make progress from a single worker thread.
 */
int run_scheduled_bios(struct btrfs_device *device)
{
	struct bio *pending;
	struct backing_dev_info *bdi;
	struct bio *tail;
	struct bio *cur;
	int again = 0;
	unsigned long num_run = 0;

	bdi = device->bdev->bd_inode->i_mapping->backing_dev_info;
loop:
	spin_lock(&device->io_lock);

	/* take all the bios off the list at once and process them
	 * later on (without the lock held).  But, remember the
	 * tail and other pointers so the bios can be properly reinserted
	 * into the list if we hit congestion
	 */
	pending = device->pending_bios;
	tail = device->pending_bio_tail;
	WARN_ON(pending && !tail);
	device->pending_bios = NULL;
	device->pending_bio_tail = NULL;

	/*
	 * if pending was null this time around, no bios need processing
	 * at all and we can stop.  Otherwise it'll loop back up again
	 * and do an additional check so no bios are missed.
	 *
	 * device->running_pending is used to synchronize with the
	 * schedule_bio code.
	 */
	if (pending) {
		again = 1;
		device->running_pending = 1;
	} else {
		again = 0;
		device->running_pending = 0;
	}
	spin_unlock(&device->io_lock);

	while(pending) {
		cur = pending;
		pending = pending->bi_next;
		cur->bi_next = NULL;
		atomic_dec(&device->dev_root->fs_info->nr_async_submits);
183 184 185

		BUG_ON(atomic_read(&cur->bi_cnt) == 0);
		bio_get(cur);
186
		submit_bio(cur->bi_rw, cur);
187
		bio_put(cur);
188 189 190 191 192 193 194
		num_run++;

		/*
		 * we made progress, there is more work to do and the bdi
		 * is now congested.  Back off and let other work structs
		 * run instead
		 */
195
		if (pending && bdi_write_congested(bdi)) {
196 197 198
			struct bio *old_head;

			spin_lock(&device->io_lock);
199

200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
			old_head = device->pending_bios;
			device->pending_bios = pending;
			if (device->pending_bio_tail)
				tail->bi_next = old_head;
			else
				device->pending_bio_tail = tail;

			spin_unlock(&device->io_lock);
			btrfs_requeue_work(&device->work);
			goto done;
		}
	}
	if (again)
		goto loop;
done:
	return 0;
}

void pending_bios_fn(struct btrfs_work *work)
{
	struct btrfs_device *device;

	device = container_of(work, struct btrfs_device, work);
	run_scheduled_bios(device);
}

226 227 228 229 230 231 232 233 234 235
static int device_list_add(const char *path,
			   struct btrfs_super_block *disk_super,
			   u64 devid, struct btrfs_fs_devices **fs_devices_ret)
{
	struct btrfs_device *device;
	struct btrfs_fs_devices *fs_devices;
	u64 found_transid = btrfs_super_generation(disk_super);

	fs_devices = find_fsid(disk_super->fsid);
	if (!fs_devices) {
236
		fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
237 238 239
		if (!fs_devices)
			return -ENOMEM;
		INIT_LIST_HEAD(&fs_devices->devices);
240
		INIT_LIST_HEAD(&fs_devices->alloc_list);
241 242 243 244 245 246
		list_add(&fs_devices->list, &fs_uuids);
		memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
		fs_devices->latest_devid = devid;
		fs_devices->latest_trans = found_transid;
		device = NULL;
	} else {
247 248
		device = __find_device(&fs_devices->devices, devid,
				       disk_super->dev_item.uuid);
249 250 251 252 253 254 255 256
	}
	if (!device) {
		device = kzalloc(sizeof(*device), GFP_NOFS);
		if (!device) {
			/* we can safely leave the fs_devices entry around */
			return -ENOMEM;
		}
		device->devid = devid;
257
		device->work.func = pending_bios_fn;
258 259
		memcpy(device->uuid, disk_super->dev_item.uuid,
		       BTRFS_UUID_SIZE);
260
		device->barriers = 1;
261
		spin_lock_init(&device->io_lock);
262 263 264 265 266 267
		device->name = kstrdup(path, GFP_NOFS);
		if (!device->name) {
			kfree(device);
			return -ENOMEM;
		}
		list_add(&device->dev_list, &fs_devices->devices);
268
		list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
269 270 271 272 273 274 275 276 277 278 279
		fs_devices->num_devices++;
	}

	if (found_transid > fs_devices->latest_trans) {
		fs_devices->latest_devid = devid;
		fs_devices->latest_trans = found_transid;
	}
	*fs_devices_ret = fs_devices;
	return 0;
}

280 281 282 283 284 285 286 287 288 289 290
int btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
{
	struct list_head *head = &fs_devices->devices;
	struct list_head *cur;
	struct btrfs_device *device;

	mutex_lock(&uuid_mutex);
again:
	list_for_each(cur, head) {
		device = list_entry(cur, struct btrfs_device, dev_list);
		if (!device->in_fs_metadata) {
291
			struct block_device *bdev;
292 293 294
			list_del(&device->dev_list);
			list_del(&device->dev_alloc_list);
			fs_devices->num_devices--;
295 296 297 298 299 300 301
			if (device->bdev) {
				bdev = device->bdev;
				fs_devices->open_devices--;
				mutex_unlock(&uuid_mutex);
				close_bdev_excl(bdev);
				mutex_lock(&uuid_mutex);
			}
302 303 304 305 306 307 308 309
			kfree(device->name);
			kfree(device);
			goto again;
		}
	}
	mutex_unlock(&uuid_mutex);
	return 0;
}
310

311 312 313 314 315 316 317 318 319 320 321
int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
{
	struct list_head *head = &fs_devices->devices;
	struct list_head *cur;
	struct btrfs_device *device;

	mutex_lock(&uuid_mutex);
	list_for_each(cur, head) {
		device = list_entry(cur, struct btrfs_device, dev_list);
		if (device->bdev) {
			close_bdev_excl(device->bdev);
322
			fs_devices->open_devices--;
323 324
		}
		device->bdev = NULL;
325
		device->in_fs_metadata = 0;
326
	}
327
	fs_devices->mounted = 0;
328 329 330 331 332 333 334 335 336 337 338
	mutex_unlock(&uuid_mutex);
	return 0;
}

int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
		       int flags, void *holder)
{
	struct block_device *bdev;
	struct list_head *head = &fs_devices->devices;
	struct list_head *cur;
	struct btrfs_device *device;
339 340 341 342 343 344 345 346
	struct block_device *latest_bdev = NULL;
	struct buffer_head *bh;
	struct btrfs_super_block *disk_super;
	u64 latest_devid = 0;
	u64 latest_transid = 0;
	u64 transid;
	u64 devid;
	int ret = 0;
347 348

	mutex_lock(&uuid_mutex);
349 350 351
	if (fs_devices->mounted)
		goto out;

352 353
	list_for_each(cur, head) {
		device = list_entry(cur, struct btrfs_device, dev_list);
354 355 356
		if (device->bdev)
			continue;

357 358 359
		if (!device->name)
			continue;

360
		bdev = open_bdev_excl(device->name, flags, holder);
361

362 363
		if (IS_ERR(bdev)) {
			printk("open %s failed\n", device->name);
364
			goto error;
365
		}
366
		set_blocksize(bdev, 4096);
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381

		bh = __bread(bdev, BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
		if (!bh)
			goto error_close;

		disk_super = (struct btrfs_super_block *)bh->b_data;
		if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
		    sizeof(disk_super->magic)))
			goto error_brelse;

		devid = le64_to_cpu(disk_super->dev_item.devid);
		if (devid != device->devid)
			goto error_brelse;

		transid = btrfs_super_generation(disk_super);
382
		if (!latest_transid || transid > latest_transid) {
383 384 385 386 387
			latest_devid = devid;
			latest_transid = transid;
			latest_bdev = bdev;
		}

388
		device->bdev = bdev;
389
		device->in_fs_metadata = 0;
390 391
		fs_devices->open_devices++;
		continue;
392

393 394 395 396 397 398
error_brelse:
		brelse(bh);
error_close:
		close_bdev_excl(bdev);
error:
		continue;
399
	}
400 401 402 403 404 405 406 407 408
	if (fs_devices->open_devices == 0) {
		ret = -EIO;
		goto out;
	}
	fs_devices->mounted = 1;
	fs_devices->latest_bdev = latest_bdev;
	fs_devices->latest_devid = latest_devid;
	fs_devices->latest_trans = latest_transid;
out:
409 410 411 412 413 414 415 416 417 418 419 420
	mutex_unlock(&uuid_mutex);
	return ret;
}

int btrfs_scan_one_device(const char *path, int flags, void *holder,
			  struct btrfs_fs_devices **fs_devices_ret)
{
	struct btrfs_super_block *disk_super;
	struct block_device *bdev;
	struct buffer_head *bh;
	int ret;
	u64 devid;
421
	u64 transid;
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442

	mutex_lock(&uuid_mutex);

	bdev = open_bdev_excl(path, flags, holder);

	if (IS_ERR(bdev)) {
		ret = PTR_ERR(bdev);
		goto error;
	}

	ret = set_blocksize(bdev, 4096);
	if (ret)
		goto error_close;
	bh = __bread(bdev, BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
	if (!bh) {
		ret = -EIO;
		goto error_close;
	}
	disk_super = (struct btrfs_super_block *)bh->b_data;
	if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
	    sizeof(disk_super->magic))) {
443
		ret = -EINVAL;
444 445 446
		goto error_brelse;
	}
	devid = le64_to_cpu(disk_super->dev_item.devid);
447
	transid = btrfs_super_generation(disk_super);
448 449 450 451 452 453 454 455 456
	if (disk_super->label[0])
		printk("device label %s ", disk_super->label);
	else {
		/* FIXME, make a readl uuid parser */
		printk("device fsid %llx-%llx ",
		       *(unsigned long long *)disk_super->fsid,
		       *(unsigned long long *)(disk_super->fsid + 8));
	}
	printk("devid %Lu transid %Lu %s\n", devid, transid, path);
457 458 459 460 461 462 463 464 465 466
	ret = device_list_add(path, disk_super, devid, fs_devices_ret);

error_brelse:
	brelse(bh);
error_close:
	close_bdev_excl(bdev);
error:
	mutex_unlock(&uuid_mutex);
	return ret;
}
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494

/*
 * this uses a pretty simple search, the expectation is that it is
 * called very infrequently and that a given device has a small number
 * of extents
 */
static int find_free_dev_extent(struct btrfs_trans_handle *trans,
				struct btrfs_device *device,
				struct btrfs_path *path,
				u64 num_bytes, u64 *start)
{
	struct btrfs_key key;
	struct btrfs_root *root = device->dev_root;
	struct btrfs_dev_extent *dev_extent = NULL;
	u64 hole_size = 0;
	u64 last_byte = 0;
	u64 search_start = 0;
	u64 search_end = device->total_bytes;
	int ret;
	int slot = 0;
	int start_found;
	struct extent_buffer *l;

	start_found = 0;
	path->reada = 2;

	/* FIXME use last free of some kind */

495 496 497 498
	/* we don't want to overwrite the superblock on the drive,
	 * so we make sure to start at an offset of at least 1MB
	 */
	search_start = max((u64)1024 * 1024, search_start);
499 500 501 502

	if (root->fs_info->alloc_start + num_bytes <= device->total_bytes)
		search_start = max(root->fs_info->alloc_start, search_start);

503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
	key.objectid = device->devid;
	key.offset = search_start;
	key.type = BTRFS_DEV_EXTENT_KEY;
	ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
	if (ret < 0)
		goto error;
	ret = btrfs_previous_item(root, path, 0, key.type);
	if (ret < 0)
		goto error;
	l = path->nodes[0];
	btrfs_item_key_to_cpu(l, &key, path->slots[0]);
	while (1) {
		l = path->nodes[0];
		slot = path->slots[0];
		if (slot >= btrfs_header_nritems(l)) {
			ret = btrfs_next_leaf(root, path);
			if (ret == 0)
				continue;
			if (ret < 0)
				goto error;
no_more_items:
			if (!start_found) {
				if (search_start >= search_end) {
					ret = -ENOSPC;
					goto error;
				}
				*start = search_start;
				start_found = 1;
				goto check_pending;
			}
			*start = last_byte > search_start ?
				last_byte : search_start;
			if (search_end <= *start) {
				ret = -ENOSPC;
				goto error;
			}
			goto check_pending;
		}
		btrfs_item_key_to_cpu(l, &key, slot);

		if (key.objectid < device->devid)
			goto next;

		if (key.objectid > device->devid)
			goto no_more_items;

		if (key.offset >= search_start && key.offset > last_byte &&
		    start_found) {
			if (last_byte < search_start)
				last_byte = search_start;
			hole_size = key.offset - last_byte;
			if (key.offset > last_byte &&
			    hole_size >= num_bytes) {
				*start = last_byte;
				goto check_pending;
			}
		}
		if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY) {
			goto next;
		}

		start_found = 1;
		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
		last_byte = key.offset + btrfs_dev_extent_length(l, dev_extent);
next:
		path->slots[0]++;
		cond_resched();
	}
check_pending:
	/* we have to make sure we didn't find an extent that has already
	 * been allocated by the map tree or the original allocation
	 */
	btrfs_release_path(root, path);
	BUG_ON(*start < search_start);

578
	if (*start + num_bytes > search_end) {
579 580 581 582 583 584 585 586 587 588 589
		ret = -ENOSPC;
		goto error;
	}
	/* check for pending inserts here */
	return 0;

error:
	btrfs_release_path(root, path);
	return ret;
}

590 591 592 593 594 595 596 597
int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
			  struct btrfs_device *device,
			  u64 start)
{
	int ret;
	struct btrfs_path *path;
	struct btrfs_root *root = device->dev_root;
	struct btrfs_key key;
598 599 600
	struct btrfs_key found_key;
	struct extent_buffer *leaf = NULL;
	struct btrfs_dev_extent *extent = NULL;
601 602 603 604 605 606 607 608 609 610

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = device->devid;
	key.offset = start;
	key.type = BTRFS_DEV_EXTENT_KEY;

	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
	if (ret > 0) {
		ret = btrfs_previous_item(root, path, key.objectid,
					  BTRFS_DEV_EXTENT_KEY);
		BUG_ON(ret);
		leaf = path->nodes[0];
		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
		extent = btrfs_item_ptr(leaf, path->slots[0],
					struct btrfs_dev_extent);
		BUG_ON(found_key.offset > start || found_key.offset +
		       btrfs_dev_extent_length(leaf, extent) < start);
		ret = 0;
	} else if (ret == 0) {
		leaf = path->nodes[0];
		extent = btrfs_item_ptr(leaf, path->slots[0],
					struct btrfs_dev_extent);
	}
627 628
	BUG_ON(ret);

629 630
	if (device->bytes_used > 0)
		device->bytes_used -= btrfs_dev_extent_length(leaf, extent);
631 632 633 634 635 636 637
	ret = btrfs_del_item(trans, root, path);
	BUG_ON(ret);

	btrfs_free_path(path);
	return ret;
}

638 639
int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
			   struct btrfs_device *device,
640 641 642
			   u64 chunk_tree, u64 chunk_objectid,
			   u64 chunk_offset,
			   u64 num_bytes, u64 *start)
643 644 645 646 647 648 649 650
{
	int ret;
	struct btrfs_path *path;
	struct btrfs_root *root = device->dev_root;
	struct btrfs_dev_extent *extent;
	struct extent_buffer *leaf;
	struct btrfs_key key;

651
	WARN_ON(!device->in_fs_metadata);
652 653 654 655 656
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	ret = find_free_dev_extent(trans, device, path, num_bytes, start);
657
	if (ret) {
658
		goto err;
659
	}
660 661 662 663 664 665 666 667 668 669 670

	key.objectid = device->devid;
	key.offset = *start;
	key.type = BTRFS_DEV_EXTENT_KEY;
	ret = btrfs_insert_empty_item(trans, root, path, &key,
				      sizeof(*extent));
	BUG_ON(ret);

	leaf = path->nodes[0];
	extent = btrfs_item_ptr(leaf, path->slots[0],
				struct btrfs_dev_extent);
671 672 673 674 675 676 677 678
	btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
	btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);

	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
		    (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
		    BTRFS_UUID_SIZE);

679 680 681 682 683 684 685
	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
	btrfs_mark_buffer_dirty(leaf);
err:
	btrfs_free_path(path);
	return ret;
}

686
static int find_next_chunk(struct btrfs_root *root, u64 objectid, u64 *offset)
687 688 689 690
{
	struct btrfs_path *path;
	int ret;
	struct btrfs_key key;
691
	struct btrfs_chunk *chunk;
692 693 694 695 696
	struct btrfs_key found_key;

	path = btrfs_alloc_path();
	BUG_ON(!path);

697
	key.objectid = objectid;
698 699 700 701 702 703 704 705 706 707 708
	key.offset = (u64)-1;
	key.type = BTRFS_CHUNK_ITEM_KEY;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		goto error;

	BUG_ON(ret == 0);

	ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
	if (ret) {
709
		*offset = 0;
710 711 712
	} else {
		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
				      path->slots[0]);
713 714 715 716 717 718 719 720
		if (found_key.objectid != objectid)
			*offset = 0;
		else {
			chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
					       struct btrfs_chunk);
			*offset = found_key.offset +
				btrfs_chunk_length(path->nodes[0], chunk);
		}
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
	}
	ret = 0;
error:
	btrfs_free_path(path);
	return ret;
}

static int find_next_devid(struct btrfs_root *root, struct btrfs_path *path,
			   u64 *objectid)
{
	int ret;
	struct btrfs_key key;
	struct btrfs_key found_key;

	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.type = BTRFS_DEV_ITEM_KEY;
	key.offset = (u64)-1;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		goto error;

	BUG_ON(ret == 0);

	ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
				  BTRFS_DEV_ITEM_KEY);
	if (ret) {
		*objectid = 1;
	} else {
		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
				      path->slots[0]);
		*objectid = found_key.offset + 1;
	}
	ret = 0;
error:
	btrfs_release_path(root, path);
	return ret;
}

/*
 * the device information is stored in the chunk root
 * the btrfs_device struct should be fully filled in
 */
int btrfs_add_device(struct btrfs_trans_handle *trans,
		     struct btrfs_root *root,
		     struct btrfs_device *device)
{
	int ret;
	struct btrfs_path *path;
	struct btrfs_dev_item *dev_item;
	struct extent_buffer *leaf;
	struct btrfs_key key;
	unsigned long ptr;
774
	u64 free_devid = 0;
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790

	root = root->fs_info->chunk_root;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	ret = find_next_devid(root, path, &free_devid);
	if (ret)
		goto out;

	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.type = BTRFS_DEV_ITEM_KEY;
	key.offset = free_devid;

	ret = btrfs_insert_empty_item(trans, root, path, &key,
791
				      sizeof(*dev_item));
792 793 794 795 796 797
	if (ret)
		goto out;

	leaf = path->nodes[0];
	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);

798
	device->devid = free_devid;
799 800 801 802 803 804 805
	btrfs_set_device_id(leaf, dev_item, device->devid);
	btrfs_set_device_type(leaf, dev_item, device->type);
	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
	btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
	btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
806 807 808
	btrfs_set_device_group(leaf, dev_item, 0);
	btrfs_set_device_seek_speed(leaf, dev_item, 0);
	btrfs_set_device_bandwidth(leaf, dev_item, 0);
809 810

	ptr = (unsigned long)btrfs_device_uuid(dev_item);
811
	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
812 813 814 815 816 817 818
	btrfs_mark_buffer_dirty(leaf);
	ret = 0;

out:
	btrfs_free_path(path);
	return ret;
}
819

820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
static int btrfs_rm_dev_item(struct btrfs_root *root,
			     struct btrfs_device *device)
{
	int ret;
	struct btrfs_path *path;
	struct block_device *bdev = device->bdev;
	struct btrfs_device *next_dev;
	struct btrfs_key key;
	u64 total_bytes;
	struct btrfs_fs_devices *fs_devices;
	struct btrfs_trans_handle *trans;

	root = root->fs_info->chunk_root;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	trans = btrfs_start_transaction(root, 1);
	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.type = BTRFS_DEV_ITEM_KEY;
	key.offset = device->devid;
842
	lock_chunks(root);
843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876

	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
	if (ret < 0)
		goto out;

	if (ret > 0) {
		ret = -ENOENT;
		goto out;
	}

	ret = btrfs_del_item(trans, root, path);
	if (ret)
		goto out;

	/*
	 * at this point, the device is zero sized.  We want to
	 * remove it from the devices list and zero out the old super
	 */
	list_del_init(&device->dev_list);
	list_del_init(&device->dev_alloc_list);
	fs_devices = root->fs_info->fs_devices;

	next_dev = list_entry(fs_devices->devices.next, struct btrfs_device,
			      dev_list);
	if (bdev == root->fs_info->sb->s_bdev)
		root->fs_info->sb->s_bdev = next_dev->bdev;
	if (bdev == fs_devices->latest_bdev)
		fs_devices->latest_bdev = next_dev->bdev;

	total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy);
	btrfs_set_super_num_devices(&root->fs_info->super_copy,
				    total_bytes - 1);
out:
	btrfs_free_path(path);
877
	unlock_chunks(root);
878 879 880 881 882 883 884 885
	btrfs_commit_transaction(trans, root);
	return ret;
}

int btrfs_rm_device(struct btrfs_root *root, char *device_path)
{
	struct btrfs_device *device;
	struct block_device *bdev;
886
	struct buffer_head *bh = NULL;
887 888 889 890 891 892
	struct btrfs_super_block *disk_super;
	u64 all_avail;
	u64 devid;
	int ret = 0;

	mutex_lock(&uuid_mutex);
893
	mutex_lock(&root->fs_info->volume_mutex);
894 895 896 897 898 899

	all_avail = root->fs_info->avail_data_alloc_bits |
		root->fs_info->avail_system_alloc_bits |
		root->fs_info->avail_metadata_alloc_bits;

	if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
900
	    btrfs_super_num_devices(&root->fs_info->super_copy) <= 4) {
901 902 903 904 905 906
		printk("btrfs: unable to go below four devices on raid10\n");
		ret = -EINVAL;
		goto out;
	}

	if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
907
	    btrfs_super_num_devices(&root->fs_info->super_copy) <= 2) {
908 909 910 911 912
		printk("btrfs: unable to go below two devices on raid1\n");
		ret = -EINVAL;
		goto out;
	}

913 914 915 916
	if (strcmp(device_path, "missing") == 0) {
		struct list_head *cur;
		struct list_head *devices;
		struct btrfs_device *tmp;
917

918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
		device = NULL;
		devices = &root->fs_info->fs_devices->devices;
		list_for_each(cur, devices) {
			tmp = list_entry(cur, struct btrfs_device, dev_list);
			if (tmp->in_fs_metadata && !tmp->bdev) {
				device = tmp;
				break;
			}
		}
		bdev = NULL;
		bh = NULL;
		disk_super = NULL;
		if (!device) {
			printk("btrfs: no missing devices found to remove\n");
			goto out;
		}

	} else {
		bdev = open_bdev_excl(device_path, 0,
				      root->fs_info->bdev_holder);
		if (IS_ERR(bdev)) {
			ret = PTR_ERR(bdev);
			goto out;
		}
942

943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
		bh = __bread(bdev, BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
		if (!bh) {
			ret = -EIO;
			goto error_close;
		}
		disk_super = (struct btrfs_super_block *)bh->b_data;
		if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
		    sizeof(disk_super->magic))) {
			ret = -ENOENT;
			goto error_brelse;
		}
		if (memcmp(disk_super->fsid, root->fs_info->fsid,
			   BTRFS_FSID_SIZE)) {
			ret = -ENOENT;
			goto error_brelse;
		}
		devid = le64_to_cpu(disk_super->dev_item.devid);
		device = btrfs_find_device(root, devid, NULL);
		if (!device) {
			ret = -ENOENT;
			goto error_brelse;
		}

	}
967
	root->fs_info->fs_devices->num_devices--;
C
Chris Mason 已提交
968
	root->fs_info->fs_devices->open_devices--;
969 970 971 972 973 974 975 976 977 978

	ret = btrfs_shrink_device(device, 0);
	if (ret)
		goto error_brelse;


	ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
	if (ret)
		goto error_brelse;

979 980 981 982 983 984 985
	if (bh) {
		/* make sure this device isn't detected as part of
		 * the FS anymore
		 */
		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
		set_buffer_dirty(bh);
		sync_dirty_buffer(bh);
986

987 988
		brelse(bh);
	}
989

990 991 992 993 994 995 996 997
	if (device->bdev) {
		/* one close for the device struct or super_block */
		close_bdev_excl(device->bdev);
	}
	if (bdev) {
		/* one close for us */
		close_bdev_excl(bdev);
	}
998 999 1000 1001 1002 1003 1004 1005
	kfree(device->name);
	kfree(device);
	ret = 0;
	goto out;

error_brelse:
	brelse(bh);
error_close:
1006 1007
	if (bdev)
		close_bdev_excl(bdev);
1008
out:
1009
	mutex_unlock(&root->fs_info->volume_mutex);
1010 1011 1012 1013
	mutex_unlock(&uuid_mutex);
	return ret;
}

1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
{
	struct btrfs_trans_handle *trans;
	struct btrfs_device *device;
	struct block_device *bdev;
	struct list_head *cur;
	struct list_head *devices;
	u64 total_bytes;
	int ret = 0;


	bdev = open_bdev_excl(device_path, 0, root->fs_info->bdev_holder);
	if (!bdev) {
		return -EIO;
	}
1029

1030
	mutex_lock(&root->fs_info->volume_mutex);
1031

1032
	trans = btrfs_start_transaction(root, 1);
1033
	lock_chunks(root);
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
	devices = &root->fs_info->fs_devices->devices;
	list_for_each(cur, devices) {
		device = list_entry(cur, struct btrfs_device, dev_list);
		if (device->bdev == bdev) {
			ret = -EEXIST;
			goto out;
		}
	}

	device = kzalloc(sizeof(*device), GFP_NOFS);
	if (!device) {
		/* we can safely leave the fs_devices entry around */
		ret = -ENOMEM;
		goto out_close_bdev;
	}

	device->barriers = 1;
1051
	device->work.func = pending_bios_fn;
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
	generate_random_uuid(device->uuid);
	spin_lock_init(&device->io_lock);
	device->name = kstrdup(device_path, GFP_NOFS);
	if (!device->name) {
		kfree(device);
		goto out_close_bdev;
	}
	device->io_width = root->sectorsize;
	device->io_align = root->sectorsize;
	device->sector_size = root->sectorsize;
	device->total_bytes = i_size_read(bdev->bd_inode);
	device->dev_root = root->fs_info->dev_root;
	device->bdev = bdev;
1065
	device->in_fs_metadata = 1;
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082

	ret = btrfs_add_device(trans, root, device);
	if (ret)
		goto out_close_bdev;

	total_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
	btrfs_set_super_total_bytes(&root->fs_info->super_copy,
				    total_bytes + device->total_bytes);

	total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy);
	btrfs_set_super_num_devices(&root->fs_info->super_copy,
				    total_bytes + 1);

	list_add(&device->dev_list, &root->fs_info->fs_devices->devices);
	list_add(&device->dev_alloc_list,
		 &root->fs_info->fs_devices->alloc_list);
	root->fs_info->fs_devices->num_devices++;
1083
	root->fs_info->fs_devices->open_devices++;
1084
out:
1085
	unlock_chunks(root);
1086
	btrfs_end_transaction(trans, root);
1087
	mutex_unlock(&root->fs_info->volume_mutex);
1088

1089 1090 1091 1092 1093 1094 1095
	return ret;

out_close_bdev:
	close_bdev_excl(bdev);
	goto out;
}

1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
int btrfs_update_device(struct btrfs_trans_handle *trans,
			struct btrfs_device *device)
{
	int ret;
	struct btrfs_path *path;
	struct btrfs_root *root;
	struct btrfs_dev_item *dev_item;
	struct extent_buffer *leaf;
	struct btrfs_key key;

	root = device->dev_root->fs_info->chunk_root;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.type = BTRFS_DEV_ITEM_KEY;
	key.offset = device->devid;

	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
	if (ret < 0)
		goto out;

	if (ret > 0) {
		ret = -ENOENT;
		goto out;
	}

	leaf = path->nodes[0];
	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);

	btrfs_set_device_id(leaf, dev_item, device->devid);
	btrfs_set_device_type(leaf, dev_item, device->type);
	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
	btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
	btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
	btrfs_mark_buffer_dirty(leaf);

out:
	btrfs_free_path(path);
	return ret;
}

1142
static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
		      struct btrfs_device *device, u64 new_size)
{
	struct btrfs_super_block *super_copy =
		&device->dev_root->fs_info->super_copy;
	u64 old_total = btrfs_super_total_bytes(super_copy);
	u64 diff = new_size - device->total_bytes;

	btrfs_set_super_total_bytes(super_copy, old_total + diff);
	return btrfs_update_device(trans, device);
}

1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
int btrfs_grow_device(struct btrfs_trans_handle *trans,
		      struct btrfs_device *device, u64 new_size)
{
	int ret;
	lock_chunks(device->dev_root);
	ret = __btrfs_grow_device(trans, device, new_size);
	unlock_chunks(device->dev_root);
	return ret;
}

1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
			    struct btrfs_root *root,
			    u64 chunk_tree, u64 chunk_objectid,
			    u64 chunk_offset)
{
	int ret;
	struct btrfs_path *path;
	struct btrfs_key key;

	root = root->fs_info->chunk_root;
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = chunk_objectid;
	key.offset = chunk_offset;
	key.type = BTRFS_CHUNK_ITEM_KEY;

	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
	BUG_ON(ret);

	ret = btrfs_del_item(trans, root, path);
	BUG_ON(ret);

	btrfs_free_path(path);
	return 0;
}

int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
			chunk_offset)
{
	struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
	struct btrfs_disk_key *disk_key;
	struct btrfs_chunk *chunk;
	u8 *ptr;
	int ret = 0;
	u32 num_stripes;
	u32 array_size;
	u32 len = 0;
	u32 cur;
	struct btrfs_key key;

	array_size = btrfs_super_sys_array_size(super_copy);

	ptr = super_copy->sys_chunk_array;
	cur = 0;

	while (cur < array_size) {
		disk_key = (struct btrfs_disk_key *)ptr;
		btrfs_disk_key_to_cpu(&key, disk_key);

		len = sizeof(*disk_key);

		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
			chunk = (struct btrfs_chunk *)(ptr + len);
			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
			len += btrfs_chunk_item_size(num_stripes);
		} else {
			ret = -EIO;
			break;
		}
		if (key.objectid == chunk_objectid &&
		    key.offset == chunk_offset) {
			memmove(ptr, ptr + len, array_size - (cur + len));
			array_size -= len;
			btrfs_set_super_sys_array_size(super_copy, array_size);
		} else {
			ptr += len;
			cur += len;
		}
	}
	return ret;
}


int btrfs_relocate_chunk(struct btrfs_root *root,
			 u64 chunk_tree, u64 chunk_objectid,
			 u64 chunk_offset)
{
	struct extent_map_tree *em_tree;
	struct btrfs_root *extent_root;
	struct btrfs_trans_handle *trans;
	struct extent_map *em;
	struct map_lookup *map;
	int ret;
	int i;

1251 1252
	printk("btrfs relocating chunk %llu\n",
	       (unsigned long long)chunk_offset);
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
	root = root->fs_info->chunk_root;
	extent_root = root->fs_info->extent_root;
	em_tree = &root->fs_info->mapping_tree.map_tree;

	/* step one, relocate all the extents inside this chunk */
	ret = btrfs_shrink_extent_tree(extent_root, chunk_offset);
	BUG_ON(ret);

	trans = btrfs_start_transaction(root, 1);
	BUG_ON(!trans);

1264 1265
	lock_chunks(root);

1266 1267 1268 1269 1270 1271 1272 1273
	/*
	 * step two, delete the device extents and the
	 * chunk tree entries
	 */
	spin_lock(&em_tree->lock);
	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
	spin_unlock(&em_tree->lock);

1274 1275
	BUG_ON(em->start > chunk_offset ||
	       em->start + em->len < chunk_offset);
1276 1277 1278 1279 1280 1281
	map = (struct map_lookup *)em->bdev;

	for (i = 0; i < map->num_stripes; i++) {
		ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
					    map->stripes[i].physical);
		BUG_ON(ret);
1282

1283 1284 1285 1286
		if (map->stripes[i].dev) {
			ret = btrfs_update_device(trans, map->stripes[i].dev);
			BUG_ON(ret);
		}
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
	}
	ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
			       chunk_offset);

	BUG_ON(ret);

	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
		ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
		BUG_ON(ret);
	}

	spin_lock(&em_tree->lock);
	remove_extent_mapping(em_tree, em);
	kfree(map);
	em->bdev = NULL;

	/* once for the tree */
	free_extent_map(em);
	spin_unlock(&em_tree->lock);

	/* once for us */
	free_extent_map(em);

1310
	unlock_chunks(root);
1311 1312 1313 1314
	btrfs_end_transaction(trans, root);
	return 0;
}

1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
static u64 div_factor(u64 num, int factor)
{
	if (factor == 10)
		return num;
	num *= factor;
	do_div(num, 10);
	return num;
}


int btrfs_balance(struct btrfs_root *dev_root)
{
	int ret;
	struct list_head *cur;
	struct list_head *devices = &dev_root->fs_info->fs_devices->devices;
	struct btrfs_device *device;
	u64 old_size;
	u64 size_to_free;
	struct btrfs_path *path;
	struct btrfs_key key;
	struct btrfs_chunk *chunk;
	struct btrfs_root *chunk_root = dev_root->fs_info->chunk_root;
	struct btrfs_trans_handle *trans;
	struct btrfs_key found_key;


1341
	mutex_lock(&dev_root->fs_info->volume_mutex);
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
	dev_root = dev_root->fs_info->dev_root;

	/* step one make some room on all the devices */
	list_for_each(cur, devices) {
		device = list_entry(cur, struct btrfs_device, dev_list);
		old_size = device->total_bytes;
		size_to_free = div_factor(old_size, 1);
		size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
		if (device->total_bytes - device->bytes_used > size_to_free)
			continue;

		ret = btrfs_shrink_device(device, old_size - size_to_free);
		BUG_ON(ret);

		trans = btrfs_start_transaction(dev_root, 1);
		BUG_ON(!trans);

		ret = btrfs_grow_device(trans, device, old_size);
		BUG_ON(ret);

		btrfs_end_transaction(trans, dev_root);
	}

	/* step two, relocate all the chunks */
	path = btrfs_alloc_path();
	BUG_ON(!path);

	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
	key.offset = (u64)-1;
	key.type = BTRFS_CHUNK_ITEM_KEY;

	while(1) {
		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
		if (ret < 0)
			goto error;

		/*
		 * this shouldn't happen, it means the last relocate
		 * failed
		 */
		if (ret == 0)
			break;

		ret = btrfs_previous_item(chunk_root, path, 0,
					  BTRFS_CHUNK_ITEM_KEY);
1387
		if (ret)
1388
			break;
1389

1390 1391 1392 1393
		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
				      path->slots[0]);
		if (found_key.objectid != key.objectid)
			break;
1394

1395 1396 1397 1398 1399 1400 1401 1402
		chunk = btrfs_item_ptr(path->nodes[0],
				       path->slots[0],
				       struct btrfs_chunk);
		key.offset = found_key.offset;
		/* chunk zero is special */
		if (key.offset == 0)
			break;

1403
		btrfs_release_path(chunk_root, path);
1404 1405 1406 1407 1408 1409 1410 1411 1412
		ret = btrfs_relocate_chunk(chunk_root,
					   chunk_root->root_key.objectid,
					   found_key.objectid,
					   found_key.offset);
		BUG_ON(ret);
	}
	ret = 0;
error:
	btrfs_free_path(path);
1413
	mutex_unlock(&dev_root->fs_info->volume_mutex);
1414 1415 1416
	return ret;
}

1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
/*
 * shrinking a device means finding all of the device extents past
 * the new size, and then following the back refs to the chunks.
 * The chunk relocation code actually frees the device extent
 */
int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
{
	struct btrfs_trans_handle *trans;
	struct btrfs_root *root = device->dev_root;
	struct btrfs_dev_extent *dev_extent = NULL;
	struct btrfs_path *path;
	u64 length;
	u64 chunk_tree;
	u64 chunk_objectid;
	u64 chunk_offset;
	int ret;
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
	u64 old_total = btrfs_super_total_bytes(super_copy);
	u64 diff = device->total_bytes - new_size;


	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	trans = btrfs_start_transaction(root, 1);
	if (!trans) {
		ret = -ENOMEM;
		goto done;
	}

	path->reada = 2;

1453 1454
	lock_chunks(root);

1455 1456 1457
	device->total_bytes = new_size;
	ret = btrfs_update_device(trans, device);
	if (ret) {
1458
		unlock_chunks(root);
1459 1460 1461 1462 1463
		btrfs_end_transaction(trans, root);
		goto done;
	}
	WARN_ON(diff > old_total);
	btrfs_set_super_total_bytes(super_copy, old_total - diff);
1464
	unlock_chunks(root);
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
	btrfs_end_transaction(trans, root);

	key.objectid = device->devid;
	key.offset = (u64)-1;
	key.type = BTRFS_DEV_EXTENT_KEY;

	while (1) {
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto done;

		ret = btrfs_previous_item(root, path, 0, key.type);
		if (ret < 0)
			goto done;
		if (ret) {
			ret = 0;
			goto done;
		}

		l = path->nodes[0];
		slot = path->slots[0];
		btrfs_item_key_to_cpu(l, &key, path->slots[0]);

		if (key.objectid != device->devid)
			goto done;

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
		length = btrfs_dev_extent_length(l, dev_extent);

		if (key.offset + length <= new_size)
			goto done;

		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
		btrfs_release_path(root, path);

		ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
					   chunk_offset);
		if (ret)
			goto done;
	}

done:
	btrfs_free_path(path);
	return ret;
}

1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
			   struct btrfs_root *root,
			   struct btrfs_key *key,
			   struct btrfs_chunk *chunk, int item_size)
{
	struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
	struct btrfs_disk_key disk_key;
	u32 array_size;
	u8 *ptr;

	array_size = btrfs_super_sys_array_size(super_copy);
	if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
		return -EFBIG;

	ptr = super_copy->sys_chunk_array + array_size;
	btrfs_cpu_key_to_disk(&disk_key, key);
	memcpy(ptr, &disk_key, sizeof(disk_key));
	ptr += sizeof(disk_key);
	memcpy(ptr, chunk, item_size);
	item_size += sizeof(disk_key);
	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
	return 0;
}

1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
static u64 chunk_bytes_by_type(u64 type, u64 calc_size, int num_stripes,
			       int sub_stripes)
{
	if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP))
		return calc_size;
	else if (type & BTRFS_BLOCK_GROUP_RAID10)
		return calc_size * (num_stripes / sub_stripes);
	else
		return calc_size * num_stripes;
}


1549 1550
int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
		      struct btrfs_root *extent_root, u64 *start,
1551
		      u64 *num_bytes, u64 type)
1552 1553
{
	u64 dev_offset;
1554
	struct btrfs_fs_info *info = extent_root->fs_info;
1555
	struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
1556
	struct btrfs_path *path;
1557 1558 1559
	struct btrfs_stripe *stripes;
	struct btrfs_device *device = NULL;
	struct btrfs_chunk *chunk;
1560
	struct list_head private_devs;
1561
	struct list_head *dev_list;
1562
	struct list_head *cur;
1563 1564 1565
	struct extent_map_tree *em_tree;
	struct map_lookup *map;
	struct extent_map *em;
1566
	int min_stripe_size = 1 * 1024 * 1024;
1567 1568
	u64 physical;
	u64 calc_size = 1024 * 1024 * 1024;
1569 1570
	u64 max_chunk_size = calc_size;
	u64 min_free;
1571 1572
	u64 avail;
	u64 max_avail = 0;
1573
	u64 percent_max;
1574
	int num_stripes = 1;
1575
	int min_stripes = 1;
C
Chris Mason 已提交
1576
	int sub_stripes = 0;
1577
	int looped = 0;
1578
	int ret;
1579
	int index;
1580
	int stripe_len = 64 * 1024;
1581 1582
	struct btrfs_key key;

1583 1584 1585 1586 1587
	if ((type & BTRFS_BLOCK_GROUP_RAID1) &&
	    (type & BTRFS_BLOCK_GROUP_DUP)) {
		WARN_ON(1);
		type &= ~BTRFS_BLOCK_GROUP_DUP;
	}
1588
	dev_list = &extent_root->fs_info->fs_devices->alloc_list;
1589 1590
	if (list_empty(dev_list))
		return -ENOSPC;
1591

1592
	if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
C
Chris Mason 已提交
1593
		num_stripes = extent_root->fs_info->fs_devices->open_devices;
1594 1595 1596
		min_stripes = 2;
	}
	if (type & (BTRFS_BLOCK_GROUP_DUP)) {
1597
		num_stripes = 2;
1598 1599
		min_stripes = 2;
	}
1600 1601
	if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
		num_stripes = min_t(u64, 2,
C
Chris Mason 已提交
1602
			    extent_root->fs_info->fs_devices->open_devices);
1603 1604
		if (num_stripes < 2)
			return -ENOSPC;
1605
		min_stripes = 2;
1606
	}
C
Chris Mason 已提交
1607
	if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
C
Chris Mason 已提交
1608
		num_stripes = extent_root->fs_info->fs_devices->open_devices;
C
Chris Mason 已提交
1609 1610 1611 1612
		if (num_stripes < 4)
			return -ENOSPC;
		num_stripes &= ~(u32)1;
		sub_stripes = 2;
1613
		min_stripes = 4;
C
Chris Mason 已提交
1614
	}
1615 1616 1617

	if (type & BTRFS_BLOCK_GROUP_DATA) {
		max_chunk_size = 10 * calc_size;
1618
		min_stripe_size = 64 * 1024 * 1024;
1619 1620
	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
		max_chunk_size = 4 * calc_size;
1621 1622 1623 1624 1625
		min_stripe_size = 32 * 1024 * 1024;
	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
		calc_size = 8 * 1024 * 1024;
		max_chunk_size = calc_size * 2;
		min_stripe_size = 1 * 1024 * 1024;
1626 1627
	}

1628 1629 1630 1631
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

1632 1633 1634 1635
	/* we don't want a chunk larger than 10% of the FS */
	percent_max = div_factor(btrfs_super_total_bytes(&info->super_copy), 1);
	max_chunk_size = min(percent_max, max_chunk_size);

1636
again:
1637 1638 1639 1640 1641 1642 1643
	if (calc_size * num_stripes > max_chunk_size) {
		calc_size = max_chunk_size;
		do_div(calc_size, num_stripes);
		do_div(calc_size, stripe_len);
		calc_size *= stripe_len;
	}
	/* we don't want tiny stripes */
1644
	calc_size = max_t(u64, min_stripe_size, calc_size);
1645 1646 1647 1648

	do_div(calc_size, stripe_len);
	calc_size *= stripe_len;

1649 1650 1651
	INIT_LIST_HEAD(&private_devs);
	cur = dev_list->next;
	index = 0;
1652 1653 1654

	if (type & BTRFS_BLOCK_GROUP_DUP)
		min_free = calc_size * 2;
1655 1656
	else
		min_free = calc_size;
1657

1658 1659 1660
	/* we add 1MB because we never use the first 1MB of the device */
	min_free += 1024 * 1024;

1661 1662
	/* build a private list of devices we will allocate from */
	while(index < num_stripes) {
1663
		device = list_entry(cur, struct btrfs_device, dev_alloc_list);
1664

1665 1666 1667 1668
		if (device->total_bytes > device->bytes_used)
			avail = device->total_bytes - device->bytes_used;
		else
			avail = 0;
1669
		cur = cur->next;
1670

1671
		if (device->in_fs_metadata && avail >= min_free) {
1672 1673 1674 1675 1676 1677 1678
			u64 ignored_start = 0;
			ret = find_free_dev_extent(trans, device, path,
						   min_free,
						   &ignored_start);
			if (ret == 0) {
				list_move_tail(&device->dev_alloc_list,
					       &private_devs);
1679
				index++;
1680 1681 1682
				if (type & BTRFS_BLOCK_GROUP_DUP)
					index++;
			}
1683
		} else if (device->in_fs_metadata && avail > max_avail)
1684
			max_avail = avail;
1685 1686 1687 1688 1689
		if (cur == dev_list)
			break;
	}
	if (index < num_stripes) {
		list_splice(&private_devs, dev_list);
1690 1691 1692 1693 1694 1695 1696 1697 1698
		if (index >= min_stripes) {
			num_stripes = index;
			if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
				num_stripes /= sub_stripes;
				num_stripes *= sub_stripes;
			}
			looped = 1;
			goto again;
		}
1699 1700 1701 1702 1703
		if (!looped && max_avail > 0) {
			looped = 1;
			calc_size = max_avail;
			goto again;
		}
1704
		btrfs_free_path(path);
1705 1706
		return -ENOSPC;
	}
1707 1708 1709 1710
	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
	key.type = BTRFS_CHUNK_ITEM_KEY;
	ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
			      &key.offset);
1711 1712
	if (ret) {
		btrfs_free_path(path);
1713
		return ret;
1714
	}
1715 1716

	chunk = kmalloc(btrfs_chunk_item_size(num_stripes), GFP_NOFS);
1717 1718
	if (!chunk) {
		btrfs_free_path(path);
1719
		return -ENOMEM;
1720
	}
1721

1722 1723 1724
	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
	if (!map) {
		kfree(chunk);
1725
		btrfs_free_path(path);
1726 1727
		return -ENOMEM;
	}
1728 1729
	btrfs_free_path(path);
	path = NULL;
1730

1731
	stripes = &chunk->stripe;
1732 1733
	*num_bytes = chunk_bytes_by_type(type, calc_size,
					 num_stripes, sub_stripes);
1734

1735
	index = 0;
1736
	while(index < num_stripes) {
1737
		struct btrfs_stripe *stripe;
1738 1739
		BUG_ON(list_empty(&private_devs));
		cur = private_devs.next;
1740
		device = list_entry(cur, struct btrfs_device, dev_alloc_list);
1741 1742 1743 1744

		/* loop over this device again if we're doing a dup group */
		if (!(type & BTRFS_BLOCK_GROUP_DUP) ||
		    (index == num_stripes - 1))
1745
			list_move_tail(&device->dev_alloc_list, dev_list);
1746 1747

		ret = btrfs_alloc_dev_extent(trans, device,
1748 1749 1750
			     info->chunk_root->root_key.objectid,
			     BTRFS_FIRST_CHUNK_TREE_OBJECTID, key.offset,
			     calc_size, &dev_offset);
1751 1752 1753 1754 1755
		BUG_ON(ret);
		device->bytes_used += calc_size;
		ret = btrfs_update_device(trans, device);
		BUG_ON(ret);

1756 1757
		map->stripes[index].dev = device;
		map->stripes[index].physical = dev_offset;
1758 1759 1760 1761
		stripe = stripes + index;
		btrfs_set_stack_stripe_devid(stripe, device->devid);
		btrfs_set_stack_stripe_offset(stripe, dev_offset);
		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
1762 1763 1764
		physical = dev_offset;
		index++;
	}
1765
	BUG_ON(!list_empty(&private_devs));
1766

1767 1768
	/* key was set above */
	btrfs_set_stack_chunk_length(chunk, *num_bytes);
1769
	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
1770
	btrfs_set_stack_chunk_stripe_len(chunk, stripe_len);
1771 1772
	btrfs_set_stack_chunk_type(chunk, type);
	btrfs_set_stack_chunk_num_stripes(chunk, num_stripes);
1773 1774
	btrfs_set_stack_chunk_io_align(chunk, stripe_len);
	btrfs_set_stack_chunk_io_width(chunk, stripe_len);
1775
	btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
C
Chris Mason 已提交
1776
	btrfs_set_stack_chunk_sub_stripes(chunk, sub_stripes);
1777 1778 1779 1780 1781 1782
	map->sector_size = extent_root->sectorsize;
	map->stripe_len = stripe_len;
	map->io_align = stripe_len;
	map->io_width = stripe_len;
	map->type = type;
	map->num_stripes = num_stripes;
C
Chris Mason 已提交
1783
	map->sub_stripes = sub_stripes;
1784 1785 1786 1787

	ret = btrfs_insert_item(trans, chunk_root, &key, chunk,
				btrfs_chunk_item_size(num_stripes));
	BUG_ON(ret);
1788
	*start = key.offset;;
1789 1790 1791 1792 1793

	em = alloc_extent_map(GFP_NOFS);
	if (!em)
		return -ENOMEM;
	em->bdev = (struct block_device *)map;
1794 1795
	em->start = key.offset;
	em->len = *num_bytes;
1796 1797
	em->block_start = 0;

1798 1799 1800 1801 1802
	if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
		ret = btrfs_add_system_chunk(trans, chunk_root, &key,
				    chunk, btrfs_chunk_item_size(num_stripes));
		BUG_ON(ret);
	}
1803 1804 1805 1806 1807 1808
	kfree(chunk);

	em_tree = &extent_root->fs_info->mapping_tree.map_tree;
	spin_lock(&em_tree->lock);
	ret = add_extent_mapping(em_tree, em);
	spin_unlock(&em_tree->lock);
1809
	BUG_ON(ret);
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
	free_extent_map(em);
	return ret;
}

void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
{
	extent_map_tree_init(&tree->map_tree, GFP_NOFS);
}

void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
{
	struct extent_map *em;

	while(1) {
		spin_lock(&tree->map_tree.lock);
		em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
		if (em)
			remove_extent_mapping(&tree->map_tree, em);
		spin_unlock(&tree->map_tree.lock);
		if (!em)
			break;
		kfree(em->bdev);
		/* once for us */
		free_extent_map(em);
		/* once for the tree */
		free_extent_map(em);
	}
}

1839 1840 1841 1842 1843 1844 1845 1846 1847
int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
{
	struct extent_map *em;
	struct map_lookup *map;
	struct extent_map_tree *em_tree = &map_tree->map_tree;
	int ret;

	spin_lock(&em_tree->lock);
	em = lookup_extent_mapping(em_tree, logical, len);
1848
	spin_unlock(&em_tree->lock);
1849 1850 1851 1852 1853 1854
	BUG_ON(!em);

	BUG_ON(em->start > logical || em->start + em->len < logical);
	map = (struct map_lookup *)em->bdev;
	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
		ret = map->num_stripes;
C
Chris Mason 已提交
1855 1856
	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
		ret = map->sub_stripes;
1857 1858 1859 1860 1861 1862
	else
		ret = 1;
	free_extent_map(em);
	return ret;
}

1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
static int find_live_mirror(struct map_lookup *map, int first, int num,
			    int optimal)
{
	int i;
	if (map->stripes[optimal].dev->bdev)
		return optimal;
	for (i = first; i < first + num; i++) {
		if (map->stripes[i].dev->bdev)
			return i;
	}
	/* we couldn't find one that doesn't fail.  Just return something
	 * and the io error handling code will clean up eventually
	 */
	return optimal;
}

1879 1880 1881 1882
static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
			     u64 logical, u64 *length,
			     struct btrfs_multi_bio **multi_ret,
			     int mirror_num, struct page *unplug_page)
1883 1884 1885 1886 1887
{
	struct extent_map *em;
	struct map_lookup *map;
	struct extent_map_tree *em_tree = &map_tree->map_tree;
	u64 offset;
1888 1889
	u64 stripe_offset;
	u64 stripe_nr;
1890
	int stripes_allocated = 8;
C
Chris Mason 已提交
1891
	int stripes_required = 1;
1892
	int stripe_index;
1893
	int i;
1894
	int num_stripes;
1895
	int max_errors = 0;
1896
	struct btrfs_multi_bio *multi = NULL;
1897

1898 1899 1900 1901 1902 1903 1904 1905 1906
	if (multi_ret && !(rw & (1 << BIO_RW))) {
		stripes_allocated = 1;
	}
again:
	if (multi_ret) {
		multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
				GFP_NOFS);
		if (!multi)
			return -ENOMEM;
1907 1908

		atomic_set(&multi->error, 0);
1909
	}
1910 1911 1912

	spin_lock(&em_tree->lock);
	em = lookup_extent_mapping(em_tree, logical, *length);
1913
	spin_unlock(&em_tree->lock);
1914 1915 1916 1917

	if (!em && unplug_page)
		return 0;

1918
	if (!em) {
1919
		printk("unable to find logical %Lu len %Lu\n", logical, *length);
1920
		BUG();
1921
	}
1922 1923 1924 1925

	BUG_ON(em->start > logical || em->start + em->len < logical);
	map = (struct map_lookup *)em->bdev;
	offset = logical - em->start;
1926

1927 1928 1929
	if (mirror_num > map->num_stripes)
		mirror_num = 0;

1930
	/* if our multi bio struct is too small, back off and try again */
C
Chris Mason 已提交
1931 1932 1933 1934
	if (rw & (1 << BIO_RW)) {
		if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
				 BTRFS_BLOCK_GROUP_DUP)) {
			stripes_required = map->num_stripes;
1935
			max_errors = 1;
C
Chris Mason 已提交
1936 1937
		} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
			stripes_required = map->sub_stripes;
1938
			max_errors = 1;
C
Chris Mason 已提交
1939 1940 1941 1942
		}
	}
	if (multi_ret && rw == WRITE &&
	    stripes_allocated < stripes_required) {
1943 1944 1945 1946 1947
		stripes_allocated = map->num_stripes;
		free_extent_map(em);
		kfree(multi);
		goto again;
	}
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
	stripe_nr = offset;
	/*
	 * stripe_nr counts the total number of stripes we have to stride
	 * to get to this block
	 */
	do_div(stripe_nr, map->stripe_len);

	stripe_offset = stripe_nr * map->stripe_len;
	BUG_ON(offset < stripe_offset);

	/* stripe_offset is the offset of this block in its stripe*/
	stripe_offset = offset - stripe_offset;

1961
	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
C
Chris Mason 已提交
1962
			 BTRFS_BLOCK_GROUP_RAID10 |
1963 1964 1965 1966 1967 1968 1969
			 BTRFS_BLOCK_GROUP_DUP)) {
		/* we limit the length of each bio to what fits in a stripe */
		*length = min_t(u64, em->len - offset,
			      map->stripe_len - stripe_offset);
	} else {
		*length = em->len - offset;
	}
1970 1971

	if (!multi_ret && !unplug_page)
1972 1973
		goto out;

1974
	num_stripes = 1;
1975
	stripe_index = 0;
1976
	if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
1977 1978
		if (unplug_page || (rw & (1 << BIO_RW)))
			num_stripes = map->num_stripes;
1979
		else if (mirror_num)
1980
			stripe_index = mirror_num - 1;
1981 1982 1983 1984 1985
		else {
			stripe_index = find_live_mirror(map, 0,
					    map->num_stripes,
					    current->pid % map->num_stripes);
		}
1986

1987
	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
1988
		if (rw & (1 << BIO_RW))
1989
			num_stripes = map->num_stripes;
1990 1991
		else if (mirror_num)
			stripe_index = mirror_num - 1;
1992

C
Chris Mason 已提交
1993 1994 1995 1996 1997 1998
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
		int factor = map->num_stripes / map->sub_stripes;

		stripe_index = do_div(stripe_nr, factor);
		stripe_index *= map->sub_stripes;

1999 2000
		if (unplug_page || (rw & (1 << BIO_RW)))
			num_stripes = map->sub_stripes;
C
Chris Mason 已提交
2001 2002
		else if (mirror_num)
			stripe_index += mirror_num - 1;
2003 2004 2005 2006 2007
		else {
			stripe_index = find_live_mirror(map, stripe_index,
					      map->sub_stripes, stripe_index +
					      current->pid % map->sub_stripes);
		}
2008 2009 2010 2011 2012 2013 2014 2015
	} else {
		/*
		 * after this do_div call, stripe_nr is the number of stripes
		 * on this device we have to walk to find the data, and
		 * stripe_index is the number of our device in the stripe array
		 */
		stripe_index = do_div(stripe_nr, map->num_stripes);
	}
2016
	BUG_ON(stripe_index >= map->num_stripes);
2017

2018 2019 2020 2021 2022 2023
	for (i = 0; i < num_stripes; i++) {
		if (unplug_page) {
			struct btrfs_device *device;
			struct backing_dev_info *bdi;

			device = map->stripes[stripe_index].dev;
2024 2025 2026 2027 2028
			if (device->bdev) {
				bdi = blk_get_backing_dev_info(device->bdev);
				if (bdi->unplug_io_fn) {
					bdi->unplug_io_fn(bdi, unplug_page);
				}
2029 2030 2031 2032 2033 2034 2035
			}
		} else {
			multi->stripes[i].physical =
				map->stripes[stripe_index].physical +
				stripe_offset + stripe_nr * map->stripe_len;
			multi->stripes[i].dev = map->stripes[stripe_index].dev;
		}
2036
		stripe_index++;
2037
	}
2038 2039 2040
	if (multi_ret) {
		*multi_ret = multi;
		multi->num_stripes = num_stripes;
2041
		multi->max_errors = max_errors;
2042
	}
2043
out:
2044 2045 2046 2047
	free_extent_map(em);
	return 0;
}

2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
		      u64 logical, u64 *length,
		      struct btrfs_multi_bio **multi_ret, int mirror_num)
{
	return __btrfs_map_block(map_tree, rw, logical, length, multi_ret,
				 mirror_num, NULL);
}

int btrfs_unplug_page(struct btrfs_mapping_tree *map_tree,
		      u64 logical, struct page *page)
{
	u64 length = PAGE_CACHE_SIZE;
	return __btrfs_map_block(map_tree, READ, logical, &length,
				 NULL, 0, page);
}


2065 2066 2067 2068 2069 2070 2071
#if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
static void end_bio_multi_stripe(struct bio *bio, int err)
#else
static int end_bio_multi_stripe(struct bio *bio,
				   unsigned int bytes_done, int err)
#endif
{
2072
	struct btrfs_multi_bio *multi = bio->bi_private;
2073 2074 2075 2076 2077 2078

#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
	if (bio->bi_size)
		return 1;
#endif
	if (err)
2079
		atomic_inc(&multi->error);
2080

2081
	if (atomic_dec_and_test(&multi->stripes_pending)) {
2082 2083
		bio->bi_private = multi->private;
		bio->bi_end_io = multi->end_io;
2084 2085 2086
		/* only send an error to the higher layers if it is
		 * beyond the tolerance of the multi-bio
		 */
2087
		if (atomic_read(&multi->error) > multi->max_errors) {
2088
			err = -EIO;
2089 2090 2091 2092 2093 2094
		} else if (err) {
			/*
			 * this bio is actually up to date, we didn't
			 * go over the max number of errors
			 */
			set_bit(BIO_UPTODATE, &bio->bi_flags);
2095
			err = 0;
2096
		}
2097 2098
		kfree(multi);

2099 2100 2101
#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
		bio_endio(bio, bio->bi_size, err);
#else
2102
		bio_endio(bio, err);
2103
#endif
2104 2105 2106 2107 2108 2109 2110 2111
	} else {
		bio_put(bio);
	}
#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
	return 0;
#endif
}

2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
struct async_sched {
	struct bio *bio;
	int rw;
	struct btrfs_fs_info *info;
	struct btrfs_work work;
};

/*
 * see run_scheduled_bios for a description of why bios are collected for
 * async submit.
 *
 * This will add one bio to the pending list for a device and make sure
 * the work struct is scheduled.
 */
int schedule_bio(struct btrfs_root *root, struct btrfs_device *device,
		 int rw, struct bio *bio)
{
	int should_queue = 1;

	/* don't bother with additional async steps for reads, right now */
	if (!(rw & (1 << BIO_RW))) {
2133
		bio_get(bio);
2134
		submit_bio(rw, bio);
2135
		bio_put(bio);
2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
		return 0;
	}

	/*
	 * nr_async_sumbits allows us to reliably return congestion to the
	 * higher layers.  Otherwise, the async bio makes it appear we have
	 * made progress against dirty pages when we've really just put it
	 * on a queue for later
	 */
	atomic_inc(&root->fs_info->nr_async_submits);
2146
	WARN_ON(bio->bi_next);
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163
	bio->bi_next = NULL;
	bio->bi_rw |= rw;

	spin_lock(&device->io_lock);

	if (device->pending_bio_tail)
		device->pending_bio_tail->bi_next = bio;

	device->pending_bio_tail = bio;
	if (!device->pending_bios)
		device->pending_bios = bio;
	if (device->running_pending)
		should_queue = 0;

	spin_unlock(&device->io_lock);

	if (should_queue)
2164 2165
		btrfs_queue_worker(&root->fs_info->submit_workers,
				   &device->work);
2166 2167 2168
	return 0;
}

2169
int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
2170
		  int mirror_num, int async_submit)
2171 2172 2173
{
	struct btrfs_mapping_tree *map_tree;
	struct btrfs_device *dev;
2174
	struct bio *first_bio = bio;
2175 2176 2177
	u64 logical = bio->bi_sector << 9;
	u64 length = 0;
	u64 map_length;
2178
	struct btrfs_multi_bio *multi = NULL;
2179
	int ret;
2180 2181
	int dev_nr = 0;
	int total_devs = 1;
2182

2183
	length = bio->bi_size;
2184 2185
	map_tree = &root->fs_info->mapping_tree;
	map_length = length;
2186

2187 2188
	ret = btrfs_map_block(map_tree, rw, logical, &map_length, &multi,
			      mirror_num);
2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
	BUG_ON(ret);

	total_devs = multi->num_stripes;
	if (map_length < length) {
		printk("mapping failed logical %Lu bio len %Lu "
		       "len %Lu\n", logical, length, map_length);
		BUG();
	}
	multi->end_io = first_bio->bi_end_io;
	multi->private = first_bio->bi_private;
	atomic_set(&multi->stripes_pending, multi->num_stripes);

2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
	while(dev_nr < total_devs) {
		if (total_devs > 1) {
			if (dev_nr < total_devs - 1) {
				bio = bio_clone(first_bio, GFP_NOFS);
				BUG_ON(!bio);
			} else {
				bio = first_bio;
			}
			bio->bi_private = multi;
			bio->bi_end_io = end_bio_multi_stripe;
		}
2212 2213
		bio->bi_sector = multi->stripes[dev_nr].physical >> 9;
		dev = multi->stripes[dev_nr].dev;
2214 2215
		if (dev && dev->bdev) {
			bio->bi_bdev = dev->bdev;
2216 2217 2218 2219
			if (async_submit)
				schedule_bio(root, dev, rw, bio);
			else
				submit_bio(rw, bio);
2220 2221 2222 2223 2224 2225 2226 2227 2228
		} else {
			bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
			bio->bi_sector = logical >> 9;
#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
			bio_endio(bio, bio->bi_size, -EIO);
#else
			bio_endio(bio, -EIO);
#endif
		}
2229 2230
		dev_nr++;
	}
2231 2232
	if (total_devs == 1)
		kfree(multi);
2233 2234 2235
	return 0;
}

2236 2237
struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
				       u8 *uuid)
2238
{
2239
	struct list_head *head = &root->fs_info->fs_devices->devices;
2240

2241
	return __find_device(head, devid, uuid);
2242 2243
}

2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257
static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
					    u64 devid, u8 *dev_uuid)
{
	struct btrfs_device *device;
	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;

	device = kzalloc(sizeof(*device), GFP_NOFS);
	list_add(&device->dev_list,
		 &fs_devices->devices);
	list_add(&device->dev_alloc_list,
		 &fs_devices->alloc_list);
	device->barriers = 1;
	device->dev_root = root->fs_info->dev_root;
	device->devid = devid;
2258
	device->work.func = pending_bios_fn;
2259 2260 2261 2262 2263 2264 2265
	fs_devices->num_devices++;
	spin_lock_init(&device->io_lock);
	memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
	return device;
}


2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
			  struct extent_buffer *leaf,
			  struct btrfs_chunk *chunk)
{
	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
	struct map_lookup *map;
	struct extent_map *em;
	u64 logical;
	u64 length;
	u64 devid;
2276
	u8 uuid[BTRFS_UUID_SIZE];
2277
	int num_stripes;
2278
	int ret;
2279
	int i;
2280

2281 2282
	logical = key->offset;
	length = btrfs_chunk_length(leaf, chunk);
2283

2284 2285
	spin_lock(&map_tree->map_tree.lock);
	em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
2286
	spin_unlock(&map_tree->map_tree.lock);
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302

	/* already mapped? */
	if (em && em->start <= logical && em->start + em->len > logical) {
		free_extent_map(em);
		return 0;
	} else if (em) {
		free_extent_map(em);
	}

	map = kzalloc(sizeof(*map), GFP_NOFS);
	if (!map)
		return -ENOMEM;

	em = alloc_extent_map(GFP_NOFS);
	if (!em)
		return -ENOMEM;
2303 2304
	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
	if (!map) {
		free_extent_map(em);
		return -ENOMEM;
	}

	em->bdev = (struct block_device *)map;
	em->start = logical;
	em->len = length;
	em->block_start = 0;

2315 2316 2317 2318 2319 2320
	map->num_stripes = num_stripes;
	map->io_width = btrfs_chunk_io_width(leaf, chunk);
	map->io_align = btrfs_chunk_io_align(leaf, chunk);
	map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
	map->type = btrfs_chunk_type(leaf, chunk);
C
Chris Mason 已提交
2321
	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
2322 2323 2324 2325
	for (i = 0; i < num_stripes; i++) {
		map->stripes[i].physical =
			btrfs_stripe_offset_nr(leaf, chunk, i);
		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
2326 2327 2328 2329
		read_extent_buffer(leaf, uuid, (unsigned long)
				   btrfs_stripe_dev_uuid_nr(chunk, i),
				   BTRFS_UUID_SIZE);
		map->stripes[i].dev = btrfs_find_device(root, devid, uuid);
2330 2331

		if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
2332 2333 2334 2335
			kfree(map);
			free_extent_map(em);
			return -EIO;
		}
2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
		if (!map->stripes[i].dev) {
			map->stripes[i].dev =
				add_missing_dev(root, devid, uuid);
			if (!map->stripes[i].dev) {
				kfree(map);
				free_extent_map(em);
				return -EIO;
			}
		}
		map->stripes[i].dev->in_fs_metadata = 1;
2346 2347 2348 2349 2350
	}

	spin_lock(&map_tree->map_tree.lock);
	ret = add_extent_mapping(&map_tree->map_tree, em);
	spin_unlock(&map_tree->map_tree.lock);
2351
	BUG_ON(ret);
2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
	free_extent_map(em);

	return 0;
}

static int fill_device_from_item(struct extent_buffer *leaf,
				 struct btrfs_dev_item *dev_item,
				 struct btrfs_device *device)
{
	unsigned long ptr;

	device->devid = btrfs_device_id(leaf, dev_item);
	device->total_bytes = btrfs_device_total_bytes(leaf, dev_item);
	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
	device->type = btrfs_device_type(leaf, dev_item);
	device->io_align = btrfs_device_io_align(leaf, dev_item);
	device->io_width = btrfs_device_io_width(leaf, dev_item);
	device->sector_size = btrfs_device_sector_size(leaf, dev_item);

	ptr = (unsigned long)btrfs_device_uuid(dev_item);
2372
	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
2373 2374 2375 2376

	return 0;
}

2377
static int read_one_dev(struct btrfs_root *root,
2378 2379 2380 2381 2382 2383
			struct extent_buffer *leaf,
			struct btrfs_dev_item *dev_item)
{
	struct btrfs_device *device;
	u64 devid;
	int ret;
2384 2385
	u8 dev_uuid[BTRFS_UUID_SIZE];

2386
	devid = btrfs_device_id(leaf, dev_item);
2387 2388 2389 2390
	read_extent_buffer(leaf, dev_uuid,
			   (unsigned long)btrfs_device_uuid(dev_item),
			   BTRFS_UUID_SIZE);
	device = btrfs_find_device(root, devid, dev_uuid);
2391
	if (!device) {
2392 2393
		printk("warning devid %Lu missing\n", devid);
		device = add_missing_dev(root, devid, dev_uuid);
2394 2395 2396
		if (!device)
			return -ENOMEM;
	}
2397 2398 2399

	fill_device_from_item(leaf, dev_item, device);
	device->dev_root = root->fs_info->dev_root;
2400
	device->in_fs_metadata = 1;
2401 2402 2403 2404 2405 2406 2407 2408 2409 2410
	ret = 0;
#if 0
	ret = btrfs_open_device(device);
	if (ret) {
		kfree(device);
	}
#endif
	return ret;
}

2411 2412 2413 2414 2415 2416 2417 2418 2419
int btrfs_read_super_device(struct btrfs_root *root, struct extent_buffer *buf)
{
	struct btrfs_dev_item *dev_item;

	dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block,
						     dev_item);
	return read_one_dev(root, buf, dev_item);
}

2420 2421 2422
int btrfs_read_sys_array(struct btrfs_root *root)
{
	struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
2423
	struct extent_buffer *sb;
2424 2425
	struct btrfs_disk_key *disk_key;
	struct btrfs_chunk *chunk;
2426 2427 2428
	u8 *ptr;
	unsigned long sb_ptr;
	int ret = 0;
2429 2430 2431 2432
	u32 num_stripes;
	u32 array_size;
	u32 len = 0;
	u32 cur;
2433
	struct btrfs_key key;
2434

2435 2436 2437 2438 2439 2440
	sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
					  BTRFS_SUPER_INFO_SIZE);
	if (!sb)
		return -ENOMEM;
	btrfs_set_buffer_uptodate(sb);
	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
	array_size = btrfs_super_sys_array_size(super_copy);

	ptr = super_copy->sys_chunk_array;
	sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
	cur = 0;

	while (cur < array_size) {
		disk_key = (struct btrfs_disk_key *)ptr;
		btrfs_disk_key_to_cpu(&key, disk_key);

2451
		len = sizeof(*disk_key); ptr += len;
2452 2453 2454
		sb_ptr += len;
		cur += len;

2455
		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2456
			chunk = (struct btrfs_chunk *)sb_ptr;
2457
			ret = read_one_chunk(root, &key, sb, chunk);
2458 2459
			if (ret)
				break;
2460 2461 2462
			num_stripes = btrfs_chunk_num_stripes(sb, chunk);
			len = btrfs_chunk_item_size(num_stripes);
		} else {
2463 2464
			ret = -EIO;
			break;
2465 2466 2467 2468 2469
		}
		ptr += len;
		sb_ptr += len;
		cur += len;
	}
2470
	free_extent_buffer(sb);
2471
	return ret;
2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516
}

int btrfs_read_chunk_tree(struct btrfs_root *root)
{
	struct btrfs_path *path;
	struct extent_buffer *leaf;
	struct btrfs_key key;
	struct btrfs_key found_key;
	int ret;
	int slot;

	root = root->fs_info->chunk_root;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	/* first we search for all of the device items, and then we
	 * read in all of the chunk items.  This way we can create chunk
	 * mappings that reference all of the devices that are afound
	 */
	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.offset = 0;
	key.type = 0;
again:
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	while(1) {
		leaf = path->nodes[0];
		slot = path->slots[0];
		if (slot >= btrfs_header_nritems(leaf)) {
			ret = btrfs_next_leaf(root, path);
			if (ret == 0)
				continue;
			if (ret < 0)
				goto error;
			break;
		}
		btrfs_item_key_to_cpu(leaf, &found_key, slot);
		if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
			if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
				break;
			if (found_key.type == BTRFS_DEV_ITEM_KEY) {
				struct btrfs_dev_item *dev_item;
				dev_item = btrfs_item_ptr(leaf, slot,
						  struct btrfs_dev_item);
2517
				ret = read_one_dev(root, leaf, dev_item);
2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537
				BUG_ON(ret);
			}
		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
			struct btrfs_chunk *chunk;
			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
			ret = read_one_chunk(root, &found_key, leaf, chunk);
		}
		path->slots[0]++;
	}
	if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
		key.objectid = 0;
		btrfs_release_path(root, path);
		goto again;
	}

	btrfs_free_path(path);
	ret = 0;
error:
	return ret;
}