x86.c 104.4 KB
Newer Older
1 2 3 4 5 6
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * derived from drivers/kvm/kvm_main.c
 *
 * Copyright (C) 2006 Qumranet, Inc.
B
Ben-Ami Yassour 已提交
7 8
 * Copyright (C) 2008 Qumranet, Inc.
 * Copyright IBM Corporation, 2008
9 10 11 12
 *
 * Authors:
 *   Avi Kivity   <avi@qumranet.com>
 *   Yaniv Kamay  <yaniv@qumranet.com>
B
Ben-Ami Yassour 已提交
13 14
 *   Amit Shah    <amit.shah@qumranet.com>
 *   Ben-Ami Yassour <benami@il.ibm.com>
15 16 17 18 19 20
 *
 * This work is licensed under the terms of the GNU GPL, version 2.  See
 * the COPYING file in the top-level directory.
 *
 */

21
#include <linux/kvm_host.h>
22
#include "irq.h"
23
#include "mmu.h"
S
Sheng Yang 已提交
24
#include "i8254.h"
25
#include "tss.h"
26
#include "kvm_cache_regs.h"
27
#include "x86.h"
28

29
#include <linux/clocksource.h>
B
Ben-Ami Yassour 已提交
30
#include <linux/interrupt.h>
31 32
#include <linux/kvm.h>
#include <linux/fs.h>
B
Ben-Ami Yassour 已提交
33
#include <linux/pci.h>
34
#include <linux/vmalloc.h>
35
#include <linux/module.h>
36
#include <linux/mman.h>
37
#include <linux/highmem.h>
38 39

#include <asm/uaccess.h>
40
#include <asm/msr.h>
41
#include <asm/desc.h>
42

43
#define MAX_IO_MSRS 256
44 45 46 47 48 49 50 51 52 53 54
#define CR0_RESERVED_BITS						\
	(~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
			  | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
			  | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
#define CR4_RESERVED_BITS						\
	(~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
			  | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE	\
			  | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR	\
			  | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))

#define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
55 56 57 58 59 60 61 62 63
/* EFER defaults:
 * - enable syscall per default because its emulated by KVM
 * - enable LME and LMA per default on 64 bit KVM
 */
#ifdef CONFIG_X86_64
static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
#else
static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
#endif
64

65 66
#define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
67

68 69 70
static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
				    struct kvm_cpuid_entry2 __user *entries);

71
struct kvm_x86_ops *kvm_x86_ops;
72
EXPORT_SYMBOL_GPL(kvm_x86_ops);
73

74
struct kvm_stats_debugfs_item debugfs_entries[] = {
75 76 77 78 79 80 81 82 83
	{ "pf_fixed", VCPU_STAT(pf_fixed) },
	{ "pf_guest", VCPU_STAT(pf_guest) },
	{ "tlb_flush", VCPU_STAT(tlb_flush) },
	{ "invlpg", VCPU_STAT(invlpg) },
	{ "exits", VCPU_STAT(exits) },
	{ "io_exits", VCPU_STAT(io_exits) },
	{ "mmio_exits", VCPU_STAT(mmio_exits) },
	{ "signal_exits", VCPU_STAT(signal_exits) },
	{ "irq_window", VCPU_STAT(irq_window_exits) },
84
	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
85 86
	{ "halt_exits", VCPU_STAT(halt_exits) },
	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
A
Amit Shah 已提交
87
	{ "hypercalls", VCPU_STAT(hypercalls) },
88 89 90 91 92 93 94
	{ "request_irq", VCPU_STAT(request_irq_exits) },
	{ "irq_exits", VCPU_STAT(irq_exits) },
	{ "host_state_reload", VCPU_STAT(host_state_reload) },
	{ "efer_reload", VCPU_STAT(efer_reload) },
	{ "fpu_reload", VCPU_STAT(fpu_reload) },
	{ "insn_emulation", VCPU_STAT(insn_emulation) },
	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
A
Avi Kivity 已提交
95 96 97 98 99 100
	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
	{ "mmu_flooded", VM_STAT(mmu_flooded) },
	{ "mmu_recycled", VM_STAT(mmu_recycled) },
A
Avi Kivity 已提交
101
	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
102
	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
M
Marcelo Tosatti 已提交
103
	{ "largepages", VM_STAT(lpages) },
104 105 106
	{ NULL }
};

107
static struct kvm_assigned_dev_kernel *kvm_find_assigned_dev(struct list_head *head,
B
Ben-Ami Yassour 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
						      int assigned_dev_id)
{
	struct list_head *ptr;
	struct kvm_assigned_dev_kernel *match;

	list_for_each(ptr, head) {
		match = list_entry(ptr, struct kvm_assigned_dev_kernel, list);
		if (match->assigned_dev_id == assigned_dev_id)
			return match;
	}
	return NULL;
}

static void kvm_assigned_dev_interrupt_work_handler(struct work_struct *work)
{
	struct kvm_assigned_dev_kernel *assigned_dev;

	assigned_dev = container_of(work, struct kvm_assigned_dev_kernel,
				    interrupt_work);

	/* This is taken to safely inject irq inside the guest. When
	 * the interrupt injection (or the ioapic code) uses a
	 * finer-grained lock, update this
	 */
	mutex_lock(&assigned_dev->kvm->lock);
	kvm_set_irq(assigned_dev->kvm,
		    assigned_dev->guest_irq, 1);
	mutex_unlock(&assigned_dev->kvm->lock);
	kvm_put_kvm(assigned_dev->kvm);
}

/* FIXME: Implement the OR logic needed to make shared interrupts on
 * this line behave properly
 */
static irqreturn_t kvm_assigned_dev_intr(int irq, void *dev_id)
{
	struct kvm_assigned_dev_kernel *assigned_dev =
		(struct kvm_assigned_dev_kernel *) dev_id;

	kvm_get_kvm(assigned_dev->kvm);
	schedule_work(&assigned_dev->interrupt_work);
	disable_irq_nosync(irq);
	return IRQ_HANDLED;
}

/* Ack the irq line for an assigned device */
static void kvm_assigned_dev_ack_irq(struct kvm_irq_ack_notifier *kian)
{
	struct kvm_assigned_dev_kernel *dev;

	if (kian->gsi == -1)
		return;

	dev = container_of(kian, struct kvm_assigned_dev_kernel,
			   ack_notifier);
	kvm_set_irq(dev->kvm, dev->guest_irq, 0);
	enable_irq(dev->host_irq);
}

static int kvm_vm_ioctl_assign_irq(struct kvm *kvm,
				   struct kvm_assigned_irq
				   *assigned_irq)
{
	int r = 0;
	struct kvm_assigned_dev_kernel *match;

	mutex_lock(&kvm->lock);

	match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
				      assigned_irq->assigned_dev_id);
	if (!match) {
		mutex_unlock(&kvm->lock);
		return -EINVAL;
	}

	if (match->irq_requested) {
		match->guest_irq = assigned_irq->guest_irq;
		match->ack_notifier.gsi = assigned_irq->guest_irq;
		mutex_unlock(&kvm->lock);
		return 0;
	}

	INIT_WORK(&match->interrupt_work,
		  kvm_assigned_dev_interrupt_work_handler);

	if (irqchip_in_kernel(kvm)) {
194 195 196 197 198
		if (!capable(CAP_SYS_RAWIO)) {
			return -EPERM;
			goto out;
		}

B
Ben-Ami Yassour 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
		if (assigned_irq->host_irq)
			match->host_irq = assigned_irq->host_irq;
		else
			match->host_irq = match->dev->irq;
		match->guest_irq = assigned_irq->guest_irq;
		match->ack_notifier.gsi = assigned_irq->guest_irq;
		match->ack_notifier.irq_acked = kvm_assigned_dev_ack_irq;
		kvm_register_irq_ack_notifier(kvm, &match->ack_notifier);

		/* Even though this is PCI, we don't want to use shared
		 * interrupts. Sharing host devices with guest-assigned devices
		 * on the same interrupt line is not a happy situation: there
		 * are going to be long delays in accepting, acking, etc.
		 */
		if (request_irq(match->host_irq, kvm_assigned_dev_intr, 0,
				"kvm_assigned_device", (void *)match)) {
			printk(KERN_INFO "%s: couldn't allocate irq for pv "
			       "device\n", __func__);
			r = -EIO;
			goto out;
		}
	}

	match->irq_requested = true;
out:
	mutex_unlock(&kvm->lock);
	return r;
}

static int kvm_vm_ioctl_assign_device(struct kvm *kvm,
				      struct kvm_assigned_pci_dev *assigned_dev)
{
	int r = 0;
	struct kvm_assigned_dev_kernel *match;
	struct pci_dev *dev;

	mutex_lock(&kvm->lock);

	match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
				      assigned_dev->assigned_dev_id);
	if (match) {
		/* device already assigned */
		r = -EINVAL;
		goto out;
	}

	match = kzalloc(sizeof(struct kvm_assigned_dev_kernel), GFP_KERNEL);
	if (match == NULL) {
		printk(KERN_INFO "%s: Couldn't allocate memory\n",
		       __func__);
		r = -ENOMEM;
		goto out;
	}
	dev = pci_get_bus_and_slot(assigned_dev->busnr,
				   assigned_dev->devfn);
	if (!dev) {
		printk(KERN_INFO "%s: host device not found\n", __func__);
		r = -EINVAL;
		goto out_free;
	}
	if (pci_enable_device(dev)) {
		printk(KERN_INFO "%s: Could not enable PCI device\n", __func__);
		r = -EBUSY;
		goto out_put;
	}
	r = pci_request_regions(dev, "kvm_assigned_device");
	if (r) {
		printk(KERN_INFO "%s: Could not get access to device regions\n",
		       __func__);
		goto out_disable;
	}
	match->assigned_dev_id = assigned_dev->assigned_dev_id;
	match->host_busnr = assigned_dev->busnr;
	match->host_devfn = assigned_dev->devfn;
	match->dev = dev;

	match->kvm = kvm;

	list_add(&match->list, &kvm->arch.assigned_dev_head);

out:
	mutex_unlock(&kvm->lock);
	return r;
out_disable:
	pci_disable_device(dev);
out_put:
	pci_dev_put(dev);
out_free:
	kfree(match);
	mutex_unlock(&kvm->lock);
	return r;
}

static void kvm_free_assigned_devices(struct kvm *kvm)
{
	struct list_head *ptr, *ptr2;
	struct kvm_assigned_dev_kernel *assigned_dev;

	list_for_each_safe(ptr, ptr2, &kvm->arch.assigned_dev_head) {
		assigned_dev = list_entry(ptr,
					  struct kvm_assigned_dev_kernel,
					  list);

		if (irqchip_in_kernel(kvm) && assigned_dev->irq_requested) {
			free_irq(assigned_dev->host_irq,
				 (void *)assigned_dev);

			kvm_unregister_irq_ack_notifier(kvm,
							&assigned_dev->
							ack_notifier);
		}

		if (cancel_work_sync(&assigned_dev->interrupt_work))
			/* We had pending work. That means we will have to take
			 * care of kvm_put_kvm.
			 */
			kvm_put_kvm(kvm);

		pci_release_regions(assigned_dev->dev);
		pci_disable_device(assigned_dev->dev);
		pci_dev_put(assigned_dev->dev);

		list_del(&assigned_dev->list);
		kfree(assigned_dev);
	}
}
325

326 327 328
unsigned long segment_base(u16 selector)
{
	struct descriptor_table gdt;
329
	struct desc_struct *d;
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
	unsigned long table_base;
	unsigned long v;

	if (selector == 0)
		return 0;

	asm("sgdt %0" : "=m"(gdt));
	table_base = gdt.base;

	if (selector & 4) {           /* from ldt */
		u16 ldt_selector;

		asm("sldt %0" : "=g"(ldt_selector));
		table_base = segment_base(ldt_selector);
	}
345 346 347
	d = (struct desc_struct *)(table_base + (selector & ~7));
	v = d->base0 | ((unsigned long)d->base1 << 16) |
		((unsigned long)d->base2 << 24);
348
#ifdef CONFIG_X86_64
349 350
	if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
		v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
351 352 353 354 355
#endif
	return v;
}
EXPORT_SYMBOL_GPL(segment_base);

356 357 358
u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
{
	if (irqchip_in_kernel(vcpu->kvm))
359
		return vcpu->arch.apic_base;
360
	else
361
		return vcpu->arch.apic_base;
362 363 364 365 366 367 368 369 370
}
EXPORT_SYMBOL_GPL(kvm_get_apic_base);

void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
{
	/* TODO: reserve bits check */
	if (irqchip_in_kernel(vcpu->kvm))
		kvm_lapic_set_base(vcpu, data);
	else
371
		vcpu->arch.apic_base = data;
372 373 374
}
EXPORT_SYMBOL_GPL(kvm_set_apic_base);

375 376
void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
{
377 378 379 380
	WARN_ON(vcpu->arch.exception.pending);
	vcpu->arch.exception.pending = true;
	vcpu->arch.exception.has_error_code = false;
	vcpu->arch.exception.nr = nr;
381 382 383
}
EXPORT_SYMBOL_GPL(kvm_queue_exception);

384 385 386 387
void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
			   u32 error_code)
{
	++vcpu->stat.pf_guest;
J
Joerg Roedel 已提交
388 389 390 391 392 393 394 395 396 397
	if (vcpu->arch.exception.pending) {
		if (vcpu->arch.exception.nr == PF_VECTOR) {
			printk(KERN_DEBUG "kvm: inject_page_fault:"
					" double fault 0x%lx\n", addr);
			vcpu->arch.exception.nr = DF_VECTOR;
			vcpu->arch.exception.error_code = 0;
		} else if (vcpu->arch.exception.nr == DF_VECTOR) {
			/* triple fault -> shutdown */
			set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
		}
398 399
		return;
	}
400
	vcpu->arch.cr2 = addr;
401 402 403
	kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
}

404 405 406 407 408 409
void kvm_inject_nmi(struct kvm_vcpu *vcpu)
{
	vcpu->arch.nmi_pending = 1;
}
EXPORT_SYMBOL_GPL(kvm_inject_nmi);

410 411
void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
{
412 413 414 415 416
	WARN_ON(vcpu->arch.exception.pending);
	vcpu->arch.exception.pending = true;
	vcpu->arch.exception.has_error_code = true;
	vcpu->arch.exception.nr = nr;
	vcpu->arch.exception.error_code = error_code;
417 418 419 420 421
}
EXPORT_SYMBOL_GPL(kvm_queue_exception_e);

static void __queue_exception(struct kvm_vcpu *vcpu)
{
422 423 424
	kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
				     vcpu->arch.exception.has_error_code,
				     vcpu->arch.exception.error_code);
425 426
}

427 428 429 430 431 432 433 434 435
/*
 * Load the pae pdptrs.  Return true is they are all valid.
 */
int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
{
	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
	int i;
	int ret;
436
	u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451

	ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
				  offset * sizeof(u64), sizeof(pdpte));
	if (ret < 0) {
		ret = 0;
		goto out;
	}
	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
		if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
			ret = 0;
			goto out;
		}
	}
	ret = 1;

452
	memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
453 454 455 456
out:

	return ret;
}
457
EXPORT_SYMBOL_GPL(load_pdptrs);
458

459 460
static bool pdptrs_changed(struct kvm_vcpu *vcpu)
{
461
	u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
462 463 464 465 466 467
	bool changed = true;
	int r;

	if (is_long_mode(vcpu) || !is_pae(vcpu))
		return false;

468
	r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
469 470
	if (r < 0)
		goto out;
471
	changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
472 473 474 475 476
out:

	return changed;
}

477
void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
478 479 480
{
	if (cr0 & CR0_RESERVED_BITS) {
		printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
481
		       cr0, vcpu->arch.cr0);
482
		kvm_inject_gp(vcpu, 0);
483 484 485 486 487
		return;
	}

	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
		printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
488
		kvm_inject_gp(vcpu, 0);
489 490 491 492 493 494
		return;
	}

	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
		printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
		       "and a clear PE flag\n");
495
		kvm_inject_gp(vcpu, 0);
496 497 498 499 500
		return;
	}

	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
#ifdef CONFIG_X86_64
501
		if ((vcpu->arch.shadow_efer & EFER_LME)) {
502 503 504 505 506
			int cs_db, cs_l;

			if (!is_pae(vcpu)) {
				printk(KERN_DEBUG "set_cr0: #GP, start paging "
				       "in long mode while PAE is disabled\n");
507
				kvm_inject_gp(vcpu, 0);
508 509 510 511 512 513
				return;
			}
			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
			if (cs_l) {
				printk(KERN_DEBUG "set_cr0: #GP, start paging "
				       "in long mode while CS.L == 1\n");
514
				kvm_inject_gp(vcpu, 0);
515 516 517 518 519
				return;

			}
		} else
#endif
520
		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
521 522
			printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
			       "reserved bits\n");
523
			kvm_inject_gp(vcpu, 0);
524 525 526 527 528 529
			return;
		}

	}

	kvm_x86_ops->set_cr0(vcpu, cr0);
530
	vcpu->arch.cr0 = cr0;
531 532 533 534

	kvm_mmu_reset_context(vcpu);
	return;
}
535
EXPORT_SYMBOL_GPL(kvm_set_cr0);
536

537
void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
538
{
539
	kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
F
Feng (Eric) Liu 已提交
540 541 542
	KVMTRACE_1D(LMSW, vcpu,
		    (u32)((vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f)),
		    handler);
543
}
544
EXPORT_SYMBOL_GPL(kvm_lmsw);
545

546
void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
547 548 549
{
	if (cr4 & CR4_RESERVED_BITS) {
		printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
550
		kvm_inject_gp(vcpu, 0);
551 552 553 554 555 556 557
		return;
	}

	if (is_long_mode(vcpu)) {
		if (!(cr4 & X86_CR4_PAE)) {
			printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
			       "in long mode\n");
558
			kvm_inject_gp(vcpu, 0);
559 560 561
			return;
		}
	} else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
562
		   && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
563
		printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
564
		kvm_inject_gp(vcpu, 0);
565 566 567 568 569
		return;
	}

	if (cr4 & X86_CR4_VMXE) {
		printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
570
		kvm_inject_gp(vcpu, 0);
571 572 573
		return;
	}
	kvm_x86_ops->set_cr4(vcpu, cr4);
574
	vcpu->arch.cr4 = cr4;
575 576
	kvm_mmu_reset_context(vcpu);
}
577
EXPORT_SYMBOL_GPL(kvm_set_cr4);
578

579
void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
580
{
581
	if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
582 583 584 585
		kvm_mmu_flush_tlb(vcpu);
		return;
	}

586 587 588
	if (is_long_mode(vcpu)) {
		if (cr3 & CR3_L_MODE_RESERVED_BITS) {
			printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
589
			kvm_inject_gp(vcpu, 0);
590 591 592 593 594 595 596
			return;
		}
	} else {
		if (is_pae(vcpu)) {
			if (cr3 & CR3_PAE_RESERVED_BITS) {
				printk(KERN_DEBUG
				       "set_cr3: #GP, reserved bits\n");
597
				kvm_inject_gp(vcpu, 0);
598 599 600 601 602
				return;
			}
			if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
				printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
				       "reserved bits\n");
603
				kvm_inject_gp(vcpu, 0);
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
				return;
			}
		}
		/*
		 * We don't check reserved bits in nonpae mode, because
		 * this isn't enforced, and VMware depends on this.
		 */
	}

	/*
	 * Does the new cr3 value map to physical memory? (Note, we
	 * catch an invalid cr3 even in real-mode, because it would
	 * cause trouble later on when we turn on paging anyway.)
	 *
	 * A real CPU would silently accept an invalid cr3 and would
	 * attempt to use it - with largely undefined (and often hard
	 * to debug) behavior on the guest side.
	 */
	if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
623
		kvm_inject_gp(vcpu, 0);
624
	else {
625 626
		vcpu->arch.cr3 = cr3;
		vcpu->arch.mmu.new_cr3(vcpu);
627 628
	}
}
629
EXPORT_SYMBOL_GPL(kvm_set_cr3);
630

631
void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
632 633 634
{
	if (cr8 & CR8_RESERVED_BITS) {
		printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
635
		kvm_inject_gp(vcpu, 0);
636 637 638 639 640
		return;
	}
	if (irqchip_in_kernel(vcpu->kvm))
		kvm_lapic_set_tpr(vcpu, cr8);
	else
641
		vcpu->arch.cr8 = cr8;
642
}
643
EXPORT_SYMBOL_GPL(kvm_set_cr8);
644

645
unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
646 647 648 649
{
	if (irqchip_in_kernel(vcpu->kvm))
		return kvm_lapic_get_cr8(vcpu);
	else
650
		return vcpu->arch.cr8;
651
}
652
EXPORT_SYMBOL_GPL(kvm_get_cr8);
653

654 655 656 657 658 659 660 661 662 663 664 665 666
/*
 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
 *
 * This list is modified at module load time to reflect the
 * capabilities of the host cpu.
 */
static u32 msrs_to_save[] = {
	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
	MSR_K6_STAR,
#ifdef CONFIG_X86_64
	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
#endif
667
	MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
668
	MSR_IA32_PERF_STATUS,
669 670 671 672 673 674 675 676
};

static unsigned num_msrs_to_save;

static u32 emulated_msrs[] = {
	MSR_IA32_MISC_ENABLE,
};

677 678
static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
{
679
	if (efer & efer_reserved_bits) {
680 681
		printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
		       efer);
682
		kvm_inject_gp(vcpu, 0);
683 684 685 686
		return;
	}

	if (is_paging(vcpu)
687
	    && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
688
		printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
689
		kvm_inject_gp(vcpu, 0);
690 691 692 693 694 695
		return;
	}

	kvm_x86_ops->set_efer(vcpu, efer);

	efer &= ~EFER_LMA;
696
	efer |= vcpu->arch.shadow_efer & EFER_LMA;
697

698
	vcpu->arch.shadow_efer = efer;
699 700
}

701 702 703 704 705 706 707
void kvm_enable_efer_bits(u64 mask)
{
       efer_reserved_bits &= ~mask;
}
EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);


708 709 710 711 712 713 714 715 716 717
/*
 * Writes msr value into into the appropriate "register".
 * Returns 0 on success, non-0 otherwise.
 * Assumes vcpu_load() was already called.
 */
int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
{
	return kvm_x86_ops->set_msr(vcpu, msr_index, data);
}

718 719 720 721 722 723 724 725
/*
 * Adapt set_msr() to msr_io()'s calling convention
 */
static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
{
	return kvm_set_msr(vcpu, index, *data);
}

726 727 728
static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
{
	static int version;
729 730
	struct pvclock_wall_clock wc;
	struct timespec now, sys, boot;
731 732 733 734 735 736 737 738

	if (!wall_clock)
		return;

	version++;

	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));

739 740 741 742 743 744 745 746 747 748 749 750 751
	/*
	 * The guest calculates current wall clock time by adding
	 * system time (updated by kvm_write_guest_time below) to the
	 * wall clock specified here.  guest system time equals host
	 * system time for us, thus we must fill in host boot time here.
	 */
	now = current_kernel_time();
	ktime_get_ts(&sys);
	boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));

	wc.sec = boot.tv_sec;
	wc.nsec = boot.tv_nsec;
	wc.version = version;
752 753 754 755 756 757 758

	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));

	version++;
	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
}

759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
{
	uint32_t quotient, remainder;

	/* Don't try to replace with do_div(), this one calculates
	 * "(dividend << 32) / divisor" */
	__asm__ ( "divl %4"
		  : "=a" (quotient), "=d" (remainder)
		  : "0" (0), "1" (dividend), "r" (divisor) );
	return quotient;
}

static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
{
	uint64_t nsecs = 1000000000LL;
	int32_t  shift = 0;
	uint64_t tps64;
	uint32_t tps32;

	tps64 = tsc_khz * 1000LL;
	while (tps64 > nsecs*2) {
		tps64 >>= 1;
		shift--;
	}

	tps32 = (uint32_t)tps64;
	while (tps32 <= (uint32_t)nsecs) {
		tps32 <<= 1;
		shift++;
	}

	hv_clock->tsc_shift = shift;
	hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);

	pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
		 __FUNCTION__, tsc_khz, hv_clock->tsc_shift,
		 hv_clock->tsc_to_system_mul);
}

798 799 800 801 802 803 804 805 806 807
static void kvm_write_guest_time(struct kvm_vcpu *v)
{
	struct timespec ts;
	unsigned long flags;
	struct kvm_vcpu_arch *vcpu = &v->arch;
	void *shared_kaddr;

	if ((!vcpu->time_page))
		return;

808 809 810 811 812
	if (unlikely(vcpu->hv_clock_tsc_khz != tsc_khz)) {
		kvm_set_time_scale(tsc_khz, &vcpu->hv_clock);
		vcpu->hv_clock_tsc_khz = tsc_khz;
	}

813 814 815 816 817 818 819 820 821 822 823 824 825 826
	/* Keep irq disabled to prevent changes to the clock */
	local_irq_save(flags);
	kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER,
			  &vcpu->hv_clock.tsc_timestamp);
	ktime_get_ts(&ts);
	local_irq_restore(flags);

	/* With all the info we got, fill in the values */

	vcpu->hv_clock.system_time = ts.tv_nsec +
				     (NSEC_PER_SEC * (u64)ts.tv_sec);
	/*
	 * The interface expects us to write an even number signaling that the
	 * update is finished. Since the guest won't see the intermediate
827
	 * state, we just increase by 2 at the end.
828
	 */
829
	vcpu->hv_clock.version += 2;
830 831 832 833

	shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);

	memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
834
	       sizeof(vcpu->hv_clock));
835 836 837 838 839 840

	kunmap_atomic(shared_kaddr, KM_USER0);

	mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
}

A
Avi Kivity 已提交
841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
static bool msr_mtrr_valid(unsigned msr)
{
	switch (msr) {
	case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
	case MSR_MTRRfix64K_00000:
	case MSR_MTRRfix16K_80000:
	case MSR_MTRRfix16K_A0000:
	case MSR_MTRRfix4K_C0000:
	case MSR_MTRRfix4K_C8000:
	case MSR_MTRRfix4K_D0000:
	case MSR_MTRRfix4K_D8000:
	case MSR_MTRRfix4K_E0000:
	case MSR_MTRRfix4K_E8000:
	case MSR_MTRRfix4K_F0000:
	case MSR_MTRRfix4K_F8000:
	case MSR_MTRRdefType:
	case MSR_IA32_CR_PAT:
		return true;
	case 0x2f8:
		return true;
	}
	return false;
}

static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
{
	if (!msr_mtrr_valid(msr))
		return 1;

	vcpu->arch.mtrr[msr - 0x200] = data;
	return 0;
}
873 874 875 876 877 878 879 880 881

int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
{
	switch (msr) {
	case MSR_EFER:
		set_efer(vcpu, data);
		break;
	case MSR_IA32_MC0_STATUS:
		pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
882
		       __func__, data);
883 884 885
		break;
	case MSR_IA32_MCG_STATUS:
		pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
886
			__func__, data);
887
		break;
888 889
	case MSR_IA32_MCG_CTL:
		pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
890
			__func__, data);
891
		break;
892 893 894 895 896 897 898 899 900 901 902 903
	case MSR_IA32_DEBUGCTLMSR:
		if (!data) {
			/* We support the non-activated case already */
			break;
		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
			/* Values other than LBR and BTF are vendor-specific,
			   thus reserved and should throw a #GP */
			return 1;
		}
		pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
			__func__, data);
		break;
904 905 906
	case MSR_IA32_UCODE_REV:
	case MSR_IA32_UCODE_WRITE:
		break;
A
Avi Kivity 已提交
907 908
	case 0x200 ... 0x2ff:
		return set_msr_mtrr(vcpu, msr, data);
909 910 911 912
	case MSR_IA32_APICBASE:
		kvm_set_apic_base(vcpu, data);
		break;
	case MSR_IA32_MISC_ENABLE:
913
		vcpu->arch.ia32_misc_enable_msr = data;
914
		break;
915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
	case MSR_KVM_WALL_CLOCK:
		vcpu->kvm->arch.wall_clock = data;
		kvm_write_wall_clock(vcpu->kvm, data);
		break;
	case MSR_KVM_SYSTEM_TIME: {
		if (vcpu->arch.time_page) {
			kvm_release_page_dirty(vcpu->arch.time_page);
			vcpu->arch.time_page = NULL;
		}

		vcpu->arch.time = data;

		/* we verify if the enable bit is set... */
		if (!(data & 1))
			break;

		/* ...but clean it before doing the actual write */
		vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);

		down_read(&current->mm->mmap_sem);
		vcpu->arch.time_page =
				gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
		up_read(&current->mm->mmap_sem);

		if (is_error_page(vcpu->arch.time_page)) {
			kvm_release_page_clean(vcpu->arch.time_page);
			vcpu->arch.time_page = NULL;
		}

		kvm_write_guest_time(vcpu);
		break;
	}
947
	default:
948
		pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL_GPL(kvm_set_msr_common);


/*
 * Reads an msr value (of 'msr_index') into 'pdata'.
 * Returns 0 on success, non-0 otherwise.
 * Assumes vcpu_load() was already called.
 */
int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
{
	return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
}

A
Avi Kivity 已提交
966 967 968 969 970 971 972 973 974
static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
{
	if (!msr_mtrr_valid(msr))
		return 1;

	*pdata = vcpu->arch.mtrr[msr - 0x200];
	return 0;
}

975 976 977 978 979 980 981 982 983 984 985 986 987
int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
{
	u64 data;

	switch (msr) {
	case 0xc0010010: /* SYSCFG */
	case 0xc0010015: /* HWCR */
	case MSR_IA32_PLATFORM_ID:
	case MSR_IA32_P5_MC_ADDR:
	case MSR_IA32_P5_MC_TYPE:
	case MSR_IA32_MC0_CTL:
	case MSR_IA32_MCG_STATUS:
	case MSR_IA32_MCG_CAP:
988
	case MSR_IA32_MCG_CTL:
989 990 991 992 993 994 995
	case MSR_IA32_MC0_MISC:
	case MSR_IA32_MC0_MISC+4:
	case MSR_IA32_MC0_MISC+8:
	case MSR_IA32_MC0_MISC+12:
	case MSR_IA32_MC0_MISC+16:
	case MSR_IA32_UCODE_REV:
	case MSR_IA32_EBL_CR_POWERON:
996 997 998 999 1000
	case MSR_IA32_DEBUGCTLMSR:
	case MSR_IA32_LASTBRANCHFROMIP:
	case MSR_IA32_LASTBRANCHTOIP:
	case MSR_IA32_LASTINTFROMIP:
	case MSR_IA32_LASTINTTOIP:
1001 1002
		data = 0;
		break;
A
Avi Kivity 已提交
1003 1004 1005 1006 1007
	case MSR_MTRRcap:
		data = 0x500 | KVM_NR_VAR_MTRR;
		break;
	case 0x200 ... 0x2ff:
		return get_msr_mtrr(vcpu, msr, pdata);
1008 1009 1010 1011 1012 1013 1014
	case 0xcd: /* fsb frequency */
		data = 3;
		break;
	case MSR_IA32_APICBASE:
		data = kvm_get_apic_base(vcpu);
		break;
	case MSR_IA32_MISC_ENABLE:
1015
		data = vcpu->arch.ia32_misc_enable_msr;
1016
		break;
1017 1018 1019 1020 1021 1022
	case MSR_IA32_PERF_STATUS:
		/* TSC increment by tick */
		data = 1000ULL;
		/* CPU multiplier */
		data |= (((uint64_t)4ULL) << 40);
		break;
1023
	case MSR_EFER:
1024
		data = vcpu->arch.shadow_efer;
1025
		break;
1026 1027 1028 1029 1030 1031
	case MSR_KVM_WALL_CLOCK:
		data = vcpu->kvm->arch.wall_clock;
		break;
	case MSR_KVM_SYSTEM_TIME:
		data = vcpu->arch.time;
		break;
1032 1033 1034 1035 1036 1037 1038 1039 1040
	default:
		pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
		return 1;
	}
	*pdata = data;
	return 0;
}
EXPORT_SYMBOL_GPL(kvm_get_msr_common);

1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
/*
 * Read or write a bunch of msrs. All parameters are kernel addresses.
 *
 * @return number of msrs set successfully.
 */
static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
		    struct kvm_msr_entry *entries,
		    int (*do_msr)(struct kvm_vcpu *vcpu,
				  unsigned index, u64 *data))
{
	int i;

	vcpu_load(vcpu);

1055
	down_read(&vcpu->kvm->slots_lock);
1056 1057 1058
	for (i = 0; i < msrs->nmsrs; ++i)
		if (do_msr(vcpu, entries[i].index, &entries[i].data))
			break;
1059
	up_read(&vcpu->kvm->slots_lock);
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114

	vcpu_put(vcpu);

	return i;
}

/*
 * Read or write a bunch of msrs. Parameters are user addresses.
 *
 * @return number of msrs set successfully.
 */
static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
		  int (*do_msr)(struct kvm_vcpu *vcpu,
				unsigned index, u64 *data),
		  int writeback)
{
	struct kvm_msrs msrs;
	struct kvm_msr_entry *entries;
	int r, n;
	unsigned size;

	r = -EFAULT;
	if (copy_from_user(&msrs, user_msrs, sizeof msrs))
		goto out;

	r = -E2BIG;
	if (msrs.nmsrs >= MAX_IO_MSRS)
		goto out;

	r = -ENOMEM;
	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
	entries = vmalloc(size);
	if (!entries)
		goto out;

	r = -EFAULT;
	if (copy_from_user(entries, user_msrs->entries, size))
		goto out_free;

	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
	if (r < 0)
		goto out_free;

	r = -EFAULT;
	if (writeback && copy_to_user(user_msrs->entries, entries, size))
		goto out_free;

	r = n;

out_free:
	vfree(entries);
out:
	return r;
}

1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
int kvm_dev_ioctl_check_extension(long ext)
{
	int r;

	switch (ext) {
	case KVM_CAP_IRQCHIP:
	case KVM_CAP_HLT:
	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_SET_TSS_ADDR:
1125
	case KVM_CAP_EXT_CPUID:
1126
	case KVM_CAP_CLOCKSOURCE:
S
Sheng Yang 已提交
1127
	case KVM_CAP_PIT:
1128
	case KVM_CAP_NOP_IO_DELAY:
1129
	case KVM_CAP_MP_STATE:
1130
	case KVM_CAP_SYNC_MMU:
1131 1132
		r = 1;
		break;
1133 1134 1135
	case KVM_CAP_COALESCED_MMIO:
		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
		break;
1136 1137 1138
	case KVM_CAP_VAPIC:
		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
		break;
1139 1140 1141
	case KVM_CAP_NR_VCPUS:
		r = KVM_MAX_VCPUS;
		break;
1142 1143 1144
	case KVM_CAP_NR_MEMSLOTS:
		r = KVM_MEMORY_SLOTS;
		break;
1145 1146 1147
	case KVM_CAP_PV_MMU:
		r = !tdp_enabled;
		break;
1148 1149 1150 1151 1152 1153 1154 1155
	default:
		r = 0;
		break;
	}
	return r;

}

1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	void __user *argp = (void __user *)arg;
	long r;

	switch (ioctl) {
	case KVM_GET_MSR_INDEX_LIST: {
		struct kvm_msr_list __user *user_msr_list = argp;
		struct kvm_msr_list msr_list;
		unsigned n;

		r = -EFAULT;
		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
			goto out;
		n = msr_list.nmsrs;
		msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
			goto out;
		r = -E2BIG;
		if (n < num_msrs_to_save)
			goto out;
		r = -EFAULT;
		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
				 num_msrs_to_save * sizeof(u32)))
			goto out;
		if (copy_to_user(user_msr_list->indices
				 + num_msrs_to_save * sizeof(u32),
				 &emulated_msrs,
				 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
			goto out;
		r = 0;
		break;
	}
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
	case KVM_GET_SUPPORTED_CPUID: {
		struct kvm_cpuid2 __user *cpuid_arg = argp;
		struct kvm_cpuid2 cpuid;

		r = -EFAULT;
		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
			goto out;
		r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
			cpuid_arg->entries);
		if (r)
			goto out;

		r = -EFAULT;
		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
			goto out;
		r = 0;
		break;
	}
1208 1209 1210 1211 1212 1213 1214
	default:
		r = -EINVAL;
	}
out:
	return r;
}

1215 1216 1217
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
	kvm_x86_ops->vcpu_load(vcpu, cpu);
1218
	kvm_write_guest_time(vcpu);
1219 1220 1221 1222 1223
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
	kvm_x86_ops->vcpu_put(vcpu);
1224
	kvm_put_guest_fpu(vcpu);
1225 1226
}

1227
static int is_efer_nx(void)
1228 1229 1230 1231
{
	u64 efer;

	rdmsrl(MSR_EFER, efer);
1232 1233 1234 1235 1236 1237 1238 1239
	return efer & EFER_NX;
}

static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
{
	int i;
	struct kvm_cpuid_entry2 *e, *entry;

1240
	entry = NULL;
1241 1242
	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
		e = &vcpu->arch.cpuid_entries[i];
1243 1244 1245 1246 1247
		if (e->function == 0x80000001) {
			entry = e;
			break;
		}
	}
1248
	if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1249 1250 1251 1252 1253
		entry->edx &= ~(1 << 20);
		printk(KERN_INFO "kvm: guest NX capability removed\n");
	}
}

1254
/* when an old userspace process fills a new kernel module */
1255 1256 1257
static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
				    struct kvm_cpuid *cpuid,
				    struct kvm_cpuid_entry __user *entries)
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
{
	int r, i;
	struct kvm_cpuid_entry *cpuid_entries;

	r = -E2BIG;
	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
		goto out;
	r = -ENOMEM;
	cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
	if (!cpuid_entries)
		goto out;
	r = -EFAULT;
	if (copy_from_user(cpuid_entries, entries,
			   cpuid->nent * sizeof(struct kvm_cpuid_entry)))
		goto out_free;
	for (i = 0; i < cpuid->nent; i++) {
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
		vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
		vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
		vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
		vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
		vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
		vcpu->arch.cpuid_entries[i].index = 0;
		vcpu->arch.cpuid_entries[i].flags = 0;
		vcpu->arch.cpuid_entries[i].padding[0] = 0;
		vcpu->arch.cpuid_entries[i].padding[1] = 0;
		vcpu->arch.cpuid_entries[i].padding[2] = 0;
	}
	vcpu->arch.cpuid_nent = cpuid->nent;
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
	cpuid_fix_nx_cap(vcpu);
	r = 0;

out_free:
	vfree(cpuid_entries);
out:
	return r;
}

static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
				    struct kvm_cpuid2 *cpuid,
				    struct kvm_cpuid_entry2 __user *entries)
1298 1299 1300 1301 1302 1303 1304
{
	int r;

	r = -E2BIG;
	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
		goto out;
	r = -EFAULT;
1305
	if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1306
			   cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1307
		goto out;
1308
	vcpu->arch.cpuid_nent = cpuid->nent;
1309 1310 1311 1312 1313 1314
	return 0;

out:
	return r;
}

1315 1316 1317 1318 1319 1320 1321
static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
				    struct kvm_cpuid2 *cpuid,
				    struct kvm_cpuid_entry2 __user *entries)
{
	int r;

	r = -E2BIG;
1322
	if (cpuid->nent < vcpu->arch.cpuid_nent)
1323 1324
		goto out;
	r = -EFAULT;
1325 1326
	if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
			   vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1327 1328 1329 1330
		goto out;
	return 0;

out:
1331
	cpuid->nent = vcpu->arch.cpuid_nent;
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
	return r;
}

static inline u32 bit(int bitno)
{
	return 1 << (bitno & 31);
}

static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
			  u32 index)
{
	entry->function = function;
	entry->index = index;
	cpuid_count(entry->function, entry->index,
		&entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
	entry->flags = 0;
}

static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
			 u32 index, int *nent, int maxnent)
{
	const u32 kvm_supported_word0_x86_features = bit(X86_FEATURE_FPU) |
		bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
		bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
		bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
		bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
		bit(X86_FEATURE_SEP) | bit(X86_FEATURE_PGE) |
		bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
		bit(X86_FEATURE_CLFLSH) | bit(X86_FEATURE_MMX) |
		bit(X86_FEATURE_FXSR) | bit(X86_FEATURE_XMM) |
		bit(X86_FEATURE_XMM2) | bit(X86_FEATURE_SELFSNOOP);
	const u32 kvm_supported_word1_x86_features = bit(X86_FEATURE_FPU) |
		bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
		bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
		bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
		bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
		bit(X86_FEATURE_PGE) |
		bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
		bit(X86_FEATURE_MMX) | bit(X86_FEATURE_FXSR) |
		bit(X86_FEATURE_SYSCALL) |
		(bit(X86_FEATURE_NX) && is_efer_nx()) |
#ifdef CONFIG_X86_64
		bit(X86_FEATURE_LM) |
#endif
		bit(X86_FEATURE_MMXEXT) |
		bit(X86_FEATURE_3DNOWEXT) |
		bit(X86_FEATURE_3DNOW);
	const u32 kvm_supported_word3_x86_features =
		bit(X86_FEATURE_XMM3) | bit(X86_FEATURE_CX16);
	const u32 kvm_supported_word6_x86_features =
		bit(X86_FEATURE_LAHF_LM) | bit(X86_FEATURE_CMP_LEGACY);

	/* all func 2 cpuid_count() should be called on the same cpu */
	get_cpu();
	do_cpuid_1_ent(entry, function, index);
	++*nent;

	switch (function) {
	case 0:
		entry->eax = min(entry->eax, (u32)0xb);
		break;
	case 1:
		entry->edx &= kvm_supported_word0_x86_features;
		entry->ecx &= kvm_supported_word3_x86_features;
		break;
	/* function 2 entries are STATEFUL. That is, repeated cpuid commands
	 * may return different values. This forces us to get_cpu() before
	 * issuing the first command, and also to emulate this annoying behavior
	 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
	case 2: {
		int t, times = entry->eax & 0xff;

		entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
		for (t = 1; t < times && *nent < maxnent; ++t) {
			do_cpuid_1_ent(&entry[t], function, 0);
			entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
			++*nent;
		}
		break;
	}
	/* function 4 and 0xb have additional index. */
	case 4: {
1414
		int i, cache_type;
1415 1416 1417

		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
		/* read more entries until cache_type is zero */
1418 1419
		for (i = 1; *nent < maxnent; ++i) {
			cache_type = entry[i - 1].eax & 0x1f;
1420 1421
			if (!cache_type)
				break;
1422 1423
			do_cpuid_1_ent(&entry[i], function, i);
			entry[i].flags |=
1424 1425 1426 1427 1428 1429
			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
			++*nent;
		}
		break;
	}
	case 0xb: {
1430
		int i, level_type;
1431 1432 1433

		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
		/* read more entries until level_type is zero */
1434 1435
		for (i = 1; *nent < maxnent; ++i) {
			level_type = entry[i - 1].ecx & 0xff;
1436 1437
			if (!level_type)
				break;
1438 1439
			do_cpuid_1_ent(&entry[i], function, i);
			entry[i].flags |=
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
			++*nent;
		}
		break;
	}
	case 0x80000000:
		entry->eax = min(entry->eax, 0x8000001a);
		break;
	case 0x80000001:
		entry->edx &= kvm_supported_word1_x86_features;
		entry->ecx &= kvm_supported_word6_x86_features;
		break;
	}
	put_cpu();
}

1456
static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
				    struct kvm_cpuid_entry2 __user *entries)
{
	struct kvm_cpuid_entry2 *cpuid_entries;
	int limit, nent = 0, r = -E2BIG;
	u32 func;

	if (cpuid->nent < 1)
		goto out;
	r = -ENOMEM;
	cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
	if (!cpuid_entries)
		goto out;

	do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
	limit = cpuid_entries[0].eax;
	for (func = 1; func <= limit && nent < cpuid->nent; ++func)
		do_cpuid_ent(&cpuid_entries[nent], func, 0,
				&nent, cpuid->nent);
	r = -E2BIG;
	if (nent >= cpuid->nent)
		goto out_free;

	do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
	limit = cpuid_entries[nent - 1].eax;
	for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
		do_cpuid_ent(&cpuid_entries[nent], func, 0,
			       &nent, cpuid->nent);
	r = -EFAULT;
	if (copy_to_user(entries, cpuid_entries,
			nent * sizeof(struct kvm_cpuid_entry2)))
		goto out_free;
	cpuid->nent = nent;
	r = 0;

out_free:
	vfree(cpuid_entries);
out:
	return r;
}

1497 1498 1499 1500
static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
				    struct kvm_lapic_state *s)
{
	vcpu_load(vcpu);
1501
	memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1502 1503 1504 1505 1506 1507 1508 1509 1510
	vcpu_put(vcpu);

	return 0;
}

static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
				    struct kvm_lapic_state *s)
{
	vcpu_load(vcpu);
1511
	memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1512 1513 1514 1515 1516 1517
	kvm_apic_post_state_restore(vcpu);
	vcpu_put(vcpu);

	return 0;
}

1518 1519 1520 1521 1522 1523 1524 1525 1526
static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
				    struct kvm_interrupt *irq)
{
	if (irq->irq < 0 || irq->irq >= 256)
		return -EINVAL;
	if (irqchip_in_kernel(vcpu->kvm))
		return -ENXIO;
	vcpu_load(vcpu);

1527 1528
	set_bit(irq->irq, vcpu->arch.irq_pending);
	set_bit(irq->irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
1529 1530 1531 1532 1533 1534

	vcpu_put(vcpu);

	return 0;
}

1535 1536 1537 1538 1539 1540 1541 1542 1543
static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
					   struct kvm_tpr_access_ctl *tac)
{
	if (tac->flags)
		return -EINVAL;
	vcpu->arch.tpr_access_reporting = !!tac->enabled;
	return 0;
}

1544 1545 1546 1547 1548 1549
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
	int r;
1550
	struct kvm_lapic_state *lapic = NULL;
1551 1552 1553

	switch (ioctl) {
	case KVM_GET_LAPIC: {
1554
		lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1555

1556 1557 1558 1559
		r = -ENOMEM;
		if (!lapic)
			goto out;
		r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
1560 1561 1562
		if (r)
			goto out;
		r = -EFAULT;
1563
		if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
1564 1565 1566 1567 1568
			goto out;
		r = 0;
		break;
	}
	case KVM_SET_LAPIC: {
1569 1570 1571 1572
		lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
		r = -ENOMEM;
		if (!lapic)
			goto out;
1573
		r = -EFAULT;
1574
		if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
1575
			goto out;
1576
		r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
1577 1578 1579 1580 1581
		if (r)
			goto out;
		r = 0;
		break;
	}
1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
	case KVM_INTERRUPT: {
		struct kvm_interrupt irq;

		r = -EFAULT;
		if (copy_from_user(&irq, argp, sizeof irq))
			goto out;
		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
		if (r)
			goto out;
		r = 0;
		break;
	}
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
	case KVM_SET_CPUID: {
		struct kvm_cpuid __user *cpuid_arg = argp;
		struct kvm_cpuid cpuid;

		r = -EFAULT;
		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
			goto out;
		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
		if (r)
			goto out;
		break;
	}
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
	case KVM_SET_CPUID2: {
		struct kvm_cpuid2 __user *cpuid_arg = argp;
		struct kvm_cpuid2 cpuid;

		r = -EFAULT;
		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
			goto out;
		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
				cpuid_arg->entries);
		if (r)
			goto out;
		break;
	}
	case KVM_GET_CPUID2: {
		struct kvm_cpuid2 __user *cpuid_arg = argp;
		struct kvm_cpuid2 cpuid;

		r = -EFAULT;
		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
			goto out;
		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
				cpuid_arg->entries);
		if (r)
			goto out;
		r = -EFAULT;
		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
			goto out;
		r = 0;
		break;
	}
1636 1637 1638 1639 1640 1641
	case KVM_GET_MSRS:
		r = msr_io(vcpu, argp, kvm_get_msr, 1);
		break;
	case KVM_SET_MSRS:
		r = msr_io(vcpu, argp, do_set_msr, 0);
		break;
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
	case KVM_TPR_ACCESS_REPORTING: {
		struct kvm_tpr_access_ctl tac;

		r = -EFAULT;
		if (copy_from_user(&tac, argp, sizeof tac))
			goto out;
		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
		if (r)
			goto out;
		r = -EFAULT;
		if (copy_to_user(argp, &tac, sizeof tac))
			goto out;
		r = 0;
		break;
	};
A
Avi Kivity 已提交
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
	case KVM_SET_VAPIC_ADDR: {
		struct kvm_vapic_addr va;

		r = -EINVAL;
		if (!irqchip_in_kernel(vcpu->kvm))
			goto out;
		r = -EFAULT;
		if (copy_from_user(&va, argp, sizeof va))
			goto out;
		r = 0;
		kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
		break;
	}
1670 1671 1672 1673
	default:
		r = -EINVAL;
	}
out:
1674 1675
	if (lapic)
		kfree(lapic);
1676 1677 1678
	return r;
}

1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
{
	int ret;

	if (addr > (unsigned int)(-3 * PAGE_SIZE))
		return -1;
	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
	return ret;
}

static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
					  u32 kvm_nr_mmu_pages)
{
	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
		return -EINVAL;

1695
	down_write(&kvm->slots_lock);
1696 1697

	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
1698
	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
1699

1700
	up_write(&kvm->slots_lock);
1701 1702 1703 1704 1705
	return 0;
}

static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
{
1706
	return kvm->arch.n_alloc_mmu_pages;
1707 1708
}

1709 1710 1711 1712 1713
gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
{
	int i;
	struct kvm_mem_alias *alias;

1714 1715
	for (i = 0; i < kvm->arch.naliases; ++i) {
		alias = &kvm->arch.aliases[i];
1716 1717 1718 1719 1720 1721 1722
		if (gfn >= alias->base_gfn
		    && gfn < alias->base_gfn + alias->npages)
			return alias->target_gfn + gfn - alias->base_gfn;
	}
	return gfn;
}

1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
/*
 * Set a new alias region.  Aliases map a portion of physical memory into
 * another portion.  This is useful for memory windows, for example the PC
 * VGA region.
 */
static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
					 struct kvm_memory_alias *alias)
{
	int r, n;
	struct kvm_mem_alias *p;

	r = -EINVAL;
	/* General sanity checks */
	if (alias->memory_size & (PAGE_SIZE - 1))
		goto out;
	if (alias->guest_phys_addr & (PAGE_SIZE - 1))
		goto out;
	if (alias->slot >= KVM_ALIAS_SLOTS)
		goto out;
	if (alias->guest_phys_addr + alias->memory_size
	    < alias->guest_phys_addr)
		goto out;
	if (alias->target_phys_addr + alias->memory_size
	    < alias->target_phys_addr)
		goto out;

1749
	down_write(&kvm->slots_lock);
1750
	spin_lock(&kvm->mmu_lock);
1751

1752
	p = &kvm->arch.aliases[alias->slot];
1753 1754 1755 1756 1757
	p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
	p->npages = alias->memory_size >> PAGE_SHIFT;
	p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;

	for (n = KVM_ALIAS_SLOTS; n > 0; --n)
1758
		if (kvm->arch.aliases[n - 1].npages)
1759
			break;
1760
	kvm->arch.naliases = n;
1761

1762
	spin_unlock(&kvm->mmu_lock);
1763 1764
	kvm_mmu_zap_all(kvm);

1765
	up_write(&kvm->slots_lock);
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829

	return 0;

out:
	return r;
}

static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
{
	int r;

	r = 0;
	switch (chip->chip_id) {
	case KVM_IRQCHIP_PIC_MASTER:
		memcpy(&chip->chip.pic,
			&pic_irqchip(kvm)->pics[0],
			sizeof(struct kvm_pic_state));
		break;
	case KVM_IRQCHIP_PIC_SLAVE:
		memcpy(&chip->chip.pic,
			&pic_irqchip(kvm)->pics[1],
			sizeof(struct kvm_pic_state));
		break;
	case KVM_IRQCHIP_IOAPIC:
		memcpy(&chip->chip.ioapic,
			ioapic_irqchip(kvm),
			sizeof(struct kvm_ioapic_state));
		break;
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
{
	int r;

	r = 0;
	switch (chip->chip_id) {
	case KVM_IRQCHIP_PIC_MASTER:
		memcpy(&pic_irqchip(kvm)->pics[0],
			&chip->chip.pic,
			sizeof(struct kvm_pic_state));
		break;
	case KVM_IRQCHIP_PIC_SLAVE:
		memcpy(&pic_irqchip(kvm)->pics[1],
			&chip->chip.pic,
			sizeof(struct kvm_pic_state));
		break;
	case KVM_IRQCHIP_IOAPIC:
		memcpy(ioapic_irqchip(kvm),
			&chip->chip.ioapic,
			sizeof(struct kvm_ioapic_state));
		break;
	default:
		r = -EINVAL;
		break;
	}
	kvm_pic_update_irq(pic_irqchip(kvm));
	return r;
}

1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
{
	int r = 0;

	memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
	return r;
}

static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
{
	int r = 0;

	memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
	kvm_pit_load_count(kvm, 0, ps->channels[0].count);
	return r;
}

1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
				      struct kvm_dirty_log *log)
{
	int r;
	int n;
	struct kvm_memory_slot *memslot;
	int is_dirty = 0;

1858
	down_write(&kvm->slots_lock);
1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873

	r = kvm_get_dirty_log(kvm, log, &is_dirty);
	if (r)
		goto out;

	/* If nothing is dirty, don't bother messing with page tables. */
	if (is_dirty) {
		kvm_mmu_slot_remove_write_access(kvm, log->slot);
		kvm_flush_remote_tlbs(kvm);
		memslot = &kvm->memslots[log->slot];
		n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
		memset(memslot->dirty_bitmap, 0, n);
	}
	r = 0;
out:
1874
	up_write(&kvm->slots_lock);
1875 1876 1877
	return r;
}

1878 1879 1880 1881 1882 1883
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;
	int r = -EINVAL;
1884 1885 1886 1887 1888 1889 1890 1891 1892
	/*
	 * This union makes it completely explicit to gcc-3.x
	 * that these two variables' stack usage should be
	 * combined, not added together.
	 */
	union {
		struct kvm_pit_state ps;
		struct kvm_memory_alias alias;
	} u;
1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923

	switch (ioctl) {
	case KVM_SET_TSS_ADDR:
		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
		if (r < 0)
			goto out;
		break;
	case KVM_SET_MEMORY_REGION: {
		struct kvm_memory_region kvm_mem;
		struct kvm_userspace_memory_region kvm_userspace_mem;

		r = -EFAULT;
		if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
			goto out;
		kvm_userspace_mem.slot = kvm_mem.slot;
		kvm_userspace_mem.flags = kvm_mem.flags;
		kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
		kvm_userspace_mem.memory_size = kvm_mem.memory_size;
		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
		if (r)
			goto out;
		break;
	}
	case KVM_SET_NR_MMU_PAGES:
		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
		if (r)
			goto out;
		break;
	case KVM_GET_NR_MMU_PAGES:
		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
		break;
1924
	case KVM_SET_MEMORY_ALIAS:
1925
		r = -EFAULT;
1926
		if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
1927
			goto out;
1928
		r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
1929 1930 1931 1932 1933
		if (r)
			goto out;
		break;
	case KVM_CREATE_IRQCHIP:
		r = -ENOMEM;
1934 1935
		kvm->arch.vpic = kvm_create_pic(kvm);
		if (kvm->arch.vpic) {
1936 1937
			r = kvm_ioapic_init(kvm);
			if (r) {
1938 1939
				kfree(kvm->arch.vpic);
				kvm->arch.vpic = NULL;
1940 1941 1942 1943 1944
				goto out;
			}
		} else
			goto out;
		break;
S
Sheng Yang 已提交
1945 1946 1947 1948 1949 1950
	case KVM_CREATE_PIT:
		r = -ENOMEM;
		kvm->arch.vpit = kvm_create_pit(kvm);
		if (kvm->arch.vpit)
			r = 0;
		break;
1951 1952 1953 1954 1955 1956 1957 1958
	case KVM_IRQ_LINE: {
		struct kvm_irq_level irq_event;

		r = -EFAULT;
		if (copy_from_user(&irq_event, argp, sizeof irq_event))
			goto out;
		if (irqchip_in_kernel(kvm)) {
			mutex_lock(&kvm->lock);
1959
			kvm_set_irq(kvm, irq_event.irq, irq_event.level);
1960 1961 1962 1963 1964 1965 1966
			mutex_unlock(&kvm->lock);
			r = 0;
		}
		break;
	}
	case KVM_GET_IRQCHIP: {
		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1967
		struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
1968

1969 1970
		r = -ENOMEM;
		if (!chip)
1971
			goto out;
1972 1973 1974
		r = -EFAULT;
		if (copy_from_user(chip, argp, sizeof *chip))
			goto get_irqchip_out;
1975 1976
		r = -ENXIO;
		if (!irqchip_in_kernel(kvm))
1977 1978
			goto get_irqchip_out;
		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
1979
		if (r)
1980
			goto get_irqchip_out;
1981
		r = -EFAULT;
1982 1983
		if (copy_to_user(argp, chip, sizeof *chip))
			goto get_irqchip_out;
1984
		r = 0;
1985 1986 1987 1988
	get_irqchip_out:
		kfree(chip);
		if (r)
			goto out;
1989 1990 1991 1992
		break;
	}
	case KVM_SET_IRQCHIP: {
		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1993
		struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
1994

1995 1996
		r = -ENOMEM;
		if (!chip)
1997
			goto out;
1998 1999 2000
		r = -EFAULT;
		if (copy_from_user(chip, argp, sizeof *chip))
			goto set_irqchip_out;
2001 2002
		r = -ENXIO;
		if (!irqchip_in_kernel(kvm))
2003 2004
			goto set_irqchip_out;
		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
2005
		if (r)
2006
			goto set_irqchip_out;
2007
		r = 0;
2008 2009 2010 2011
	set_irqchip_out:
		kfree(chip);
		if (r)
			goto out;
2012 2013
		break;
	}
B
Ben-Ami Yassour 已提交
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
	case KVM_ASSIGN_PCI_DEVICE: {
		struct kvm_assigned_pci_dev assigned_dev;

		r = -EFAULT;
		if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
			goto out;
		r = kvm_vm_ioctl_assign_device(kvm, &assigned_dev);
		if (r)
			goto out;
		break;
	}
	case KVM_ASSIGN_IRQ: {
		struct kvm_assigned_irq assigned_irq;

		r = -EFAULT;
		if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
			goto out;
		r = kvm_vm_ioctl_assign_irq(kvm, &assigned_irq);
		if (r)
			goto out;
		break;
	}
2036 2037
	case KVM_GET_PIT: {
		r = -EFAULT;
2038
		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
2039 2040 2041 2042
			goto out;
		r = -ENXIO;
		if (!kvm->arch.vpit)
			goto out;
2043
		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
2044 2045 2046
		if (r)
			goto out;
		r = -EFAULT;
2047
		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
2048 2049 2050 2051 2052 2053
			goto out;
		r = 0;
		break;
	}
	case KVM_SET_PIT: {
		r = -EFAULT;
2054
		if (copy_from_user(&u.ps, argp, sizeof u.ps))
2055 2056 2057 2058
			goto out;
		r = -ENXIO;
		if (!kvm->arch.vpit)
			goto out;
2059
		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
2060 2061 2062 2063 2064
		if (r)
			goto out;
		r = 0;
		break;
	}
2065 2066 2067 2068 2069 2070 2071
	default:
		;
	}
out:
	return r;
}

2072
static void kvm_init_msr_list(void)
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
{
	u32 dummy[2];
	unsigned i, j;

	for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
			continue;
		if (j < i)
			msrs_to_save[j] = msrs_to_save[i];
		j++;
	}
	num_msrs_to_save = j;
}

2087 2088 2089 2090
/*
 * Only apic need an MMIO device hook, so shortcut now..
 */
static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
2091 2092
						gpa_t addr, int len,
						int is_write)
2093 2094 2095
{
	struct kvm_io_device *dev;

2096 2097
	if (vcpu->arch.apic) {
		dev = &vcpu->arch.apic->dev;
2098
		if (dev->in_range(dev, addr, len, is_write))
2099 2100 2101 2102 2103 2104 2105
			return dev;
	}
	return NULL;
}


static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
2106 2107
						gpa_t addr, int len,
						int is_write)
2108 2109 2110
{
	struct kvm_io_device *dev;

2111
	dev = vcpu_find_pervcpu_dev(vcpu, addr, len, is_write);
2112
	if (dev == NULL)
2113 2114
		dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len,
					  is_write);
2115 2116 2117 2118 2119 2120 2121 2122 2123
	return dev;
}

int emulator_read_std(unsigned long addr,
			     void *val,
			     unsigned int bytes,
			     struct kvm_vcpu *vcpu)
{
	void *data = val;
2124
	int r = X86EMUL_CONTINUE;
2125 2126

	while (bytes) {
2127
		gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2128 2129 2130 2131
		unsigned offset = addr & (PAGE_SIZE-1);
		unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
		int ret;

2132 2133 2134 2135
		if (gpa == UNMAPPED_GVA) {
			r = X86EMUL_PROPAGATE_FAULT;
			goto out;
		}
2136
		ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
2137 2138 2139 2140
		if (ret < 0) {
			r = X86EMUL_UNHANDLEABLE;
			goto out;
		}
2141 2142 2143 2144 2145

		bytes -= tocopy;
		data += tocopy;
		addr += tocopy;
	}
2146 2147
out:
	return r;
2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164
}
EXPORT_SYMBOL_GPL(emulator_read_std);

static int emulator_read_emulated(unsigned long addr,
				  void *val,
				  unsigned int bytes,
				  struct kvm_vcpu *vcpu)
{
	struct kvm_io_device *mmio_dev;
	gpa_t                 gpa;

	if (vcpu->mmio_read_completed) {
		memcpy(val, vcpu->mmio_data, bytes);
		vcpu->mmio_read_completed = 0;
		return X86EMUL_CONTINUE;
	}

2165
	gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180

	/* For APIC access vmexit */
	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
		goto mmio;

	if (emulator_read_std(addr, val, bytes, vcpu)
			== X86EMUL_CONTINUE)
		return X86EMUL_CONTINUE;
	if (gpa == UNMAPPED_GVA)
		return X86EMUL_PROPAGATE_FAULT;

mmio:
	/*
	 * Is this MMIO handled locally?
	 */
2181
	mutex_lock(&vcpu->kvm->lock);
2182
	mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 0);
2183 2184
	if (mmio_dev) {
		kvm_iodevice_read(mmio_dev, gpa, bytes, val);
2185
		mutex_unlock(&vcpu->kvm->lock);
2186 2187
		return X86EMUL_CONTINUE;
	}
2188
	mutex_unlock(&vcpu->kvm->lock);
2189 2190 2191 2192 2193 2194 2195 2196 2197

	vcpu->mmio_needed = 1;
	vcpu->mmio_phys_addr = gpa;
	vcpu->mmio_size = bytes;
	vcpu->mmio_is_write = 0;

	return X86EMUL_UNHANDLEABLE;
}

2198
int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
2199
			  const void *val, int bytes)
2200 2201 2202 2203
{
	int ret;

	ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
2204
	if (ret < 0)
2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
		return 0;
	kvm_mmu_pte_write(vcpu, gpa, val, bytes);
	return 1;
}

static int emulator_write_emulated_onepage(unsigned long addr,
					   const void *val,
					   unsigned int bytes,
					   struct kvm_vcpu *vcpu)
{
	struct kvm_io_device *mmio_dev;
2216 2217 2218
	gpa_t                 gpa;

	gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2219 2220

	if (gpa == UNMAPPED_GVA) {
2221
		kvm_inject_page_fault(vcpu, addr, 2);
2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235
		return X86EMUL_PROPAGATE_FAULT;
	}

	/* For APIC access vmexit */
	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
		goto mmio;

	if (emulator_write_phys(vcpu, gpa, val, bytes))
		return X86EMUL_CONTINUE;

mmio:
	/*
	 * Is this MMIO handled locally?
	 */
2236
	mutex_lock(&vcpu->kvm->lock);
2237
	mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 1);
2238 2239
	if (mmio_dev) {
		kvm_iodevice_write(mmio_dev, gpa, bytes, val);
2240
		mutex_unlock(&vcpu->kvm->lock);
2241 2242
		return X86EMUL_CONTINUE;
	}
2243
	mutex_unlock(&vcpu->kvm->lock);
2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286

	vcpu->mmio_needed = 1;
	vcpu->mmio_phys_addr = gpa;
	vcpu->mmio_size = bytes;
	vcpu->mmio_is_write = 1;
	memcpy(vcpu->mmio_data, val, bytes);

	return X86EMUL_CONTINUE;
}

int emulator_write_emulated(unsigned long addr,
				   const void *val,
				   unsigned int bytes,
				   struct kvm_vcpu *vcpu)
{
	/* Crossing a page boundary? */
	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
		int rc, now;

		now = -addr & ~PAGE_MASK;
		rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
		if (rc != X86EMUL_CONTINUE)
			return rc;
		addr += now;
		val += now;
		bytes -= now;
	}
	return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
}
EXPORT_SYMBOL_GPL(emulator_write_emulated);

static int emulator_cmpxchg_emulated(unsigned long addr,
				     const void *old,
				     const void *new,
				     unsigned int bytes,
				     struct kvm_vcpu *vcpu)
{
	static int reported;

	if (!reported) {
		reported = 1;
		printk(KERN_WARNING "kvm: emulating exchange as write\n");
	}
2287 2288 2289
#ifndef CONFIG_X86_64
	/* guests cmpxchg8b have to be emulated atomically */
	if (bytes == 8) {
2290
		gpa_t gpa;
2291
		struct page *page;
A
Andrew Morton 已提交
2292
		char *kaddr;
2293 2294
		u64 val;

2295 2296
		gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);

2297 2298 2299 2300 2301 2302 2303 2304
		if (gpa == UNMAPPED_GVA ||
		   (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
			goto emul_write;

		if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
			goto emul_write;

		val = *(u64 *)new;
2305 2306

		down_read(&current->mm->mmap_sem);
2307
		page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2308 2309
		up_read(&current->mm->mmap_sem);

A
Andrew Morton 已提交
2310 2311 2312
		kaddr = kmap_atomic(page, KM_USER0);
		set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
		kunmap_atomic(kaddr, KM_USER0);
2313 2314
		kvm_release_page_dirty(page);
	}
2315
emul_write:
2316 2317
#endif

2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
	return emulator_write_emulated(addr, new, bytes, vcpu);
}

static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
{
	return kvm_x86_ops->get_segment_base(vcpu, seg);
}

int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
{
	return X86EMUL_CONTINUE;
}

int emulate_clts(struct kvm_vcpu *vcpu)
{
J
Joerg Roedel 已提交
2333
	KVMTRACE_0D(CLTS, vcpu, handler);
2334
	kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346
	return X86EMUL_CONTINUE;
}

int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
{
	struct kvm_vcpu *vcpu = ctxt->vcpu;

	switch (dr) {
	case 0 ... 3:
		*dest = kvm_x86_ops->get_dr(vcpu, dr);
		return X86EMUL_CONTINUE;
	default:
2347
		pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
		return X86EMUL_UNHANDLEABLE;
	}
}

int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
{
	unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
	int exception;

	kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
	if (exception) {
		/* FIXME: better handling */
		return X86EMUL_UNHANDLEABLE;
	}
	return X86EMUL_CONTINUE;
}

void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
{
	u8 opcodes[4];
2368
	unsigned long rip = kvm_rip_read(vcpu);
2369 2370
	unsigned long rip_linear;

2371
	if (!printk_ratelimit())
2372 2373
		return;

2374 2375
	rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);

2376 2377 2378 2379 2380 2381 2382
	emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);

	printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
	       context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
}
EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);

2383
static struct x86_emulate_ops emulate_ops = {
2384 2385 2386 2387 2388 2389
	.read_std            = emulator_read_std,
	.read_emulated       = emulator_read_emulated,
	.write_emulated      = emulator_write_emulated,
	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
};

2390 2391 2392 2393 2394 2395 2396 2397
static void cache_all_regs(struct kvm_vcpu *vcpu)
{
	kvm_register_read(vcpu, VCPU_REGS_RAX);
	kvm_register_read(vcpu, VCPU_REGS_RSP);
	kvm_register_read(vcpu, VCPU_REGS_RIP);
	vcpu->arch.regs_dirty = ~0;
}

2398 2399 2400 2401
int emulate_instruction(struct kvm_vcpu *vcpu,
			struct kvm_run *run,
			unsigned long cr2,
			u16 error_code,
2402
			int emulation_type)
2403 2404
{
	int r;
2405
	struct decode_cache *c;
2406

2407
	kvm_clear_exception_queue(vcpu);
2408
	vcpu->arch.mmio_fault_cr2 = cr2;
2409 2410 2411 2412 2413 2414 2415
	/*
	 * TODO: fix x86_emulate.c to use guest_read/write_register
	 * instead of direct ->regs accesses, can save hundred cycles
	 * on Intel for instructions that don't read/change RSP, for
	 * for example.
	 */
	cache_all_regs(vcpu);
2416 2417

	vcpu->mmio_is_write = 0;
2418
	vcpu->arch.pio.string = 0;
2419

2420
	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
2421 2422 2423
		int cs_db, cs_l;
		kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);

2424 2425 2426 2427
		vcpu->arch.emulate_ctxt.vcpu = vcpu;
		vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
		vcpu->arch.emulate_ctxt.mode =
			(vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
2428 2429 2430 2431
			? X86EMUL_MODE_REAL : cs_l
			? X86EMUL_MODE_PROT64 :	cs_db
			? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;

2432
		r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2433 2434 2435 2436 2437 2438 2439 2440 2441 2442

		/* Reject the instructions other than VMCALL/VMMCALL when
		 * try to emulate invalid opcode */
		c = &vcpu->arch.emulate_ctxt.decode;
		if ((emulation_type & EMULTYPE_TRAP_UD) &&
		    (!(c->twobyte && c->b == 0x01 &&
		      (c->modrm_reg == 0 || c->modrm_reg == 3) &&
		       c->modrm_mod == 3 && c->modrm_rm == 1)))
			return EMULATE_FAIL;

2443
		++vcpu->stat.insn_emulation;
2444
		if (r)  {
2445
			++vcpu->stat.insn_emulation_fail;
2446 2447 2448 2449 2450 2451
			if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
				return EMULATE_DONE;
			return EMULATE_FAIL;
		}
	}

2452
	r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2453

2454
	if (vcpu->arch.pio.string)
2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
		return EMULATE_DO_MMIO;

	if ((r || vcpu->mmio_is_write) && run) {
		run->exit_reason = KVM_EXIT_MMIO;
		run->mmio.phys_addr = vcpu->mmio_phys_addr;
		memcpy(run->mmio.data, vcpu->mmio_data, 8);
		run->mmio.len = vcpu->mmio_size;
		run->mmio.is_write = vcpu->mmio_is_write;
	}

	if (r) {
		if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
			return EMULATE_DONE;
		if (!vcpu->mmio_needed) {
			kvm_report_emulation_failure(vcpu, "mmio");
			return EMULATE_FAIL;
		}
		return EMULATE_DO_MMIO;
	}

2475
	kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
2476 2477 2478 2479 2480 2481 2482 2483 2484 2485

	if (vcpu->mmio_is_write) {
		vcpu->mmio_needed = 0;
		return EMULATE_DO_MMIO;
	}

	return EMULATE_DONE;
}
EXPORT_SYMBOL_GPL(emulate_instruction);

2486 2487 2488 2489
static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
{
	int i;

2490 2491 2492 2493
	for (i = 0; i < ARRAY_SIZE(vcpu->arch.pio.guest_pages); ++i)
		if (vcpu->arch.pio.guest_pages[i]) {
			kvm_release_page_dirty(vcpu->arch.pio.guest_pages[i]);
			vcpu->arch.pio.guest_pages[i] = NULL;
2494 2495 2496 2497 2498
		}
}

static int pio_copy_data(struct kvm_vcpu *vcpu)
{
2499
	void *p = vcpu->arch.pio_data;
2500 2501
	void *q;
	unsigned bytes;
2502
	int nr_pages = vcpu->arch.pio.guest_pages[1] ? 2 : 1;
2503

2504
	q = vmap(vcpu->arch.pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
2505 2506 2507 2508 2509
		 PAGE_KERNEL);
	if (!q) {
		free_pio_guest_pages(vcpu);
		return -ENOMEM;
	}
2510 2511 2512
	q += vcpu->arch.pio.guest_page_offset;
	bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
	if (vcpu->arch.pio.in)
2513 2514 2515
		memcpy(q, p, bytes);
	else
		memcpy(p, q, bytes);
2516
	q -= vcpu->arch.pio.guest_page_offset;
2517 2518 2519 2520 2521 2522 2523
	vunmap(q);
	free_pio_guest_pages(vcpu);
	return 0;
}

int complete_pio(struct kvm_vcpu *vcpu)
{
2524
	struct kvm_pio_request *io = &vcpu->arch.pio;
2525 2526
	long delta;
	int r;
2527
	unsigned long val;
2528 2529

	if (!io->string) {
2530 2531 2532 2533 2534
		if (io->in) {
			val = kvm_register_read(vcpu, VCPU_REGS_RAX);
			memcpy(&val, vcpu->arch.pio_data, io->size);
			kvm_register_write(vcpu, VCPU_REGS_RAX, val);
		}
2535 2536 2537
	} else {
		if (io->in) {
			r = pio_copy_data(vcpu);
2538
			if (r)
2539 2540 2541 2542 2543 2544 2545 2546 2547 2548
				return r;
		}

		delta = 1;
		if (io->rep) {
			delta *= io->cur_count;
			/*
			 * The size of the register should really depend on
			 * current address size.
			 */
2549 2550 2551
			val = kvm_register_read(vcpu, VCPU_REGS_RCX);
			val -= delta;
			kvm_register_write(vcpu, VCPU_REGS_RCX, val);
2552 2553 2554 2555
		}
		if (io->down)
			delta = -delta;
		delta *= io->size;
2556 2557 2558 2559 2560 2561 2562 2563 2564
		if (io->in) {
			val = kvm_register_read(vcpu, VCPU_REGS_RDI);
			val += delta;
			kvm_register_write(vcpu, VCPU_REGS_RDI, val);
		} else {
			val = kvm_register_read(vcpu, VCPU_REGS_RSI);
			val += delta;
			kvm_register_write(vcpu, VCPU_REGS_RSI, val);
		}
2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579
	}

	io->count -= io->cur_count;
	io->cur_count = 0;

	return 0;
}

static void kernel_pio(struct kvm_io_device *pio_dev,
		       struct kvm_vcpu *vcpu,
		       void *pd)
{
	/* TODO: String I/O for in kernel device */

	mutex_lock(&vcpu->kvm->lock);
2580 2581 2582
	if (vcpu->arch.pio.in)
		kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
				  vcpu->arch.pio.size,
2583 2584
				  pd);
	else
2585 2586
		kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
				   vcpu->arch.pio.size,
2587 2588 2589 2590 2591 2592 2593
				   pd);
	mutex_unlock(&vcpu->kvm->lock);
}

static void pio_string_write(struct kvm_io_device *pio_dev,
			     struct kvm_vcpu *vcpu)
{
2594 2595
	struct kvm_pio_request *io = &vcpu->arch.pio;
	void *pd = vcpu->arch.pio_data;
2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608
	int i;

	mutex_lock(&vcpu->kvm->lock);
	for (i = 0; i < io->cur_count; i++) {
		kvm_iodevice_write(pio_dev, io->port,
				   io->size,
				   pd);
		pd += io->size;
	}
	mutex_unlock(&vcpu->kvm->lock);
}

static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
2609 2610
					       gpa_t addr, int len,
					       int is_write)
2611
{
2612
	return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr, len, is_write);
2613 2614 2615 2616 2617 2618
}

int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
		  int size, unsigned port)
{
	struct kvm_io_device *pio_dev;
2619
	unsigned long val;
2620 2621 2622

	vcpu->run->exit_reason = KVM_EXIT_IO;
	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2623
	vcpu->run->io.size = vcpu->arch.pio.size = size;
2624
	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2625 2626 2627 2628 2629 2630 2631
	vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
	vcpu->run->io.port = vcpu->arch.pio.port = port;
	vcpu->arch.pio.in = in;
	vcpu->arch.pio.string = 0;
	vcpu->arch.pio.down = 0;
	vcpu->arch.pio.guest_page_offset = 0;
	vcpu->arch.pio.rep = 0;
2632

F
Feng (Eric) Liu 已提交
2633 2634 2635 2636 2637 2638 2639
	if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
		KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
			    handler);
	else
		KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
			    handler);

2640 2641
	val = kvm_register_read(vcpu, VCPU_REGS_RAX);
	memcpy(vcpu->arch.pio_data, &val, 4);
2642 2643 2644

	kvm_x86_ops->skip_emulated_instruction(vcpu);

2645
	pio_dev = vcpu_find_pio_dev(vcpu, port, size, !in);
2646
	if (pio_dev) {
2647
		kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666
		complete_pio(vcpu);
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL_GPL(kvm_emulate_pio);

int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
		  int size, unsigned long count, int down,
		  gva_t address, int rep, unsigned port)
{
	unsigned now, in_page;
	int i, ret = 0;
	int nr_pages = 1;
	struct page *page;
	struct kvm_io_device *pio_dev;

	vcpu->run->exit_reason = KVM_EXIT_IO;
	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2667
	vcpu->run->io.size = vcpu->arch.pio.size = size;
2668
	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2669 2670 2671 2672 2673 2674 2675
	vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
	vcpu->run->io.port = vcpu->arch.pio.port = port;
	vcpu->arch.pio.in = in;
	vcpu->arch.pio.string = 1;
	vcpu->arch.pio.down = down;
	vcpu->arch.pio.guest_page_offset = offset_in_page(address);
	vcpu->arch.pio.rep = rep;
2676

F
Feng (Eric) Liu 已提交
2677 2678 2679 2680 2681 2682 2683
	if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
		KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
			    handler);
	else
		KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
			    handler);

2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
	if (!count) {
		kvm_x86_ops->skip_emulated_instruction(vcpu);
		return 1;
	}

	if (!down)
		in_page = PAGE_SIZE - offset_in_page(address);
	else
		in_page = offset_in_page(address) + size;
	now = min(count, (unsigned long)in_page / size);
	if (!now) {
		/*
		 * String I/O straddles page boundary.  Pin two guest pages
		 * so that we satisfy atomicity constraints.  Do just one
		 * transaction to avoid complexity.
		 */
		nr_pages = 2;
		now = 1;
	}
	if (down) {
		/*
		 * String I/O in reverse.  Yuck.  Kill the guest, fix later.
		 */
		pr_unimpl(vcpu, "guest string pio down\n");
2708
		kvm_inject_gp(vcpu, 0);
2709 2710 2711
		return 1;
	}
	vcpu->run->io.count = now;
2712
	vcpu->arch.pio.cur_count = now;
2713

2714
	if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
2715 2716 2717 2718
		kvm_x86_ops->skip_emulated_instruction(vcpu);

	for (i = 0; i < nr_pages; ++i) {
		page = gva_to_page(vcpu, address + i * PAGE_SIZE);
2719
		vcpu->arch.pio.guest_pages[i] = page;
2720
		if (!page) {
2721
			kvm_inject_gp(vcpu, 0);
2722 2723 2724 2725 2726
			free_pio_guest_pages(vcpu);
			return 1;
		}
	}

2727 2728 2729
	pio_dev = vcpu_find_pio_dev(vcpu, port,
				    vcpu->arch.pio.cur_count,
				    !vcpu->arch.pio.in);
2730
	if (!vcpu->arch.pio.in) {
2731 2732 2733 2734 2735
		/* string PIO write */
		ret = pio_copy_data(vcpu);
		if (ret >= 0 && pio_dev) {
			pio_string_write(pio_dev, vcpu);
			complete_pio(vcpu);
2736
			if (vcpu->arch.pio.count == 0)
2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747
				ret = 1;
		}
	} else if (pio_dev)
		pr_unimpl(vcpu, "no string pio read support yet, "
		       "port %x size %d count %ld\n",
			port, size, count);

	return ret;
}
EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);

2748
int kvm_arch_init(void *opaque)
2749
{
2750
	int r;
2751 2752 2753 2754
	struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;

	if (kvm_x86_ops) {
		printk(KERN_ERR "kvm: already loaded the other module\n");
2755 2756
		r = -EEXIST;
		goto out;
2757 2758 2759 2760
	}

	if (!ops->cpu_has_kvm_support()) {
		printk(KERN_ERR "kvm: no hardware support\n");
2761 2762
		r = -EOPNOTSUPP;
		goto out;
2763 2764 2765
	}
	if (ops->disabled_by_bios()) {
		printk(KERN_ERR "kvm: disabled by bios\n");
2766 2767
		r = -EOPNOTSUPP;
		goto out;
2768 2769
	}

2770 2771 2772 2773 2774 2775
	r = kvm_mmu_module_init();
	if (r)
		goto out;

	kvm_init_msr_list();

2776
	kvm_x86_ops = ops;
2777
	kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
S
Sheng Yang 已提交
2778 2779 2780
	kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
			PT_DIRTY_MASK, PT64_NX_MASK, 0);
2781
	return 0;
2782 2783 2784

out:
	return r;
2785
}
2786

2787 2788 2789
void kvm_arch_exit(void)
{
	kvm_x86_ops = NULL;
2790 2791
	kvm_mmu_module_exit();
}
2792

2793 2794 2795
int kvm_emulate_halt(struct kvm_vcpu *vcpu)
{
	++vcpu->stat.halt_exits;
F
Feng (Eric) Liu 已提交
2796
	KVMTRACE_0D(HLT, vcpu, handler);
2797
	if (irqchip_in_kernel(vcpu->kvm)) {
2798
		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
2799
		up_read(&vcpu->kvm->slots_lock);
2800
		kvm_vcpu_block(vcpu);
2801
		down_read(&vcpu->kvm->slots_lock);
2802
		if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
2803 2804 2805 2806 2807 2808 2809 2810 2811
			return -EINTR;
		return 1;
	} else {
		vcpu->run->exit_reason = KVM_EXIT_HLT;
		return 0;
	}
}
EXPORT_SYMBOL_GPL(kvm_emulate_halt);

2812 2813 2814 2815 2816 2817 2818 2819 2820
static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
			   unsigned long a1)
{
	if (is_long_mode(vcpu))
		return a0;
	else
		return a0 | ((gpa_t)a1 << 32);
}

2821 2822 2823
int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
{
	unsigned long nr, a0, a1, a2, a3, ret;
2824
	int r = 1;
2825

2826 2827 2828 2829 2830
	nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
	a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
	a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
	a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
	a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
2831

F
Feng (Eric) Liu 已提交
2832 2833
	KVMTRACE_1D(VMMCALL, vcpu, (u32)nr, handler);

2834 2835 2836 2837 2838 2839 2840 2841 2842
	if (!is_long_mode(vcpu)) {
		nr &= 0xFFFFFFFF;
		a0 &= 0xFFFFFFFF;
		a1 &= 0xFFFFFFFF;
		a2 &= 0xFFFFFFFF;
		a3 &= 0xFFFFFFFF;
	}

	switch (nr) {
A
Avi Kivity 已提交
2843 2844 2845
	case KVM_HC_VAPIC_POLL_IRQ:
		ret = 0;
		break;
2846 2847 2848
	case KVM_HC_MMU_OP:
		r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
		break;
2849 2850 2851 2852
	default:
		ret = -KVM_ENOSYS;
		break;
	}
2853
	kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
A
Amit Shah 已提交
2854
	++vcpu->stat.hypercalls;
2855
	return r;
2856 2857 2858 2859 2860 2861 2862
}
EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);

int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
{
	char instruction[3];
	int ret = 0;
2863
	unsigned long rip = kvm_rip_read(vcpu);
2864 2865 2866 2867 2868 2869 2870 2871 2872 2873


	/*
	 * Blow out the MMU to ensure that no other VCPU has an active mapping
	 * to ensure that the updated hypercall appears atomically across all
	 * VCPUs.
	 */
	kvm_mmu_zap_all(vcpu->kvm);

	kvm_x86_ops->patch_hypercall(vcpu, instruction);
2874
	if (emulator_write_emulated(rip, instruction, 3, vcpu)
2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902
	    != X86EMUL_CONTINUE)
		ret = -EFAULT;

	return ret;
}

static u64 mk_cr_64(u64 curr_cr, u32 new_val)
{
	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
}

void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
{
	struct descriptor_table dt = { limit, base };

	kvm_x86_ops->set_gdt(vcpu, &dt);
}

void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
{
	struct descriptor_table dt = { limit, base };

	kvm_x86_ops->set_idt(vcpu, &dt);
}

void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
		   unsigned long *rflags)
{
2903
	kvm_lmsw(vcpu, msw);
2904 2905 2906 2907 2908
	*rflags = kvm_x86_ops->get_rflags(vcpu);
}

unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
{
J
Joerg Roedel 已提交
2909 2910
	unsigned long value;

2911 2912 2913
	kvm_x86_ops->decache_cr4_guest_bits(vcpu);
	switch (cr) {
	case 0:
J
Joerg Roedel 已提交
2914 2915
		value = vcpu->arch.cr0;
		break;
2916
	case 2:
J
Joerg Roedel 已提交
2917 2918
		value = vcpu->arch.cr2;
		break;
2919
	case 3:
J
Joerg Roedel 已提交
2920 2921
		value = vcpu->arch.cr3;
		break;
2922
	case 4:
J
Joerg Roedel 已提交
2923 2924
		value = vcpu->arch.cr4;
		break;
2925
	case 8:
J
Joerg Roedel 已提交
2926 2927
		value = kvm_get_cr8(vcpu);
		break;
2928
	default:
2929
		vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2930 2931
		return 0;
	}
J
Joerg Roedel 已提交
2932 2933 2934 2935
	KVMTRACE_3D(CR_READ, vcpu, (u32)cr, (u32)value,
		    (u32)((u64)value >> 32), handler);

	return value;
2936 2937 2938 2939 2940
}

void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
		     unsigned long *rflags)
{
J
Joerg Roedel 已提交
2941 2942 2943
	KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr, (u32)val,
		    (u32)((u64)val >> 32), handler);

2944 2945
	switch (cr) {
	case 0:
2946
		kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
2947 2948 2949
		*rflags = kvm_x86_ops->get_rflags(vcpu);
		break;
	case 2:
2950
		vcpu->arch.cr2 = val;
2951 2952
		break;
	case 3:
2953
		kvm_set_cr3(vcpu, val);
2954 2955
		break;
	case 4:
2956
		kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
2957
		break;
2958
	case 8:
2959
		kvm_set_cr8(vcpu, val & 0xfUL);
2960
		break;
2961
	default:
2962
		vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2963 2964 2965
	}
}

2966 2967
static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
{
2968 2969
	struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
	int j, nent = vcpu->arch.cpuid_nent;
2970 2971 2972 2973

	e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
	/* when no next entry is found, the current entry[i] is reselected */
	for (j = i + 1; j == i; j = (j + 1) % nent) {
2974
		struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997
		if (ej->function == e->function) {
			ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
			return j;
		}
	}
	return 0; /* silence gcc, even though control never reaches here */
}

/* find an entry with matching function, matching index (if needed), and that
 * should be read next (if it's stateful) */
static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
	u32 function, u32 index)
{
	if (e->function != function)
		return 0;
	if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
		return 0;
	if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
		!(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
		return 0;
	return 1;
}

2998 2999 3000
void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
{
	int i;
3001 3002
	u32 function, index;
	struct kvm_cpuid_entry2 *e, *best;
3003

3004 3005 3006 3007 3008 3009
	function = kvm_register_read(vcpu, VCPU_REGS_RAX);
	index = kvm_register_read(vcpu, VCPU_REGS_RCX);
	kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
	kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
	kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
	kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
3010
	best = NULL;
3011 3012
	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
		e = &vcpu->arch.cpuid_entries[i];
3013 3014 3015
		if (is_matching_cpuid_entry(e, function, index)) {
			if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
				move_to_next_stateful_cpuid_entry(vcpu, i);
3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026
			best = e;
			break;
		}
		/*
		 * Both basic or both extended?
		 */
		if (((e->function ^ function) & 0x80000000) == 0)
			if (!best || e->function > best->function)
				best = e;
	}
	if (best) {
3027 3028 3029 3030
		kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
		kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
		kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
		kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
3031 3032
	}
	kvm_x86_ops->skip_emulated_instruction(vcpu);
F
Feng (Eric) Liu 已提交
3033
	KVMTRACE_5D(CPUID, vcpu, function,
3034 3035 3036 3037
		    (u32)kvm_register_read(vcpu, VCPU_REGS_RAX),
		    (u32)kvm_register_read(vcpu, VCPU_REGS_RBX),
		    (u32)kvm_register_read(vcpu, VCPU_REGS_RCX),
		    (u32)kvm_register_read(vcpu, VCPU_REGS_RDX), handler);
3038 3039
}
EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
3040

3041 3042 3043 3044 3045 3046 3047 3048 3049
/*
 * Check if userspace requested an interrupt window, and that the
 * interrupt window is open.
 *
 * No need to exit to userspace if we already have an interrupt queued.
 */
static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
					  struct kvm_run *kvm_run)
{
3050
	return (!vcpu->arch.irq_summary &&
3051
		kvm_run->request_interrupt_window &&
3052
		vcpu->arch.interrupt_window_open &&
3053 3054 3055 3056 3057 3058 3059
		(kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
}

static void post_kvm_run_save(struct kvm_vcpu *vcpu,
			      struct kvm_run *kvm_run)
{
	kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
3060
	kvm_run->cr8 = kvm_get_cr8(vcpu);
3061 3062 3063 3064 3065
	kvm_run->apic_base = kvm_get_apic_base(vcpu);
	if (irqchip_in_kernel(vcpu->kvm))
		kvm_run->ready_for_interrupt_injection = 1;
	else
		kvm_run->ready_for_interrupt_injection =
3066 3067
					(vcpu->arch.interrupt_window_open &&
					 vcpu->arch.irq_summary == 0);
3068 3069
}

A
Avi Kivity 已提交
3070 3071 3072 3073 3074 3075 3076 3077
static void vapic_enter(struct kvm_vcpu *vcpu)
{
	struct kvm_lapic *apic = vcpu->arch.apic;
	struct page *page;

	if (!apic || !apic->vapic_addr)
		return;

3078
	down_read(&current->mm->mmap_sem);
A
Avi Kivity 已提交
3079
	page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3080
	up_read(&current->mm->mmap_sem);
3081 3082

	vcpu->arch.apic->vapic_page = page;
A
Avi Kivity 已提交
3083 3084 3085 3086 3087 3088 3089 3090 3091
}

static void vapic_exit(struct kvm_vcpu *vcpu)
{
	struct kvm_lapic *apic = vcpu->arch.apic;

	if (!apic || !apic->vapic_addr)
		return;

3092
	down_read(&vcpu->kvm->slots_lock);
A
Avi Kivity 已提交
3093 3094
	kvm_release_page_dirty(apic->vapic_page);
	mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3095
	up_read(&vcpu->kvm->slots_lock);
A
Avi Kivity 已提交
3096 3097
}

3098 3099 3100 3101
static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	int r;

3102
	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
3103
		pr_debug("vcpu %d received sipi with vector # %x\n",
3104
		       vcpu->vcpu_id, vcpu->arch.sipi_vector);
3105 3106 3107 3108
		kvm_lapic_reset(vcpu);
		r = kvm_x86_ops->vcpu_reset(vcpu);
		if (r)
			return r;
3109
		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3110 3111
	}

3112
	down_read(&vcpu->kvm->slots_lock);
A
Avi Kivity 已提交
3113 3114
	vapic_enter(vcpu);

3115
again:
3116 3117 3118 3119
	if (vcpu->requests)
		if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
			kvm_mmu_unload(vcpu);

3120 3121 3122 3123
	r = kvm_mmu_reload(vcpu);
	if (unlikely(r))
		goto out;

3124 3125
	if (vcpu->requests) {
		if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
M
Marcelo Tosatti 已提交
3126
			__kvm_migrate_timers(vcpu);
3127 3128
		if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
			kvm_x86_ops->tlb_flush(vcpu);
A
Avi Kivity 已提交
3129 3130 3131 3132 3133 3134
		if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
				       &vcpu->requests)) {
			kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
			r = 0;
			goto out;
		}
J
Joerg Roedel 已提交
3135 3136 3137 3138 3139
		if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
			kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
			r = 0;
			goto out;
		}
3140
	}
A
Avi Kivity 已提交
3141

3142
	clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
3143 3144 3145 3146 3147 3148 3149 3150 3151
	kvm_inject_pending_timer_irqs(vcpu);

	preempt_disable();

	kvm_x86_ops->prepare_guest_switch(vcpu);
	kvm_load_guest_fpu(vcpu);

	local_irq_disable();

3152
	if (vcpu->requests || need_resched()) {
3153 3154 3155 3156 3157 3158
		local_irq_enable();
		preempt_enable();
		r = 1;
		goto out;
	}

3159 3160 3161 3162 3163 3164 3165 3166 3167
	if (signal_pending(current)) {
		local_irq_enable();
		preempt_enable();
		r = -EINTR;
		kvm_run->exit_reason = KVM_EXIT_INTR;
		++vcpu->stat.signal_exits;
		goto out;
	}

3168 3169 3170
	if (vcpu->guest_debug.enabled)
		kvm_x86_ops->guest_debug_pre(vcpu);

3171 3172 3173 3174 3175 3176 3177
	vcpu->guest_mode = 1;
	/*
	 * Make sure that guest_mode assignment won't happen after
	 * testing the pending IRQ vector bitmap.
	 */
	smp_wmb();

3178
	if (vcpu->arch.exception.pending)
3179 3180
		__queue_exception(vcpu);
	else if (irqchip_in_kernel(vcpu->kvm))
3181
		kvm_x86_ops->inject_pending_irq(vcpu);
3182
	else
3183 3184
		kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);

A
Avi Kivity 已提交
3185 3186
	kvm_lapic_sync_to_vapic(vcpu);

3187 3188
	up_read(&vcpu->kvm->slots_lock);

3189 3190 3191
	kvm_guest_enter();


F
Feng (Eric) Liu 已提交
3192
	KVMTRACE_0D(VMENTRY, vcpu, entryexit);
3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211
	kvm_x86_ops->run(vcpu, kvm_run);

	vcpu->guest_mode = 0;
	local_irq_enable();

	++vcpu->stat.exits;

	/*
	 * We must have an instruction between local_irq_enable() and
	 * kvm_guest_exit(), so the timer interrupt isn't delayed by
	 * the interrupt shadow.  The stat.exits increment will do nicely.
	 * But we need to prevent reordering, hence this barrier():
	 */
	barrier();

	kvm_guest_exit();

	preempt_enable();

3212 3213
	down_read(&vcpu->kvm->slots_lock);

3214 3215 3216 3217
	/*
	 * Profile KVM exit RIPs:
	 */
	if (unlikely(prof_on == KVM_PROFILING)) {
3218 3219
		unsigned long rip = kvm_rip_read(vcpu);
		profile_hit(KVM_PROFILING, (void *)rip);
3220 3221
	}

3222 3223
	if (vcpu->arch.exception.pending && kvm_x86_ops->exception_injected(vcpu))
		vcpu->arch.exception.pending = false;
3224

A
Avi Kivity 已提交
3225 3226
	kvm_lapic_sync_from_vapic(vcpu);

3227 3228 3229 3230 3231 3232 3233 3234 3235
	r = kvm_x86_ops->handle_exit(kvm_run, vcpu);

	if (r > 0) {
		if (dm_request_for_irq_injection(vcpu, kvm_run)) {
			r = -EINTR;
			kvm_run->exit_reason = KVM_EXIT_INTR;
			++vcpu->stat.request_irq_exits;
			goto out;
		}
3236
		if (!need_resched())
3237 3238 3239 3240
			goto again;
	}

out:
3241
	up_read(&vcpu->kvm->slots_lock);
3242 3243
	if (r > 0) {
		kvm_resched(vcpu);
3244
		down_read(&vcpu->kvm->slots_lock);
3245
		goto again;
3246 3247 3248 3249
	}

	post_kvm_run_save(vcpu, kvm_run);

A
Avi Kivity 已提交
3250 3251
	vapic_exit(vcpu);

3252 3253 3254 3255 3256 3257 3258 3259 3260 3261
	return r;
}

int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	int r;
	sigset_t sigsaved;

	vcpu_load(vcpu);

3262 3263 3264
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

3265
	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
3266
		kvm_vcpu_block(vcpu);
3267 3268
		r = -EAGAIN;
		goto out;
3269 3270 3271 3272
	}

	/* re-sync apic's tpr */
	if (!irqchip_in_kernel(vcpu->kvm))
3273
		kvm_set_cr8(vcpu, kvm_run->cr8);
3274

3275
	if (vcpu->arch.pio.cur_count) {
3276 3277 3278 3279 3280 3281 3282 3283 3284
		r = complete_pio(vcpu);
		if (r)
			goto out;
	}
#if CONFIG_HAS_IOMEM
	if (vcpu->mmio_needed) {
		memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
		vcpu->mmio_read_completed = 1;
		vcpu->mmio_needed = 0;
3285 3286

		down_read(&vcpu->kvm->slots_lock);
3287
		r = emulate_instruction(vcpu, kvm_run,
3288 3289
					vcpu->arch.mmio_fault_cr2, 0,
					EMULTYPE_NO_DECODE);
3290
		up_read(&vcpu->kvm->slots_lock);
3291 3292 3293 3294 3295 3296 3297 3298 3299
		if (r == EMULATE_DO_MMIO) {
			/*
			 * Read-modify-write.  Back to userspace.
			 */
			r = 0;
			goto out;
		}
	}
#endif
3300 3301 3302
	if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
		kvm_register_write(vcpu, VCPU_REGS_RAX,
				     kvm_run->hypercall.ret);
3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317

	r = __vcpu_run(vcpu, kvm_run);

out:
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &sigsaved, NULL);

	vcpu_put(vcpu);
	return r;
}

int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
	vcpu_load(vcpu);

3318 3319 3320 3321 3322 3323 3324 3325
	regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
	regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
	regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
	regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
	regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
	regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
	regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
	regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3326
#ifdef CONFIG_X86_64
3327 3328 3329 3330 3331 3332 3333 3334
	regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
	regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
	regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
	regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
	regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
	regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
	regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
	regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
3335 3336
#endif

3337
	regs->rip = kvm_rip_read(vcpu);
3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354
	regs->rflags = kvm_x86_ops->get_rflags(vcpu);

	/*
	 * Don't leak debug flags in case they were set for guest debugging
	 */
	if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
		regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);

	vcpu_put(vcpu);

	return 0;
}

int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
	vcpu_load(vcpu);

3355 3356 3357 3358 3359 3360 3361 3362
	kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
	kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
	kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
	kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
	kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
	kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
	kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
	kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
3363
#ifdef CONFIG_X86_64
3364 3365 3366 3367 3368 3369 3370 3371 3372
	kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
	kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
	kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
	kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
	kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
	kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
	kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
	kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);

3373 3374
#endif

3375
	kvm_rip_write(vcpu, regs->rip);
3376 3377 3378
	kvm_x86_ops->set_rflags(vcpu, regs->rflags);


3379 3380
	vcpu->arch.exception.pending = false;

3381 3382 3383 3384 3385
	vcpu_put(vcpu);

	return 0;
}

3386 3387
void kvm_get_segment(struct kvm_vcpu *vcpu,
		     struct kvm_segment *var, int seg)
3388
{
3389
	kvm_x86_ops->get_segment(vcpu, var, seg);
3390 3391 3392 3393 3394 3395
}

void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
{
	struct kvm_segment cs;

3396
	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409
	*db = cs.db;
	*l = cs.l;
}
EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);

int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
	struct descriptor_table dt;
	int pending_vec;

	vcpu_load(vcpu);

3410 3411 3412 3413 3414 3415
	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3416

3417 3418
	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3419 3420 3421 3422 3423 3424 3425 3426 3427

	kvm_x86_ops->get_idt(vcpu, &dt);
	sregs->idt.limit = dt.limit;
	sregs->idt.base = dt.base;
	kvm_x86_ops->get_gdt(vcpu, &dt);
	sregs->gdt.limit = dt.limit;
	sregs->gdt.base = dt.base;

	kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3428 3429 3430 3431
	sregs->cr0 = vcpu->arch.cr0;
	sregs->cr2 = vcpu->arch.cr2;
	sregs->cr3 = vcpu->arch.cr3;
	sregs->cr4 = vcpu->arch.cr4;
3432
	sregs->cr8 = kvm_get_cr8(vcpu);
3433
	sregs->efer = vcpu->arch.shadow_efer;
3434 3435 3436 3437 3438 3439 3440 3441 3442 3443
	sregs->apic_base = kvm_get_apic_base(vcpu);

	if (irqchip_in_kernel(vcpu->kvm)) {
		memset(sregs->interrupt_bitmap, 0,
		       sizeof sregs->interrupt_bitmap);
		pending_vec = kvm_x86_ops->get_irq(vcpu);
		if (pending_vec >= 0)
			set_bit(pending_vec,
				(unsigned long *)sregs->interrupt_bitmap);
	} else
3444
		memcpy(sregs->interrupt_bitmap, vcpu->arch.irq_pending,
3445 3446 3447 3448 3449 3450 3451
		       sizeof sregs->interrupt_bitmap);

	vcpu_put(vcpu);

	return 0;
}

3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
	vcpu_load(vcpu);
	mp_state->mp_state = vcpu->arch.mp_state;
	vcpu_put(vcpu);
	return 0;
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
	vcpu_load(vcpu);
	vcpu->arch.mp_state = mp_state->mp_state;
	vcpu_put(vcpu);
	return 0;
}

3470
static void kvm_set_segment(struct kvm_vcpu *vcpu,
3471 3472
			struct kvm_segment *var, int seg)
{
3473
	kvm_x86_ops->set_segment(vcpu, var, seg);
3474 3475
}

3476 3477 3478 3479 3480 3481 3482 3483
static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
				   struct kvm_segment *kvm_desct)
{
	kvm_desct->base = seg_desc->base0;
	kvm_desct->base |= seg_desc->base1 << 16;
	kvm_desct->base |= seg_desc->base2 << 24;
	kvm_desct->limit = seg_desc->limit0;
	kvm_desct->limit |= seg_desc->limit << 16;
3484 3485 3486 3487
	if (seg_desc->g) {
		kvm_desct->limit <<= 12;
		kvm_desct->limit |= 0xfff;
	}
3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510
	kvm_desct->selector = selector;
	kvm_desct->type = seg_desc->type;
	kvm_desct->present = seg_desc->p;
	kvm_desct->dpl = seg_desc->dpl;
	kvm_desct->db = seg_desc->d;
	kvm_desct->s = seg_desc->s;
	kvm_desct->l = seg_desc->l;
	kvm_desct->g = seg_desc->g;
	kvm_desct->avl = seg_desc->avl;
	if (!selector)
		kvm_desct->unusable = 1;
	else
		kvm_desct->unusable = 0;
	kvm_desct->padding = 0;
}

static void get_segment_descritptor_dtable(struct kvm_vcpu *vcpu,
					   u16 selector,
					   struct descriptor_table *dtable)
{
	if (selector & 1 << 2) {
		struct kvm_segment kvm_seg;

3511
		kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526

		if (kvm_seg.unusable)
			dtable->limit = 0;
		else
			dtable->limit = kvm_seg.limit;
		dtable->base = kvm_seg.base;
	}
	else
		kvm_x86_ops->get_gdt(vcpu, dtable);
}

/* allowed just for 8 bytes segments */
static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
					 struct desc_struct *seg_desc)
{
3527
	gpa_t gpa;
3528 3529 3530 3531 3532 3533 3534 3535 3536
	struct descriptor_table dtable;
	u16 index = selector >> 3;

	get_segment_descritptor_dtable(vcpu, selector, &dtable);

	if (dtable.limit < index * 8 + 7) {
		kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
		return 1;
	}
3537 3538 3539
	gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
	gpa += index * 8;
	return kvm_read_guest(vcpu->kvm, gpa, seg_desc, 8);
3540 3541 3542 3543 3544 3545
}

/* allowed just for 8 bytes segments */
static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
					 struct desc_struct *seg_desc)
{
3546
	gpa_t gpa;
3547 3548 3549 3550 3551 3552 3553
	struct descriptor_table dtable;
	u16 index = selector >> 3;

	get_segment_descritptor_dtable(vcpu, selector, &dtable);

	if (dtable.limit < index * 8 + 7)
		return 1;
3554 3555 3556
	gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
	gpa += index * 8;
	return kvm_write_guest(vcpu->kvm, gpa, seg_desc, 8);
3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
}

static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
			     struct desc_struct *seg_desc)
{
	u32 base_addr;

	base_addr = seg_desc->base0;
	base_addr |= (seg_desc->base1 << 16);
	base_addr |= (seg_desc->base2 << 24);

3568
	return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
3569 3570 3571 3572 3573 3574
}

static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
{
	struct kvm_segment kvm_seg;

3575
	kvm_get_segment(vcpu, &kvm_seg, seg);
3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590
	return kvm_seg.selector;
}

static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
						u16 selector,
						struct kvm_segment *kvm_seg)
{
	struct desc_struct seg_desc;

	if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
		return 1;
	seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
	return 0;
}

3591 3592
int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
				int type_bits, int seg)
3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604
{
	struct kvm_segment kvm_seg;

	if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
		return 1;
	kvm_seg.type |= type_bits;

	if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
	    seg != VCPU_SREG_LDTR)
		if (!kvm_seg.s)
			kvm_seg.unusable = 1;

3605
	kvm_set_segment(vcpu, &kvm_seg, seg);
3606 3607 3608 3609 3610 3611 3612
	return 0;
}

static void save_state_to_tss32(struct kvm_vcpu *vcpu,
				struct tss_segment_32 *tss)
{
	tss->cr3 = vcpu->arch.cr3;
3613
	tss->eip = kvm_rip_read(vcpu);
3614
	tss->eflags = kvm_x86_ops->get_rflags(vcpu);
3615 3616 3617 3618 3619 3620 3621 3622
	tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
	tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
	tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
	tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
	tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
	tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
	tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
	tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637
	tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
	tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
	tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
	tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
	tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
	tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
	tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
	tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
}

static int load_state_from_tss32(struct kvm_vcpu *vcpu,
				  struct tss_segment_32 *tss)
{
	kvm_set_cr3(vcpu, tss->cr3);

3638
	kvm_rip_write(vcpu, tss->eip);
3639 3640
	kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);

3641 3642 3643 3644 3645 3646 3647 3648
	kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
	kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
	kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
	kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
	kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
	kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
	kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
	kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
3649

3650
	if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
3651 3652
		return 1;

3653
	if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
3654 3655
		return 1;

3656
	if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
3657 3658
		return 1;

3659
	if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
3660 3661
		return 1;

3662
	if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
3663 3664
		return 1;

3665
	if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
3666 3667
		return 1;

3668
	if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
3669 3670 3671 3672 3673 3674 3675
		return 1;
	return 0;
}

static void save_state_to_tss16(struct kvm_vcpu *vcpu,
				struct tss_segment_16 *tss)
{
3676
	tss->ip = kvm_rip_read(vcpu);
3677
	tss->flag = kvm_x86_ops->get_rflags(vcpu);
3678 3679 3680 3681 3682 3683 3684 3685
	tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
	tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
	tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
	tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
	tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
	tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
	tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
	tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697

	tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
	tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
	tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
	tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
	tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
	tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
}

static int load_state_from_tss16(struct kvm_vcpu *vcpu,
				 struct tss_segment_16 *tss)
{
3698
	kvm_rip_write(vcpu, tss->ip);
3699
	kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
3700 3701 3702 3703 3704 3705 3706 3707
	kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
	kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
	kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
	kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
	kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
	kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
	kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
	kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
3708

3709
	if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
3710 3711
		return 1;

3712
	if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
3713 3714
		return 1;

3715
	if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
3716 3717
		return 1;

3718
	if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
3719 3720
		return 1;

3721
	if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
3722 3723 3724 3725
		return 1;
	return 0;
}

3726
static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
3727
		       u32 old_tss_base,
3728 3729 3730 3731 3732
		       struct desc_struct *nseg_desc)
{
	struct tss_segment_16 tss_segment_16;
	int ret = 0;

3733 3734
	if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
			   sizeof tss_segment_16))
3735 3736 3737 3738
		goto out;

	save_state_to_tss16(vcpu, &tss_segment_16);

3739 3740
	if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
			    sizeof tss_segment_16))
3741
		goto out;
3742 3743 3744 3745 3746

	if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
			   &tss_segment_16, sizeof tss_segment_16))
		goto out;

3747 3748 3749 3750 3751 3752 3753 3754
	if (load_state_from_tss16(vcpu, &tss_segment_16))
		goto out;

	ret = 1;
out:
	return ret;
}

3755
static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
3756
		       u32 old_tss_base,
3757 3758 3759 3760 3761
		       struct desc_struct *nseg_desc)
{
	struct tss_segment_32 tss_segment_32;
	int ret = 0;

3762 3763
	if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
			   sizeof tss_segment_32))
3764 3765 3766 3767
		goto out;

	save_state_to_tss32(vcpu, &tss_segment_32);

3768 3769 3770 3771 3772 3773
	if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
			    sizeof tss_segment_32))
		goto out;

	if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
			   &tss_segment_32, sizeof tss_segment_32))
3774
		goto out;
3775

3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789
	if (load_state_from_tss32(vcpu, &tss_segment_32))
		goto out;

	ret = 1;
out:
	return ret;
}

int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
{
	struct kvm_segment tr_seg;
	struct desc_struct cseg_desc;
	struct desc_struct nseg_desc;
	int ret = 0;
3790 3791
	u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
	u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
3792

3793
	old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
3794

3795 3796 3797
	/* FIXME: Handle errors. Failure to read either TSS or their
	 * descriptors should generate a pagefault.
	 */
3798 3799 3800
	if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
		goto out;

3801
	if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819
		goto out;

	if (reason != TASK_SWITCH_IRET) {
		int cpl;

		cpl = kvm_x86_ops->get_cpl(vcpu);
		if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
			kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
			return 1;
		}
	}

	if (!nseg_desc.p || (nseg_desc.limit0 | nseg_desc.limit << 16) < 0x67) {
		kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
		return 1;
	}

	if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
3820
		cseg_desc.type &= ~(1 << 1); //clear the B flag
3821
		save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
3822 3823 3824 3825 3826 3827 3828 3829 3830 3831
	}

	if (reason == TASK_SWITCH_IRET) {
		u32 eflags = kvm_x86_ops->get_rflags(vcpu);
		kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
	}

	kvm_x86_ops->skip_emulated_instruction(vcpu);

	if (nseg_desc.type & 8)
3832
		ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_base,
3833 3834
					 &nseg_desc);
	else
3835
		ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_base,
3836 3837 3838 3839 3840 3841 3842 3843
					 &nseg_desc);

	if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
		u32 eflags = kvm_x86_ops->get_rflags(vcpu);
		kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
	}

	if (reason != TASK_SWITCH_IRET) {
3844
		nseg_desc.type |= (1 << 1);
3845 3846 3847 3848 3849 3850 3851
		save_guest_segment_descriptor(vcpu, tss_selector,
					      &nseg_desc);
	}

	kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
	seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
	tr_seg.type = 11;
3852
	kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
3853 3854 3855 3856 3857
out:
	return ret;
}
EXPORT_SYMBOL_GPL(kvm_task_switch);

3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873
int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
	int mmu_reset_needed = 0;
	int i, pending_vec, max_bits;
	struct descriptor_table dt;

	vcpu_load(vcpu);

	dt.limit = sregs->idt.limit;
	dt.base = sregs->idt.base;
	kvm_x86_ops->set_idt(vcpu, &dt);
	dt.limit = sregs->gdt.limit;
	dt.base = sregs->gdt.base;
	kvm_x86_ops->set_gdt(vcpu, &dt);

3874 3875 3876
	vcpu->arch.cr2 = sregs->cr2;
	mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
	vcpu->arch.cr3 = sregs->cr3;
3877

3878
	kvm_set_cr8(vcpu, sregs->cr8);
3879

3880
	mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
3881 3882 3883 3884 3885
	kvm_x86_ops->set_efer(vcpu, sregs->efer);
	kvm_set_apic_base(vcpu, sregs->apic_base);

	kvm_x86_ops->decache_cr4_guest_bits(vcpu);

3886
	mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
3887
	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
3888
	vcpu->arch.cr0 = sregs->cr0;
3889

3890
	mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
3891 3892
	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
	if (!is_long_mode(vcpu) && is_pae(vcpu))
3893
		load_pdptrs(vcpu, vcpu->arch.cr3);
3894 3895 3896 3897 3898

	if (mmu_reset_needed)
		kvm_mmu_reset_context(vcpu);

	if (!irqchip_in_kernel(vcpu->kvm)) {
3899 3900 3901 3902 3903 3904
		memcpy(vcpu->arch.irq_pending, sregs->interrupt_bitmap,
		       sizeof vcpu->arch.irq_pending);
		vcpu->arch.irq_summary = 0;
		for (i = 0; i < ARRAY_SIZE(vcpu->arch.irq_pending); ++i)
			if (vcpu->arch.irq_pending[i])
				__set_bit(i, &vcpu->arch.irq_summary);
3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917
	} else {
		max_bits = (sizeof sregs->interrupt_bitmap) << 3;
		pending_vec = find_first_bit(
			(const unsigned long *)sregs->interrupt_bitmap,
			max_bits);
		/* Only pending external irq is handled here */
		if (pending_vec < max_bits) {
			kvm_x86_ops->set_irq(vcpu, pending_vec);
			pr_debug("Set back pending irq %d\n",
				 pending_vec);
		}
	}

3918 3919 3920 3921 3922 3923
	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3924

3925 3926
	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946

	vcpu_put(vcpu);

	return 0;
}

int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
				    struct kvm_debug_guest *dbg)
{
	int r;

	vcpu_load(vcpu);

	r = kvm_x86_ops->set_guest_debug(vcpu, dbg);

	vcpu_put(vcpu);

	return r;
}

3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967
/*
 * fxsave fpu state.  Taken from x86_64/processor.h.  To be killed when
 * we have asm/x86/processor.h
 */
struct fxsave {
	u16	cwd;
	u16	swd;
	u16	twd;
	u16	fop;
	u64	rip;
	u64	rdp;
	u32	mxcsr;
	u32	mxcsr_mask;
	u32	st_space[32];	/* 8*16 bytes for each FP-reg = 128 bytes */
#ifdef CONFIG_X86_64
	u32	xmm_space[64];	/* 16*16 bytes for each XMM-reg = 256 bytes */
#else
	u32	xmm_space[32];	/* 8*16 bytes for each XMM-reg = 128 bytes */
#endif
};

3968 3969 3970 3971 3972 3973 3974 3975 3976 3977
/*
 * Translate a guest virtual address to a guest physical address.
 */
int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
				    struct kvm_translation *tr)
{
	unsigned long vaddr = tr->linear_address;
	gpa_t gpa;

	vcpu_load(vcpu);
3978
	down_read(&vcpu->kvm->slots_lock);
3979
	gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
3980
	up_read(&vcpu->kvm->slots_lock);
3981 3982 3983 3984 3985 3986 3987 3988 3989
	tr->physical_address = gpa;
	tr->valid = gpa != UNMAPPED_GVA;
	tr->writeable = 1;
	tr->usermode = 0;
	vcpu_put(vcpu);

	return 0;
}

3990 3991
int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
3992
	struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011

	vcpu_load(vcpu);

	memcpy(fpu->fpr, fxsave->st_space, 128);
	fpu->fcw = fxsave->cwd;
	fpu->fsw = fxsave->swd;
	fpu->ftwx = fxsave->twd;
	fpu->last_opcode = fxsave->fop;
	fpu->last_ip = fxsave->rip;
	fpu->last_dp = fxsave->rdp;
	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);

	vcpu_put(vcpu);

	return 0;
}

int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
4012
	struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033

	vcpu_load(vcpu);

	memcpy(fxsave->st_space, fpu->fpr, 128);
	fxsave->cwd = fpu->fcw;
	fxsave->swd = fpu->fsw;
	fxsave->twd = fpu->ftwx;
	fxsave->fop = fpu->last_opcode;
	fxsave->rip = fpu->last_ip;
	fxsave->rdp = fpu->last_dp;
	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);

	vcpu_put(vcpu);

	return 0;
}

void fx_init(struct kvm_vcpu *vcpu)
{
	unsigned after_mxcsr_mask;

4034 4035 4036 4037 4038 4039 4040
	/*
	 * Touch the fpu the first time in non atomic context as if
	 * this is the first fpu instruction the exception handler
	 * will fire before the instruction returns and it'll have to
	 * allocate ram with GFP_KERNEL.
	 */
	if (!used_math())
4041
		kvm_fx_save(&vcpu->arch.host_fx_image);
4042

4043 4044
	/* Initialize guest FPU by resetting ours and saving into guest's */
	preempt_disable();
4045 4046 4047 4048
	kvm_fx_save(&vcpu->arch.host_fx_image);
	kvm_fx_finit();
	kvm_fx_save(&vcpu->arch.guest_fx_image);
	kvm_fx_restore(&vcpu->arch.host_fx_image);
4049 4050
	preempt_enable();

4051
	vcpu->arch.cr0 |= X86_CR0_ET;
4052
	after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
4053 4054
	vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
	memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
4055 4056 4057 4058 4059 4060 4061 4062 4063 4064
	       0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
}
EXPORT_SYMBOL_GPL(fx_init);

void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
{
	if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
		return;

	vcpu->guest_fpu_loaded = 1;
4065 4066
	kvm_fx_save(&vcpu->arch.host_fx_image);
	kvm_fx_restore(&vcpu->arch.guest_fx_image);
4067 4068 4069 4070 4071 4072 4073 4074 4075
}
EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);

void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
{
	if (!vcpu->guest_fpu_loaded)
		return;

	vcpu->guest_fpu_loaded = 0;
4076 4077
	kvm_fx_save(&vcpu->arch.guest_fx_image);
	kvm_fx_restore(&vcpu->arch.host_fx_image);
A
Avi Kivity 已提交
4078
	++vcpu->stat.fpu_reload;
4079 4080
}
EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
4081 4082 4083 4084 4085 4086 4087 4088 4089

void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
	kvm_x86_ops->vcpu_free(vcpu);
}

struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
						unsigned int id)
{
4090 4091
	return kvm_x86_ops->vcpu_create(kvm, id);
}
4092

4093 4094 4095
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
	int r;
4096 4097

	/* We do fxsave: this must be aligned. */
4098
	BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
4099 4100 4101 4102 4103 4104 4105 4106 4107

	vcpu_load(vcpu);
	r = kvm_arch_vcpu_reset(vcpu);
	if (r == 0)
		r = kvm_mmu_setup(vcpu);
	vcpu_put(vcpu);
	if (r < 0)
		goto free_vcpu;

4108
	return 0;
4109 4110
free_vcpu:
	kvm_x86_ops->vcpu_free(vcpu);
4111
	return r;
4112 4113
}

4114
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161
{
	vcpu_load(vcpu);
	kvm_mmu_unload(vcpu);
	vcpu_put(vcpu);

	kvm_x86_ops->vcpu_free(vcpu);
}

int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
{
	return kvm_x86_ops->vcpu_reset(vcpu);
}

void kvm_arch_hardware_enable(void *garbage)
{
	kvm_x86_ops->hardware_enable(garbage);
}

void kvm_arch_hardware_disable(void *garbage)
{
	kvm_x86_ops->hardware_disable(garbage);
}

int kvm_arch_hardware_setup(void)
{
	return kvm_x86_ops->hardware_setup();
}

void kvm_arch_hardware_unsetup(void)
{
	kvm_x86_ops->hardware_unsetup();
}

void kvm_arch_check_processor_compat(void *rtn)
{
	kvm_x86_ops->check_processor_compatibility(rtn);
}

int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
	struct page *page;
	struct kvm *kvm;
	int r;

	BUG_ON(vcpu->kvm == NULL);
	kvm = vcpu->kvm;

4162
	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4163
	if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
4164
		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4165
	else
4166
		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
4167 4168 4169 4170 4171 4172

	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
	if (!page) {
		r = -ENOMEM;
		goto fail;
	}
4173
	vcpu->arch.pio_data = page_address(page);
4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189

	r = kvm_mmu_create(vcpu);
	if (r < 0)
		goto fail_free_pio_data;

	if (irqchip_in_kernel(kvm)) {
		r = kvm_create_lapic(vcpu);
		if (r < 0)
			goto fail_mmu_destroy;
	}

	return 0;

fail_mmu_destroy:
	kvm_mmu_destroy(vcpu);
fail_free_pio_data:
4190
	free_page((unsigned long)vcpu->arch.pio_data);
4191 4192 4193 4194 4195 4196 4197
fail:
	return r;
}

void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
{
	kvm_free_lapic(vcpu);
4198
	down_read(&vcpu->kvm->slots_lock);
4199
	kvm_mmu_destroy(vcpu);
4200
	up_read(&vcpu->kvm->slots_lock);
4201
	free_page((unsigned long)vcpu->arch.pio_data);
4202
}
4203 4204 4205 4206 4207 4208 4209 4210

struct  kvm *kvm_arch_create_vm(void)
{
	struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);

	if (!kvm)
		return ERR_PTR(-ENOMEM);

4211
	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
B
Ben-Ami Yassour 已提交
4212
	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244

	return kvm;
}

static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
{
	vcpu_load(vcpu);
	kvm_mmu_unload(vcpu);
	vcpu_put(vcpu);
}

static void kvm_free_vcpus(struct kvm *kvm)
{
	unsigned int i;

	/*
	 * Unpin any mmu pages first.
	 */
	for (i = 0; i < KVM_MAX_VCPUS; ++i)
		if (kvm->vcpus[i])
			kvm_unload_vcpu_mmu(kvm->vcpus[i]);
	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
		if (kvm->vcpus[i]) {
			kvm_arch_vcpu_free(kvm->vcpus[i]);
			kvm->vcpus[i] = NULL;
		}
	}

}

void kvm_arch_destroy_vm(struct kvm *kvm)
{
B
Ben-Ami Yassour 已提交
4245
	kvm_free_assigned_devices(kvm);
S
Sheng Yang 已提交
4246
	kvm_free_pit(kvm);
4247 4248
	kfree(kvm->arch.vpic);
	kfree(kvm->arch.vioapic);
4249 4250
	kvm_free_vcpus(kvm);
	kvm_free_physmem(kvm);
4251 4252
	if (kvm->arch.apic_access_page)
		put_page(kvm->arch.apic_access_page);
4253 4254
	if (kvm->arch.ept_identity_pagetable)
		put_page(kvm->arch.ept_identity_pagetable);
4255 4256
	kfree(kvm);
}
4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270

int kvm_arch_set_memory_region(struct kvm *kvm,
				struct kvm_userspace_memory_region *mem,
				struct kvm_memory_slot old,
				int user_alloc)
{
	int npages = mem->memory_size >> PAGE_SHIFT;
	struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];

	/*To keep backward compatibility with older userspace,
	 *x86 needs to hanlde !user_alloc case.
	 */
	if (!user_alloc) {
		if (npages && !old.rmap) {
4271 4272
			unsigned long userspace_addr;

4273
			down_write(&current->mm->mmap_sem);
4274 4275 4276 4277 4278
			userspace_addr = do_mmap(NULL, 0,
						 npages * PAGE_SIZE,
						 PROT_READ | PROT_WRITE,
						 MAP_SHARED | MAP_ANONYMOUS,
						 0);
4279
			up_write(&current->mm->mmap_sem);
4280

4281 4282 4283 4284 4285 4286 4287
			if (IS_ERR((void *)userspace_addr))
				return PTR_ERR((void *)userspace_addr);

			/* set userspace_addr atomically for kvm_hva_to_rmapp */
			spin_lock(&kvm->mmu_lock);
			memslot->userspace_addr = userspace_addr;
			spin_unlock(&kvm->mmu_lock);
4288 4289 4290 4291
		} else {
			if (!old.user_alloc && old.rmap) {
				int ret;

4292
				down_write(&current->mm->mmap_sem);
4293 4294
				ret = do_munmap(current->mm, old.userspace_addr,
						old.npages * PAGE_SIZE);
4295
				up_write(&current->mm->mmap_sem);
4296 4297 4298 4299 4300 4301 4302 4303
				if (ret < 0)
					printk(KERN_WARNING
				       "kvm_vm_ioctl_set_memory_region: "
				       "failed to munmap memory\n");
			}
		}
	}

4304
	if (!kvm->arch.n_requested_mmu_pages) {
4305 4306 4307 4308 4309 4310 4311 4312 4313
		unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
	}

	kvm_mmu_slot_remove_write_access(kvm, mem->slot);
	kvm_flush_remote_tlbs(kvm);

	return 0;
}
4314

4315 4316 4317 4318 4319
void kvm_arch_flush_shadow(struct kvm *kvm)
{
	kvm_mmu_zap_all(kvm);
}

4320 4321
int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
{
4322 4323
	return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
	       || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED;
4324
}
4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336

static void vcpu_kick_intr(void *info)
{
#ifdef DEBUG
	struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
	printk(KERN_DEBUG "vcpu_kick_intr %p \n", vcpu);
#endif
}

void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
{
	int ipi_pcpu = vcpu->cpu;
4337
	int cpu = get_cpu();
4338 4339 4340 4341 4342

	if (waitqueue_active(&vcpu->wq)) {
		wake_up_interruptible(&vcpu->wq);
		++vcpu->stat.halt_wakeup;
	}
4343 4344 4345 4346 4347
	/*
	 * We may be called synchronously with irqs disabled in guest mode,
	 * So need not to call smp_call_function_single() in that case.
	 */
	if (vcpu->guest_mode && vcpu->cpu != cpu)
4348
		smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0);
4349
	put_cpu();
4350
}