compaction.c 25.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * linux/mm/compaction.c
 *
 * Memory compaction for the reduction of external fragmentation. Note that
 * this heavily depends upon page migration to do all the real heavy
 * lifting
 *
 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
 */
#include <linux/swap.h>
#include <linux/migrate.h>
#include <linux/compaction.h>
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
15
#include <linux/sysctl.h>
16
#include <linux/sysfs.h>
17 18
#include "internal.h"

19 20
#if defined CONFIG_COMPACTION || defined CONFIG_CMA

21 22 23
#define CREATE_TRACE_POINTS
#include <trace/events/compaction.h>

24 25 26 27 28 29 30 31 32 33 34 35 36 37
static unsigned long release_freepages(struct list_head *freelist)
{
	struct page *page, *next;
	unsigned long count = 0;

	list_for_each_entry_safe(page, next, freelist, lru) {
		list_del(&page->lru);
		__free_page(page);
		count++;
	}

	return count;
}

38 39 40 41 42 43 44 45 46 47
static void map_pages(struct list_head *list)
{
	struct page *page;

	list_for_each_entry(page, list, lru) {
		arch_alloc_page(page, 0);
		kernel_map_pages(page, 1, 1);
	}
}

48 49 50 51 52
static inline bool migrate_async_suitable(int migratetype)
{
	return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
}

53 54 55 56 57 58 59 60 61 62
/*
 * Isolate free pages onto a private freelist. Caller must hold zone->lock.
 * If @strict is true, will abort returning 0 on any invalid PFNs or non-free
 * pages inside of the pageblock (even though it may still end up isolating
 * some pages).
 */
static unsigned long isolate_freepages_block(unsigned long blockpfn,
				unsigned long end_pfn,
				struct list_head *freelist,
				bool strict)
63
{
64
	int nr_scanned = 0, total_isolated = 0;
65 66 67 68 69 70 71 72 73
	struct page *cursor;

	cursor = pfn_to_page(blockpfn);

	/* Isolate free pages. This assumes the block is valid */
	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
		int isolated, i;
		struct page *page = cursor;

74 75 76
		if (!pfn_valid_within(blockpfn)) {
			if (strict)
				return 0;
77
			continue;
78
		}
79
		nr_scanned++;
80

81 82 83
		if (!PageBuddy(page)) {
			if (strict)
				return 0;
84
			continue;
85
		}
86 87 88

		/* Found a free page, break it into order-0 pages */
		isolated = split_free_page(page);
89 90
		if (!isolated && strict)
			return 0;
91 92 93 94 95 96 97 98 99 100 101 102 103
		total_isolated += isolated;
		for (i = 0; i < isolated; i++) {
			list_add(&page->lru, freelist);
			page++;
		}

		/* If a page was split, advance to the end of it */
		if (isolated) {
			blockpfn += isolated - 1;
			cursor += isolated - 1;
		}
	}

104
	trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
105 106 107
	return total_isolated;
}

108 109 110 111 112 113 114 115 116 117 118 119 120
/**
 * isolate_freepages_range() - isolate free pages.
 * @start_pfn: The first PFN to start isolating.
 * @end_pfn:   The one-past-last PFN.
 *
 * Non-free pages, invalid PFNs, or zone boundaries within the
 * [start_pfn, end_pfn) range are considered errors, cause function to
 * undo its actions and return zero.
 *
 * Otherwise, function returns one-past-the-last PFN of isolated page
 * (which may be greater then end_pfn if end fell in a middle of
 * a free page).
 */
121
unsigned long
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
isolate_freepages_range(unsigned long start_pfn, unsigned long end_pfn)
{
	unsigned long isolated, pfn, block_end_pfn, flags;
	struct zone *zone = NULL;
	LIST_HEAD(freelist);

	if (pfn_valid(start_pfn))
		zone = page_zone(pfn_to_page(start_pfn));

	for (pfn = start_pfn; pfn < end_pfn; pfn += isolated) {
		if (!pfn_valid(pfn) || zone != page_zone(pfn_to_page(pfn)))
			break;

		/*
		 * On subsequent iterations ALIGN() is actually not needed,
		 * but we keep it that we not to complicate the code.
		 */
		block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
		block_end_pfn = min(block_end_pfn, end_pfn);

		spin_lock_irqsave(&zone->lock, flags);
		isolated = isolate_freepages_block(pfn, block_end_pfn,
						   &freelist, true);
		spin_unlock_irqrestore(&zone->lock, flags);

		/*
		 * In strict mode, isolate_freepages_block() returns 0 if
		 * there are any holes in the block (ie. invalid PFNs or
		 * non-free pages).
		 */
		if (!isolated)
			break;

		/*
		 * If we managed to isolate pages, it is always (1 << n) *
		 * pageblock_nr_pages for some non-negative n.  (Max order
		 * page may span two pageblocks).
		 */
	}

	/* split_free_page does not map the pages */
	map_pages(&freelist);

	if (pfn < end_pfn) {
		/* Loop terminated early, cleanup. */
		release_freepages(&freelist);
		return 0;
	}

	/* We don't use freelists for anything. */
	return pfn;
}

175 176 177 178
/* Update the number of anon and file isolated pages in the zone */
static void acct_isolated(struct zone *zone, struct compact_control *cc)
{
	struct page *page;
179
	unsigned int count[2] = { 0, };
180

181 182
	list_for_each_entry(page, &cc->migratepages, lru)
		count[!!page_is_file_cache(page)]++;
183

184 185
	__mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
	__mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
186 187 188 189 190
}

/* Similar to reclaim, but different enough that they don't share logic */
static bool too_many_isolated(struct zone *zone)
{
191
	unsigned long active, inactive, isolated;
192 193 194

	inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
					zone_page_state(zone, NR_INACTIVE_ANON);
195 196
	active = zone_page_state(zone, NR_ACTIVE_FILE) +
					zone_page_state(zone, NR_ACTIVE_ANON);
197 198 199
	isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
					zone_page_state(zone, NR_ISOLATED_ANON);

200
	return isolated > (inactive + active) / 2;
201 202
}

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
/**
 * isolate_migratepages_range() - isolate all migrate-able pages in range.
 * @zone:	Zone pages are in.
 * @cc:		Compaction control structure.
 * @low_pfn:	The first PFN of the range.
 * @end_pfn:	The one-past-the-last PFN of the range.
 *
 * Isolate all pages that can be migrated from the range specified by
 * [low_pfn, end_pfn).  Returns zero if there is a fatal signal
 * pending), otherwise PFN of the first page that was not scanned
 * (which may be both less, equal to or more then end_pfn).
 *
 * Assumes that cc->migratepages is empty and cc->nr_migratepages is
 * zero.
 *
 * Apart from cc->migratepages and cc->nr_migratetypes this function
 * does not modify any cc's fields, in particular it does not modify
 * (or read for that matter) cc->migrate_pfn.
221
 */
222
unsigned long
223 224
isolate_migratepages_range(struct zone *zone, struct compact_control *cc,
			   unsigned long low_pfn, unsigned long end_pfn)
225
{
226
	unsigned long last_pageblock_nr = 0, pageblock_nr;
227
	unsigned long nr_scanned = 0, nr_isolated = 0;
228
	struct list_head *migratelist = &cc->migratepages;
229
	isolate_mode_t mode = 0;
230
	struct lruvec *lruvec;
231 232 233 234 235 236 237

	/*
	 * Ensure that there are not too many pages isolated from the LRU
	 * list by either parallel reclaimers or compaction. If there are,
	 * delay for some time until fewer pages are isolated
	 */
	while (unlikely(too_many_isolated(zone))) {
238
		/* async migration should just abort */
239
		if (!cc->sync)
240
			return 0;
241

242 243 244
		congestion_wait(BLK_RW_ASYNC, HZ/10);

		if (fatal_signal_pending(current))
245
			return 0;
246 247 248
	}

	/* Time to isolate some pages for migration */
249
	cond_resched();
250 251 252
	spin_lock_irq(&zone->lru_lock);
	for (; low_pfn < end_pfn; low_pfn++) {
		struct page *page;
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
		bool locked = true;

		/* give a chance to irqs before checking need_resched() */
		if (!((low_pfn+1) % SWAP_CLUSTER_MAX)) {
			spin_unlock_irq(&zone->lru_lock);
			locked = false;
		}
		if (need_resched() || spin_is_contended(&zone->lru_lock)) {
			if (locked)
				spin_unlock_irq(&zone->lru_lock);
			cond_resched();
			spin_lock_irq(&zone->lru_lock);
			if (fatal_signal_pending(current))
				break;
		} else if (!locked)
			spin_lock_irq(&zone->lru_lock);

270 271 272 273 274 275 276 277 278 279 280 281 282
		/*
		 * migrate_pfn does not necessarily start aligned to a
		 * pageblock. Ensure that pfn_valid is called when moving
		 * into a new MAX_ORDER_NR_PAGES range in case of large
		 * memory holes within the zone
		 */
		if ((low_pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
			if (!pfn_valid(low_pfn)) {
				low_pfn += MAX_ORDER_NR_PAGES - 1;
				continue;
			}
		}

283 284
		if (!pfn_valid_within(low_pfn))
			continue;
285
		nr_scanned++;
286

287 288 289 290 291 292
		/*
		 * Get the page and ensure the page is within the same zone.
		 * See the comment in isolate_freepages about overlapping
		 * nodes. It is deliberate that the new zone lock is not taken
		 * as memory compaction should not move pages between nodes.
		 */
293
		page = pfn_to_page(low_pfn);
294 295 296 297
		if (page_zone(page) != zone)
			continue;

		/* Skip if free */
298 299 300
		if (PageBuddy(page))
			continue;

301 302 303 304 305 306
		/*
		 * For async migration, also only scan in MOVABLE blocks. Async
		 * migration is optimistic to see if the minimum amount of work
		 * satisfies the allocation
		 */
		pageblock_nr = low_pfn >> pageblock_order;
307
		if (!cc->sync && last_pageblock_nr != pageblock_nr &&
308
		    !migrate_async_suitable(get_pageblock_migratetype(page))) {
309 310 311 312 313 314
			low_pfn += pageblock_nr_pages;
			low_pfn = ALIGN(low_pfn, pageblock_nr_pages) - 1;
			last_pageblock_nr = pageblock_nr;
			continue;
		}

315 316 317 318 319 320 321 322 323 324 325 326 327
		if (!PageLRU(page))
			continue;

		/*
		 * PageLRU is set, and lru_lock excludes isolation,
		 * splitting and collapsing (collapsing has already
		 * happened if PageLRU is set).
		 */
		if (PageTransHuge(page)) {
			low_pfn += (1 << compound_order(page)) - 1;
			continue;
		}

328
		if (!cc->sync)
329 330
			mode |= ISOLATE_ASYNC_MIGRATE;

331 332
		lruvec = mem_cgroup_page_lruvec(page, zone);

333
		/* Try isolate the page */
334
		if (__isolate_lru_page(page, mode) != 0)
335 336
			continue;

337 338
		VM_BUG_ON(PageTransCompound(page));

339
		/* Successfully isolated */
340
		del_page_from_lru_list(page, lruvec, page_lru(page));
341 342
		list_add(&page->lru, migratelist);
		cc->nr_migratepages++;
343
		nr_isolated++;
344 345

		/* Avoid isolating too much */
346 347
		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
			++low_pfn;
348
			break;
349
		}
350 351 352 353 354 355
	}

	acct_isolated(zone, cc);

	spin_unlock_irq(&zone->lru_lock);

356 357
	trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);

358 359 360
	return low_pfn;
}

361 362 363
#endif /* CONFIG_COMPACTION || CONFIG_CMA */
#ifdef CONFIG_COMPACTION

364 365
/* Returns true if the page is within a block suitable for migration to */
static bool suitable_migration_target(struct page *page)
366 367 368 369 370 371
{

	int migratetype = get_pageblock_migratetype(page);

	/* Don't interfere with memory hot-remove or the min_free_kbytes blocks */
	if (migratetype == MIGRATE_ISOLATE || migratetype == MIGRATE_RESERVE)
372
		return false;
373 374 375

	/* If the page is a large free page, then allow migration */
	if (PageBuddy(page) && page_order(page) >= pageblock_order)
376
		return true;
377

378
	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
379 380
	if (migrate_async_suitable(migratetype))
		return true;
381 382

	/* Otherwise skip the block */
383
	return false;
384 385
}

386
/*
387 388
 * Based on information in the current compact_control, find blocks
 * suitable for isolating free pages from and then isolate them.
389
 */
390 391
static void isolate_freepages(struct zone *zone,
				struct compact_control *cc)
392
{
393 394 395 396 397
	struct page *page;
	unsigned long high_pfn, low_pfn, pfn, zone_end_pfn, end_pfn;
	unsigned long flags;
	int nr_freepages = cc->nr_freepages;
	struct list_head *freelist = &cc->freepages;
398

399 400 401 402 403 404 405
	/*
	 * Initialise the free scanner. The starting point is where we last
	 * scanned from (or the end of the zone if starting). The low point
	 * is the end of the pageblock the migration scanner is using.
	 */
	pfn = cc->free_pfn;
	low_pfn = cc->migrate_pfn + pageblock_nr_pages;
406

407 408 409 410 411 412
	/*
	 * Take care that if the migration scanner is at the end of the zone
	 * that the free scanner does not accidentally move to the next zone
	 * in the next isolation cycle.
	 */
	high_pfn = min(low_pfn, pfn);
413

414
	zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages;
415

416 417 418 419 420 421 422 423
	/*
	 * Isolate free pages until enough are available to migrate the
	 * pages on cc->migratepages. We stop searching if the migrate
	 * and free page scanners meet or enough free pages are isolated.
	 */
	for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages;
					pfn -= pageblock_nr_pages) {
		unsigned long isolated;
424

425 426 427 428 429 430 431 432 433 434 435
		/*
		 * Skip ahead if another thread is compacting in the area
		 * simultaneously. If we wrapped around, we can only skip
		 * ahead if zone->compact_cached_free_pfn also wrapped to
		 * above our starting point.
		 */
		if (cc->order > 0 && (!cc->wrapped ||
				      zone->compact_cached_free_pfn >
				      cc->start_free_pfn))
			pfn = min(pfn, zone->compact_cached_free_pfn);

436 437
		if (!pfn_valid(pfn))
			continue;
438

439 440 441 442 443 444 445 446 447 448 449 450
		/*
		 * Check for overlapping nodes/zones. It's possible on some
		 * configurations to have a setup like
		 * node0 node1 node0
		 * i.e. it's possible that all pages within a zones range of
		 * pages do not belong to a single zone.
		 */
		page = pfn_to_page(pfn);
		if (page_zone(page) != zone)
			continue;

		/* Check the block is suitable for migration */
451
		if (!suitable_migration_target(page))
452
			continue;
453

454 455 456 457 458 459 460 461
		/*
		 * Found a block suitable for isolating free pages from. Now
		 * we disabled interrupts, double check things are ok and
		 * isolate the pages. This is to minimise the time IRQs
		 * are disabled
		 */
		isolated = 0;
		spin_lock_irqsave(&zone->lock, flags);
462
		if (suitable_migration_target(page)) {
463 464 465 466
			end_pfn = min(pfn + pageblock_nr_pages, zone_end_pfn);
			isolated = isolate_freepages_block(pfn, end_pfn,
							   freelist, false);
			nr_freepages += isolated;
467
		}
468 469 470 471 472 473 474
		spin_unlock_irqrestore(&zone->lock, flags);

		/*
		 * Record the highest PFN we isolated pages from. When next
		 * looking for free pages, the search will restart here as
		 * page migration may have returned some pages to the allocator
		 */
475
		if (isolated) {
476
			high_pfn = max(high_pfn, pfn);
477 478 479
			if (cc->order > 0)
				zone->compact_cached_free_pfn = high_pfn;
		}
480 481 482 483 484 485 486
	}

	/* split_free_page does not map the pages */
	map_pages(freelist);

	cc->free_pfn = high_pfn;
	cc->nr_freepages = nr_freepages;
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
}

/*
 * This is a migrate-callback that "allocates" freepages by taking pages
 * from the isolated freelists in the block we are migrating to.
 */
static struct page *compaction_alloc(struct page *migratepage,
					unsigned long data,
					int **result)
{
	struct compact_control *cc = (struct compact_control *)data;
	struct page *freepage;

	/* Isolate free pages if necessary */
	if (list_empty(&cc->freepages)) {
		isolate_freepages(cc->zone, cc);

		if (list_empty(&cc->freepages))
			return NULL;
	}

	freepage = list_entry(cc->freepages.next, struct page, lru);
	list_del(&freepage->lru);
	cc->nr_freepages--;

	return freepage;
}

/*
 * We cannot control nr_migratepages and nr_freepages fully when migration is
 * running as migrate_pages() has no knowledge of compact_control. When
 * migration is complete, we count the number of pages on the lists by hand.
 */
static void update_nr_listpages(struct compact_control *cc)
{
	int nr_migratepages = 0;
	int nr_freepages = 0;
	struct page *page;

	list_for_each_entry(page, &cc->migratepages, lru)
		nr_migratepages++;
	list_for_each_entry(page, &cc->freepages, lru)
		nr_freepages++;

	cc->nr_migratepages = nr_migratepages;
	cc->nr_freepages = nr_freepages;
}

535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
/* possible outcome of isolate_migratepages */
typedef enum {
	ISOLATE_ABORT,		/* Abort compaction now */
	ISOLATE_NONE,		/* No pages isolated, continue scanning */
	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
} isolate_migrate_t;

/*
 * Isolate all pages that can be migrated from the block pointed to by
 * the migrate scanner within compact_control.
 */
static isolate_migrate_t isolate_migratepages(struct zone *zone,
					struct compact_control *cc)
{
	unsigned long low_pfn, end_pfn;

	/* Do not scan outside zone boundaries */
	low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);

	/* Only scan within a pageblock boundary */
	end_pfn = ALIGN(low_pfn + pageblock_nr_pages, pageblock_nr_pages);

	/* Do not cross the free scanner or scan within a memory hole */
	if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
		cc->migrate_pfn = end_pfn;
		return ISOLATE_NONE;
	}

	/* Perform the isolation */
	low_pfn = isolate_migratepages_range(zone, cc, low_pfn, end_pfn);
	if (!low_pfn)
		return ISOLATE_ABORT;

	cc->migrate_pfn = low_pfn;

	return ISOLATE_SUCCESS;
}

573 574 575 576 577 578 579 580 581 582 583 584 585 586
/*
 * Returns the start pfn of the last page block in a zone.  This is the starting
 * point for full compaction of a zone.  Compaction searches for free pages from
 * the end of each zone, while isolate_freepages_block scans forward inside each
 * page block.
 */
static unsigned long start_free_pfn(struct zone *zone)
{
	unsigned long free_pfn;
	free_pfn = zone->zone_start_pfn + zone->spanned_pages;
	free_pfn &= ~(pageblock_nr_pages-1);
	return free_pfn;
}

587
static int compact_finished(struct zone *zone,
588
			    struct compact_control *cc)
589
{
590
	unsigned int order;
591
	unsigned long watermark;
592

593 594 595
	if (fatal_signal_pending(current))
		return COMPACT_PARTIAL;

596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
	/*
	 * A full (order == -1) compaction run starts at the beginning and
	 * end of a zone; it completes when the migrate and free scanner meet.
	 * A partial (order > 0) compaction can start with the free scanner
	 * at a random point in the zone, and may have to restart.
	 */
	if (cc->free_pfn <= cc->migrate_pfn) {
		if (cc->order > 0 && !cc->wrapped) {
			/* We started partway through; restart at the end. */
			unsigned long free_pfn = start_free_pfn(zone);
			zone->compact_cached_free_pfn = free_pfn;
			cc->free_pfn = free_pfn;
			cc->wrapped = 1;
			return COMPACT_CONTINUE;
		}
		return COMPACT_COMPLETE;
	}

	/* We wrapped around and ended up where we started. */
	if (cc->wrapped && cc->free_pfn <= cc->start_free_pfn)
616 617
		return COMPACT_COMPLETE;

618 619 620 621
	/*
	 * order == -1 is expected when compacting via
	 * /proc/sys/vm/compact_memory
	 */
622 623 624
	if (cc->order == -1)
		return COMPACT_CONTINUE;

625 626 627 628 629 630 631
	/* Compaction run is not finished if the watermark is not met */
	watermark = low_wmark_pages(zone);
	watermark += (1 << cc->order);

	if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
		return COMPACT_CONTINUE;

632 633 634 635 636 637 638 639 640 641 642
	/* Direct compactor: Is a suitable page free? */
	for (order = cc->order; order < MAX_ORDER; order++) {
		/* Job done if page is free of the right migratetype */
		if (!list_empty(&zone->free_area[order].free_list[cc->migratetype]))
			return COMPACT_PARTIAL;

		/* Job done if allocation would set block type */
		if (order >= pageblock_order && zone->free_area[order].nr_free)
			return COMPACT_PARTIAL;
	}

643 644 645
	return COMPACT_CONTINUE;
}

646 647 648 649 650 651 652 653 654 655 656 657
/*
 * compaction_suitable: Is this suitable to run compaction on this zone now?
 * Returns
 *   COMPACT_SKIPPED  - If there are too few free pages for compaction
 *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
 *   COMPACT_CONTINUE - If compaction should run now
 */
unsigned long compaction_suitable(struct zone *zone, int order)
{
	int fragindex;
	unsigned long watermark;

658 659 660 661 662 663 664
	/*
	 * order == -1 is expected when compacting via
	 * /proc/sys/vm/compact_memory
	 */
	if (order == -1)
		return COMPACT_CONTINUE;

665 666 667 668 669 670 671 672 673 674 675 676 677
	/*
	 * Watermarks for order-0 must be met for compaction. Note the 2UL.
	 * This is because during migration, copies of pages need to be
	 * allocated and for a short time, the footprint is higher
	 */
	watermark = low_wmark_pages(zone) + (2UL << order);
	if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
		return COMPACT_SKIPPED;

	/*
	 * fragmentation index determines if allocation failures are due to
	 * low memory or external fragmentation
	 *
678 679
	 * index of -1000 implies allocations might succeed depending on
	 * watermarks
680 681 682 683 684 685 686 687 688
	 * index towards 0 implies failure is due to lack of memory
	 * index towards 1000 implies failure is due to fragmentation
	 *
	 * Only compact if a failure would be due to fragmentation.
	 */
	fragindex = fragmentation_index(zone, order);
	if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
		return COMPACT_SKIPPED;

689 690
	if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
	    0, 0))
691 692 693 694 695
		return COMPACT_PARTIAL;

	return COMPACT_CONTINUE;
}

696 697 698 699
static int compact_zone(struct zone *zone, struct compact_control *cc)
{
	int ret;

700 701 702 703 704 705 706 707 708 709 710
	ret = compaction_suitable(zone, cc->order);
	switch (ret) {
	case COMPACT_PARTIAL:
	case COMPACT_SKIPPED:
		/* Compaction is likely to fail */
		return ret;
	case COMPACT_CONTINUE:
		/* Fall through to compaction */
		;
	}

711 712
	/* Setup to move all movable pages to the end of the zone */
	cc->migrate_pfn = zone->zone_start_pfn;
713 714 715 716 717 718 719 720 721

	if (cc->order > 0) {
		/* Incremental compaction. Start where the last one stopped. */
		cc->free_pfn = zone->compact_cached_free_pfn;
		cc->start_free_pfn = cc->free_pfn;
	} else {
		/* Order == -1 starts at the end of the zone. */
		cc->free_pfn = start_free_pfn(zone);
	}
722 723 724 725 726

	migrate_prep_local();

	while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
		unsigned long nr_migrate, nr_remaining;
727
		int err;
728

729 730 731 732 733
		switch (isolate_migratepages(zone, cc)) {
		case ISOLATE_ABORT:
			ret = COMPACT_PARTIAL;
			goto out;
		case ISOLATE_NONE:
734
			continue;
735 736 737
		case ISOLATE_SUCCESS:
			;
		}
738 739

		nr_migrate = cc->nr_migratepages;
740
		err = migrate_pages(&cc->migratepages, compaction_alloc,
741 742
				(unsigned long)cc, false,
				cc->sync ? MIGRATE_SYNC_LIGHT : MIGRATE_ASYNC);
743 744 745 746 747 748 749
		update_nr_listpages(cc);
		nr_remaining = cc->nr_migratepages;

		count_vm_event(COMPACTBLOCKS);
		count_vm_events(COMPACTPAGES, nr_migrate - nr_remaining);
		if (nr_remaining)
			count_vm_events(COMPACTPAGEFAILED, nr_remaining);
750 751
		trace_mm_compaction_migratepages(nr_migrate - nr_remaining,
						nr_remaining);
752 753

		/* Release LRU pages not migrated */
754
		if (err) {
755 756
			putback_lru_pages(&cc->migratepages);
			cc->nr_migratepages = 0;
757 758 759 760
			if (err == -ENOMEM) {
				ret = COMPACT_PARTIAL;
				goto out;
			}
761 762 763
		}
	}

764
out:
765 766 767 768 769 770
	/* Release free pages and check accounting */
	cc->nr_freepages -= release_freepages(&cc->freepages);
	VM_BUG_ON(cc->nr_freepages != 0);

	return ret;
}
771

772
static unsigned long compact_zone_order(struct zone *zone,
773
				 int order, gfp_t gfp_mask,
774
				 bool sync)
775 776 777 778 779 780 781
{
	struct compact_control cc = {
		.nr_freepages = 0,
		.nr_migratepages = 0,
		.order = order,
		.migratetype = allocflags_to_migratetype(gfp_mask),
		.zone = zone,
782
		.sync = sync,
783 784 785 786
	};
	INIT_LIST_HEAD(&cc.freepages);
	INIT_LIST_HEAD(&cc.migratepages);

787
	return compact_zone(zone, &cc);
788 789
}

790 791
int sysctl_extfrag_threshold = 500;

792 793 794 795 796 797
/**
 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
 * @zonelist: The zonelist used for the current allocation
 * @order: The order of the current allocation
 * @gfp_mask: The GFP mask of the current allocation
 * @nodemask: The allowed nodes to allocate from
798
 * @sync: Whether migration is synchronous or not
799 800 801 802
 *
 * This is the main entry point for direct page compaction.
 */
unsigned long try_to_compact_pages(struct zonelist *zonelist,
803 804
			int order, gfp_t gfp_mask, nodemask_t *nodemask,
			bool sync)
805 806 807 808 809 810 811 812 813 814 815 816 817
{
	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
	int may_enter_fs = gfp_mask & __GFP_FS;
	int may_perform_io = gfp_mask & __GFP_IO;
	struct zoneref *z;
	struct zone *zone;
	int rc = COMPACT_SKIPPED;

	/*
	 * Check whether it is worth even starting compaction. The order check is
	 * made because an assumption is made that the page allocator can satisfy
	 * the "cheaper" orders without taking special steps
	 */
818
	if (!order || !may_enter_fs || !may_perform_io)
819 820 821 822 823 824 825 826 827
		return rc;

	count_vm_event(COMPACTSTALL);

	/* Compact each zone in the list */
	for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
								nodemask) {
		int status;

828
		status = compact_zone_order(zone, order, gfp_mask, sync);
829 830
		rc = max(status, rc);

831 832
		/* If a normal allocation would succeed, stop compacting */
		if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
833 834 835 836 837 838 839
			break;
	}

	return rc;
}


840
/* Compact all zones within a node */
841
static int __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
842 843 844 845 846 847 848 849 850 851
{
	int zoneid;
	struct zone *zone;

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {

		zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

852 853 854 855 856
		cc->nr_freepages = 0;
		cc->nr_migratepages = 0;
		cc->zone = zone;
		INIT_LIST_HEAD(&cc->freepages);
		INIT_LIST_HEAD(&cc->migratepages);
857

858
		if (cc->order == -1 || !compaction_deferred(zone, cc->order))
859
			compact_zone(zone, cc);
860

861 862 863 864 865 866
		if (cc->order > 0) {
			int ok = zone_watermark_ok(zone, cc->order,
						low_wmark_pages(zone), 0, 0);
			if (ok && cc->order > zone->compact_order_failed)
				zone->compact_order_failed = cc->order + 1;
			/* Currently async compaction is never deferred. */
867
			else if (!ok && cc->sync)
868 869 870
				defer_compaction(zone, cc->order);
		}

871 872
		VM_BUG_ON(!list_empty(&cc->freepages));
		VM_BUG_ON(!list_empty(&cc->migratepages));
873 874 875 876 877
	}

	return 0;
}

878 879 880 881
int compact_pgdat(pg_data_t *pgdat, int order)
{
	struct compact_control cc = {
		.order = order,
882
		.sync = false,
883 884 885 886 887 888 889 890 891
	};

	return __compact_pgdat(pgdat, &cc);
}

static int compact_node(int nid)
{
	struct compact_control cc = {
		.order = -1,
892
		.sync = true,
893 894
	};

895
	return __compact_pgdat(NODE_DATA(nid), &cc);
896 897
}

898 899 900 901 902
/* Compact all nodes in the system */
static int compact_nodes(void)
{
	int nid;

903 904 905
	/* Flush pending updates to the LRU lists */
	lru_add_drain_all();

906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
	for_each_online_node(nid)
		compact_node(nid);

	return COMPACT_COMPLETE;
}

/* The written value is actually unused, all memory is compacted */
int sysctl_compact_memory;

/* This is the entry point for compacting all nodes via /proc/sys/vm */
int sysctl_compaction_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	if (write)
		return compact_nodes();

	return 0;
}
924

925 926 927 928 929 930 931 932
int sysctl_extfrag_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	proc_dointvec_minmax(table, write, buffer, length, ppos);

	return 0;
}

933
#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
934 935
ssize_t sysfs_compact_node(struct device *dev,
			struct device_attribute *attr,
936 937
			const char *buf, size_t count)
{
938 939 940 941 942 943 944 945
	int nid = dev->id;

	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
		/* Flush pending updates to the LRU lists */
		lru_add_drain_all();

		compact_node(nid);
	}
946 947 948

	return count;
}
949
static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
950 951 952

int compaction_register_node(struct node *node)
{
953
	return device_create_file(&node->dev, &dev_attr_compact);
954 955 956 957
}

void compaction_unregister_node(struct node *node)
{
958
	return device_remove_file(&node->dev, &dev_attr_compact);
959 960
}
#endif /* CONFIG_SYSFS && CONFIG_NUMA */
961 962

#endif /* CONFIG_COMPACTION */