migrate.c 49.1 KB
Newer Older
C
Christoph Lameter 已提交
1 2 3 4 5 6 7 8 9 10 11
/*
 * Memory Migration functionality - linux/mm/migration.c
 *
 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
 *
 * Page migration was first developed in the context of the memory hotplug
 * project. The main authors of the migration code are:
 *
 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
 * Hirokazu Takahashi <taka@valinux.co.jp>
 * Dave Hansen <haveblue@us.ibm.com>
C
Christoph Lameter 已提交
12
 * Christoph Lameter
C
Christoph Lameter 已提交
13 14 15
 */

#include <linux/migrate.h>
16
#include <linux/export.h>
C
Christoph Lameter 已提交
17
#include <linux/swap.h>
18
#include <linux/swapops.h>
C
Christoph Lameter 已提交
19
#include <linux/pagemap.h>
20
#include <linux/buffer_head.h>
C
Christoph Lameter 已提交
21
#include <linux/mm_inline.h>
22
#include <linux/nsproxy.h>
C
Christoph Lameter 已提交
23
#include <linux/pagevec.h>
24
#include <linux/ksm.h>
C
Christoph Lameter 已提交
25 26 27 28
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
29
#include <linux/writeback.h>
30 31
#include <linux/mempolicy.h>
#include <linux/vmalloc.h>
32
#include <linux/security.h>
33
#include <linux/memcontrol.h>
34
#include <linux/syscalls.h>
N
Naoya Horiguchi 已提交
35
#include <linux/hugetlb.h>
36
#include <linux/hugetlb_cgroup.h>
37
#include <linux/gfp.h>
38
#include <linux/balloon_compaction.h>
39
#include <linux/mmu_notifier.h>
C
Christoph Lameter 已提交
40

41 42
#include <asm/tlbflush.h>

43 44 45
#define CREATE_TRACE_POINTS
#include <trace/events/migrate.h>

C
Christoph Lameter 已提交
46 47 48
#include "internal.h"

/*
49
 * migrate_prep() needs to be called before we start compiling a list of pages
50 51
 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
 * undesirable, use migrate_prep_local()
C
Christoph Lameter 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65
 */
int migrate_prep(void)
{
	/*
	 * Clear the LRU lists so pages can be isolated.
	 * Note that pages may be moved off the LRU after we have
	 * drained them. Those pages will fail to migrate like other
	 * pages that may be busy.
	 */
	lru_add_drain_all();

	return 0;
}

66 67 68 69 70 71 72 73
/* Do the necessary work of migrate_prep but not if it involves other CPUs */
int migrate_prep_local(void)
{
	lru_add_drain();

	return 0;
}

74 75 76 77
/*
 * Put previously isolated pages back onto the appropriate lists
 * from where they were once taken off for compaction/migration.
 *
78 79 80
 * This function shall be used whenever the isolated pageset has been
 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
 * and isolate_huge_page().
81 82 83 84 85 86
 */
void putback_movable_pages(struct list_head *l)
{
	struct page *page;
	struct page *page2;

C
Christoph Lameter 已提交
87
	list_for_each_entry_safe(page, page2, l, lru) {
88 89 90 91
		if (unlikely(PageHuge(page))) {
			putback_active_hugepage(page);
			continue;
		}
92
		list_del(&page->lru);
K
KOSAKI Motohiro 已提交
93
		dec_zone_page_state(page, NR_ISOLATED_ANON +
94
				page_is_file_cache(page));
95
		if (unlikely(isolated_balloon_page(page)))
96 97 98
			balloon_page_putback(page);
		else
			putback_lru_page(page);
C
Christoph Lameter 已提交
99 100 101
	}
}

102 103 104
/*
 * Restore a potential migration pte to a working pte entry
 */
105 106
static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
				 unsigned long addr, void *old)
107 108 109 110 111 112 113
{
	struct mm_struct *mm = vma->vm_mm;
	swp_entry_t entry;
 	pmd_t *pmd;
	pte_t *ptep, pte;
 	spinlock_t *ptl;

N
Naoya Horiguchi 已提交
114 115 116 117
	if (unlikely(PageHuge(new))) {
		ptep = huge_pte_offset(mm, addr);
		if (!ptep)
			goto out;
118
		ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
N
Naoya Horiguchi 已提交
119
	} else {
B
Bob Liu 已提交
120 121
		pmd = mm_find_pmd(mm, addr);
		if (!pmd)
N
Naoya Horiguchi 已提交
122
			goto out;
123

N
Naoya Horiguchi 已提交
124
		ptep = pte_offset_map(pmd, addr);
125

126 127 128 129
		/*
		 * Peek to check is_swap_pte() before taking ptlock?  No, we
		 * can race mremap's move_ptes(), which skips anon_vma lock.
		 */
N
Naoya Horiguchi 已提交
130 131 132

		ptl = pte_lockptr(mm, pmd);
	}
133 134 135 136

 	spin_lock(ptl);
	pte = *ptep;
	if (!is_swap_pte(pte))
137
		goto unlock;
138 139 140

	entry = pte_to_swp_entry(pte);

141 142 143
	if (!is_migration_entry(entry) ||
	    migration_entry_to_page(entry) != old)
		goto unlock;
144 145 146

	get_page(new);
	pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
147 148
	if (pte_swp_soft_dirty(*ptep))
		pte = pte_mksoft_dirty(pte);
149 150

	/* Recheck VMA as permissions can change since migration started  */
151
	if (is_write_migration_entry(entry))
152 153
		pte = maybe_mkwrite(pte, vma);

A
Andi Kleen 已提交
154
#ifdef CONFIG_HUGETLB_PAGE
155
	if (PageHuge(new)) {
N
Naoya Horiguchi 已提交
156
		pte = pte_mkhuge(pte);
157 158
		pte = arch_make_huge_pte(pte, vma, new, 0);
	}
A
Andi Kleen 已提交
159
#endif
160
	flush_dcache_page(new);
161
	set_pte_at(mm, addr, ptep, pte);
162

N
Naoya Horiguchi 已提交
163 164 165 166 167 168
	if (PageHuge(new)) {
		if (PageAnon(new))
			hugepage_add_anon_rmap(new, vma, addr);
		else
			page_dup_rmap(new);
	} else if (PageAnon(new))
169 170 171 172 173
		page_add_anon_rmap(new, vma, addr);
	else
		page_add_file_rmap(new);

	/* No need to invalidate - it was non-present before */
174
	update_mmu_cache(vma, addr, ptep);
175
unlock:
176
	pte_unmap_unlock(ptep, ptl);
177 178
out:
	return SWAP_AGAIN;
179 180
}

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
/*
 * Congratulations to trinity for discovering this bug.
 * mm/fremap.c's remap_file_pages() accepts any range within a single vma to
 * convert that vma to VM_NONLINEAR; and generic_file_remap_pages() will then
 * replace the specified range by file ptes throughout (maybe populated after).
 * If page migration finds a page within that range, while it's still located
 * by vma_interval_tree rather than lost to i_mmap_nonlinear list, no problem:
 * zap_pte() clears the temporary migration entry before mmap_sem is dropped.
 * But if the migrating page is in a part of the vma outside the range to be
 * remapped, then it will not be cleared, and remove_migration_ptes() needs to
 * deal with it.  Fortunately, this part of the vma is of course still linear,
 * so we just need to use linear location on the nonlinear list.
 */
static int remove_linear_migration_ptes_from_nonlinear(struct page *page,
		struct address_space *mapping, void *arg)
{
	struct vm_area_struct *vma;
	/* hugetlbfs does not support remap_pages, so no huge pgoff worries */
	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
	unsigned long addr;

	list_for_each_entry(vma,
		&mapping->i_mmap_nonlinear, shared.nonlinear) {

		addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
		if (addr >= vma->vm_start && addr < vma->vm_end)
			remove_migration_pte(page, vma, addr, arg);
	}
	return SWAP_AGAIN;
}

212 213 214 215 216 217
/*
 * Get rid of all migration entries and replace them by
 * references to the indicated page.
 */
static void remove_migration_ptes(struct page *old, struct page *new)
{
218 219 220
	struct rmap_walk_control rwc = {
		.rmap_one = remove_migration_pte,
		.arg = old,
221
		.file_nonlinear = remove_linear_migration_ptes_from_nonlinear,
222 223 224
	};

	rmap_walk(new, &rwc);
225 226
}

227 228 229 230 231
/*
 * Something used the pte of a page under migration. We need to
 * get to the page and wait until migration is finished.
 * When we return from this function the fault will be retried.
 */
232 233
static void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
				spinlock_t *ptl)
234
{
235
	pte_t pte;
236 237 238
	swp_entry_t entry;
	struct page *page;

239
	spin_lock(ptl);
240 241 242 243 244 245 246 247 248 249
	pte = *ptep;
	if (!is_swap_pte(pte))
		goto out;

	entry = pte_to_swp_entry(pte);
	if (!is_migration_entry(entry))
		goto out;

	page = migration_entry_to_page(entry);

N
Nick Piggin 已提交
250 251 252 253 254 255 256 257 258
	/*
	 * Once radix-tree replacement of page migration started, page_count
	 * *must* be zero. And, we don't want to call wait_on_page_locked()
	 * against a page without get_page().
	 * So, we use get_page_unless_zero(), here. Even failed, page fault
	 * will occur again.
	 */
	if (!get_page_unless_zero(page))
		goto out;
259 260 261 262 263 264 265 266
	pte_unmap_unlock(ptep, ptl);
	wait_on_page_locked(page);
	put_page(page);
	return;
out:
	pte_unmap_unlock(ptep, ptl);
}

267 268 269 270 271 272 273 274
void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
				unsigned long address)
{
	spinlock_t *ptl = pte_lockptr(mm, pmd);
	pte_t *ptep = pte_offset_map(pmd, address);
	__migration_entry_wait(mm, ptep, ptl);
}

275 276
void migration_entry_wait_huge(struct vm_area_struct *vma,
		struct mm_struct *mm, pte_t *pte)
277
{
278
	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
279 280 281
	__migration_entry_wait(mm, pte, ptl);
}

282 283
#ifdef CONFIG_BLOCK
/* Returns true if all buffers are successfully locked */
284 285
static bool buffer_migrate_lock_buffers(struct buffer_head *head,
							enum migrate_mode mode)
286 287 288 289
{
	struct buffer_head *bh = head;

	/* Simple case, sync compaction */
290
	if (mode != MIGRATE_ASYNC) {
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
		do {
			get_bh(bh);
			lock_buffer(bh);
			bh = bh->b_this_page;

		} while (bh != head);

		return true;
	}

	/* async case, we cannot block on lock_buffer so use trylock_buffer */
	do {
		get_bh(bh);
		if (!trylock_buffer(bh)) {
			/*
			 * We failed to lock the buffer and cannot stall in
			 * async migration. Release the taken locks
			 */
			struct buffer_head *failed_bh = bh;
			put_bh(failed_bh);
			bh = head;
			while (bh != failed_bh) {
				unlock_buffer(bh);
				put_bh(bh);
				bh = bh->b_this_page;
			}
			return false;
		}

		bh = bh->b_this_page;
	} while (bh != head);
	return true;
}
#else
static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
326
							enum migrate_mode mode)
327 328 329 330 331
{
	return true;
}
#endif /* CONFIG_BLOCK */

C
Christoph Lameter 已提交
332
/*
333
 * Replace the page in the mapping.
334 335 336 337
 *
 * The number of remaining references must be:
 * 1 for anonymous pages without a mapping
 * 2 for pages with a mapping
338
 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
C
Christoph Lameter 已提交
339
 */
340
int migrate_page_move_mapping(struct address_space *mapping,
341
		struct page *newpage, struct page *page,
342 343
		struct buffer_head *head, enum migrate_mode mode,
		int extra_count)
C
Christoph Lameter 已提交
344
{
345
	int expected_count = 1 + extra_count;
346
	void **pslot;
C
Christoph Lameter 已提交
347

348
	if (!mapping) {
349
		/* Anonymous page without mapping */
350
		if (page_count(page) != expected_count)
351
			return -EAGAIN;
352
		return MIGRATEPAGE_SUCCESS;
353 354
	}

N
Nick Piggin 已提交
355
	spin_lock_irq(&mapping->tree_lock);
C
Christoph Lameter 已提交
356

357 358
	pslot = radix_tree_lookup_slot(&mapping->page_tree,
 					page_index(page));
C
Christoph Lameter 已提交
359

360
	expected_count += 1 + page_has_private(page);
N
Nick Piggin 已提交
361
	if (page_count(page) != expected_count ||
362
		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
N
Nick Piggin 已提交
363
		spin_unlock_irq(&mapping->tree_lock);
364
		return -EAGAIN;
C
Christoph Lameter 已提交
365 366
	}

N
Nick Piggin 已提交
367
	if (!page_freeze_refs(page, expected_count)) {
N
Nick Piggin 已提交
368
		spin_unlock_irq(&mapping->tree_lock);
N
Nick Piggin 已提交
369 370 371
		return -EAGAIN;
	}

372 373 374 375 376 377 378
	/*
	 * In the async migration case of moving a page with buffers, lock the
	 * buffers using trylock before the mapping is moved. If the mapping
	 * was moved, we later failed to lock the buffers and could not move
	 * the mapping back due to an elevated page count, we would have to
	 * block waiting on other references to be dropped.
	 */
379 380
	if (mode == MIGRATE_ASYNC && head &&
			!buffer_migrate_lock_buffers(head, mode)) {
381 382 383 384 385
		page_unfreeze_refs(page, expected_count);
		spin_unlock_irq(&mapping->tree_lock);
		return -EAGAIN;
	}

C
Christoph Lameter 已提交
386 387 388
	/*
	 * Now we know that no one else is looking at the page.
	 */
389
	get_page(newpage);	/* add cache reference */
C
Christoph Lameter 已提交
390 391 392 393 394
	if (PageSwapCache(page)) {
		SetPageSwapCache(newpage);
		set_page_private(newpage, page_private(page));
	}

395 396 397
	radix_tree_replace_slot(pslot, newpage);

	/*
398 399
	 * Drop cache reference from old page by unfreezing
	 * to one less reference.
400 401
	 * We know this isn't the last reference.
	 */
402
	page_unfreeze_refs(page, expected_count - 1);
403

404 405 406 407 408 409 410 411 412 413 414 415
	/*
	 * If moved to a different zone then also account
	 * the page for that zone. Other VM counters will be
	 * taken care of when we establish references to the
	 * new page and drop references to the old page.
	 *
	 * Note that anonymous pages are accounted for
	 * via NR_FILE_PAGES and NR_ANON_PAGES if they
	 * are mapped to swap space.
	 */
	__dec_zone_page_state(page, NR_FILE_PAGES);
	__inc_zone_page_state(newpage, NR_FILE_PAGES);
416
	if (!PageSwapCache(page) && PageSwapBacked(page)) {
417 418 419
		__dec_zone_page_state(page, NR_SHMEM);
		__inc_zone_page_state(newpage, NR_SHMEM);
	}
N
Nick Piggin 已提交
420
	spin_unlock_irq(&mapping->tree_lock);
C
Christoph Lameter 已提交
421

422
	return MIGRATEPAGE_SUCCESS;
C
Christoph Lameter 已提交
423 424
}

N
Naoya Horiguchi 已提交
425 426 427 428 429 430 431 432 433 434 435 436 437
/*
 * The expected number of remaining references is the same as that
 * of migrate_page_move_mapping().
 */
int migrate_huge_page_move_mapping(struct address_space *mapping,
				   struct page *newpage, struct page *page)
{
	int expected_count;
	void **pslot;

	if (!mapping) {
		if (page_count(page) != 1)
			return -EAGAIN;
438
		return MIGRATEPAGE_SUCCESS;
N
Naoya Horiguchi 已提交
439 440 441 442 443 444 445 446 447
	}

	spin_lock_irq(&mapping->tree_lock);

	pslot = radix_tree_lookup_slot(&mapping->page_tree,
					page_index(page));

	expected_count = 2 + page_has_private(page);
	if (page_count(page) != expected_count ||
448
		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
N
Naoya Horiguchi 已提交
449 450 451 452 453 454 455 456 457 458 459 460 461
		spin_unlock_irq(&mapping->tree_lock);
		return -EAGAIN;
	}

	if (!page_freeze_refs(page, expected_count)) {
		spin_unlock_irq(&mapping->tree_lock);
		return -EAGAIN;
	}

	get_page(newpage);

	radix_tree_replace_slot(pslot, newpage);

462
	page_unfreeze_refs(page, expected_count - 1);
N
Naoya Horiguchi 已提交
463 464

	spin_unlock_irq(&mapping->tree_lock);
465
	return MIGRATEPAGE_SUCCESS;
N
Naoya Horiguchi 已提交
466 467
}

468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
/*
 * Gigantic pages are so large that we do not guarantee that page++ pointer
 * arithmetic will work across the entire page.  We need something more
 * specialized.
 */
static void __copy_gigantic_page(struct page *dst, struct page *src,
				int nr_pages)
{
	int i;
	struct page *dst_base = dst;
	struct page *src_base = src;

	for (i = 0; i < nr_pages; ) {
		cond_resched();
		copy_highpage(dst, src);

		i++;
		dst = mem_map_next(dst, dst_base, i);
		src = mem_map_next(src, src_base, i);
	}
}

static void copy_huge_page(struct page *dst, struct page *src)
{
	int i;
	int nr_pages;

	if (PageHuge(src)) {
		/* hugetlbfs page */
		struct hstate *h = page_hstate(src);
		nr_pages = pages_per_huge_page(h);

		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
			__copy_gigantic_page(dst, src, nr_pages);
			return;
		}
	} else {
		/* thp page */
		BUG_ON(!PageTransHuge(src));
		nr_pages = hpage_nr_pages(src);
	}

	for (i = 0; i < nr_pages; i++) {
		cond_resched();
		copy_highpage(dst + i, src + i);
	}
}

C
Christoph Lameter 已提交
516 517 518
/*
 * Copy the page to its new location
 */
N
Naoya Horiguchi 已提交
519
void migrate_page_copy(struct page *newpage, struct page *page)
C
Christoph Lameter 已提交
520
{
521 522
	int cpupid;

523
	if (PageHuge(page) || PageTransHuge(page))
N
Naoya Horiguchi 已提交
524 525 526
		copy_huge_page(newpage, page);
	else
		copy_highpage(newpage, page);
C
Christoph Lameter 已提交
527 528 529 530 531 532 533

	if (PageError(page))
		SetPageError(newpage);
	if (PageReferenced(page))
		SetPageReferenced(newpage);
	if (PageUptodate(page))
		SetPageUptodate(newpage);
L
Lee Schermerhorn 已提交
534
	if (TestClearPageActive(page)) {
535
		VM_BUG_ON_PAGE(PageUnevictable(page), page);
C
Christoph Lameter 已提交
536
		SetPageActive(newpage);
537 538
	} else if (TestClearPageUnevictable(page))
		SetPageUnevictable(newpage);
C
Christoph Lameter 已提交
539 540 541 542 543 544 545
	if (PageChecked(page))
		SetPageChecked(newpage);
	if (PageMappedToDisk(page))
		SetPageMappedToDisk(newpage);

	if (PageDirty(page)) {
		clear_page_dirty_for_io(page);
N
Nick Piggin 已提交
546 547 548 549 550
		/*
		 * Want to mark the page and the radix tree as dirty, and
		 * redo the accounting that clear_page_dirty_for_io undid,
		 * but we can't use set_page_dirty because that function
		 * is actually a signal that all of the page has become dirty.
L
Lucas De Marchi 已提交
551
		 * Whereas only part of our page may be dirty.
N
Nick Piggin 已提交
552
		 */
553 554 555 556
		if (PageSwapBacked(page))
			SetPageDirty(newpage);
		else
			__set_page_dirty_nobuffers(newpage);
C
Christoph Lameter 已提交
557 558
 	}

559 560 561 562 563 564 565
	/*
	 * Copy NUMA information to the new page, to prevent over-eager
	 * future migrations of this same page.
	 */
	cpupid = page_cpupid_xchg_last(page, -1);
	page_cpupid_xchg_last(newpage, cpupid);

N
Nick Piggin 已提交
566
	mlock_migrate_page(newpage, page);
567
	ksm_migrate_page(newpage, page);
568 569 570 571
	/*
	 * Please do not reorder this without considering how mm/ksm.c's
	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
	 */
C
Christoph Lameter 已提交
572 573 574 575 576 577 578 579 580 581 582 583
	ClearPageSwapCache(page);
	ClearPagePrivate(page);
	set_page_private(page, 0);

	/*
	 * If any waiters have accumulated on the new page then
	 * wake them up.
	 */
	if (PageWriteback(newpage))
		end_page_writeback(newpage);
}

584 585 586 587
/************************************************************
 *                    Migration functions
 ***********************************************************/

C
Christoph Lameter 已提交
588 589
/*
 * Common logic to directly migrate a single page suitable for
590
 * pages that do not use PagePrivate/PagePrivate2.
C
Christoph Lameter 已提交
591 592 593
 *
 * Pages are locked upon entry and exit.
 */
594
int migrate_page(struct address_space *mapping,
595 596
		struct page *newpage, struct page *page,
		enum migrate_mode mode)
C
Christoph Lameter 已提交
597 598 599 600 601
{
	int rc;

	BUG_ON(PageWriteback(page));	/* Writeback must be complete */

602
	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
C
Christoph Lameter 已提交
603

604
	if (rc != MIGRATEPAGE_SUCCESS)
C
Christoph Lameter 已提交
605 606 607
		return rc;

	migrate_page_copy(newpage, page);
608
	return MIGRATEPAGE_SUCCESS;
C
Christoph Lameter 已提交
609 610 611
}
EXPORT_SYMBOL(migrate_page);

612
#ifdef CONFIG_BLOCK
613 614 615 616 617
/*
 * Migration function for pages with buffers. This function can only be used
 * if the underlying filesystem guarantees that no other references to "page"
 * exist.
 */
618
int buffer_migrate_page(struct address_space *mapping,
619
		struct page *newpage, struct page *page, enum migrate_mode mode)
620 621 622 623 624
{
	struct buffer_head *bh, *head;
	int rc;

	if (!page_has_buffers(page))
625
		return migrate_page(mapping, newpage, page, mode);
626 627 628

	head = page_buffers(page);

629
	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
630

631
	if (rc != MIGRATEPAGE_SUCCESS)
632 633
		return rc;

634 635 636 637 638
	/*
	 * In the async case, migrate_page_move_mapping locked the buffers
	 * with an IRQ-safe spinlock held. In the sync case, the buffers
	 * need to be locked now
	 */
639 640
	if (mode != MIGRATE_ASYNC)
		BUG_ON(!buffer_migrate_lock_buffers(head, mode));
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666

	ClearPagePrivate(page);
	set_page_private(newpage, page_private(page));
	set_page_private(page, 0);
	put_page(page);
	get_page(newpage);

	bh = head;
	do {
		set_bh_page(bh, newpage, bh_offset(bh));
		bh = bh->b_this_page;

	} while (bh != head);

	SetPagePrivate(newpage);

	migrate_page_copy(newpage, page);

	bh = head;
	do {
		unlock_buffer(bh);
 		put_bh(bh);
		bh = bh->b_this_page;

	} while (bh != head);

667
	return MIGRATEPAGE_SUCCESS;
668 669
}
EXPORT_SYMBOL(buffer_migrate_page);
670
#endif
671

672 673 674 675
/*
 * Writeback a page to clean the dirty state
 */
static int writeout(struct address_space *mapping, struct page *page)
676
{
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
	struct writeback_control wbc = {
		.sync_mode = WB_SYNC_NONE,
		.nr_to_write = 1,
		.range_start = 0,
		.range_end = LLONG_MAX,
		.for_reclaim = 1
	};
	int rc;

	if (!mapping->a_ops->writepage)
		/* No write method for the address space */
		return -EINVAL;

	if (!clear_page_dirty_for_io(page))
		/* Someone else already triggered a write */
		return -EAGAIN;

694
	/*
695 696 697 698 699 700
	 * A dirty page may imply that the underlying filesystem has
	 * the page on some queue. So the page must be clean for
	 * migration. Writeout may mean we loose the lock and the
	 * page state is no longer what we checked for earlier.
	 * At this point we know that the migration attempt cannot
	 * be successful.
701
	 */
702
	remove_migration_ptes(page, page);
703

704
	rc = mapping->a_ops->writepage(page, &wbc);
705

706 707 708 709
	if (rc != AOP_WRITEPAGE_ACTIVATE)
		/* unlocked. Relock */
		lock_page(page);

H
Hugh Dickins 已提交
710
	return (rc < 0) ? -EIO : -EAGAIN;
711 712 713 714 715 716
}

/*
 * Default handling if a filesystem does not provide a migration function.
 */
static int fallback_migrate_page(struct address_space *mapping,
717
	struct page *newpage, struct page *page, enum migrate_mode mode)
718
{
719
	if (PageDirty(page)) {
720 721
		/* Only writeback pages in full synchronous migration */
		if (mode != MIGRATE_SYNC)
722
			return -EBUSY;
723
		return writeout(mapping, page);
724
	}
725 726 727 728 729

	/*
	 * Buffers may be managed in a filesystem specific way.
	 * We must have no buffers or drop them.
	 */
730
	if (page_has_private(page) &&
731 732 733
	    !try_to_release_page(page, GFP_KERNEL))
		return -EAGAIN;

734
	return migrate_page(mapping, newpage, page, mode);
735 736
}

737 738 739 740 741 742
/*
 * Move a page to a newly allocated page
 * The page is locked and all ptes have been successfully removed.
 *
 * The new page will have replaced the old page if this function
 * is successful.
L
Lee Schermerhorn 已提交
743 744 745
 *
 * Return value:
 *   < 0 - error code
746
 *  MIGRATEPAGE_SUCCESS - success
747
 */
748
static int move_to_new_page(struct page *newpage, struct page *page,
749
				int page_was_mapped, enum migrate_mode mode)
750 751 752 753 754 755 756 757 758
{
	struct address_space *mapping;
	int rc;

	/*
	 * Block others from accessing the page when we get around to
	 * establishing additional references. We are the only one
	 * holding a reference to the new page at this point.
	 */
N
Nick Piggin 已提交
759
	if (!trylock_page(newpage))
760 761 762 763 764
		BUG();

	/* Prepare mapping for the new page.*/
	newpage->index = page->index;
	newpage->mapping = page->mapping;
R
Rik van Riel 已提交
765 766
	if (PageSwapBacked(page))
		SetPageSwapBacked(newpage);
767 768 769

	mapping = page_mapping(page);
	if (!mapping)
770
		rc = migrate_page(mapping, newpage, page, mode);
771
	else if (mapping->a_ops->migratepage)
772
		/*
773 774 775 776
		 * Most pages have a mapping and most filesystems provide a
		 * migratepage callback. Anonymous pages are part of swap
		 * space which also has its own migratepage callback. This
		 * is the most common path for page migration.
777
		 */
778
		rc = mapping->a_ops->migratepage(mapping,
779
						newpage, page, mode);
780
	else
781
		rc = fallback_migrate_page(mapping, newpage, page, mode);
782

783
	if (rc != MIGRATEPAGE_SUCCESS) {
784
		newpage->mapping = NULL;
785
	} else {
786
		mem_cgroup_migrate(page, newpage, false);
787
		if (page_was_mapped)
788
			remove_migration_ptes(page, newpage);
789
		page->mapping = NULL;
790
	}
791 792 793 794 795 796

	unlock_page(newpage);

	return rc;
}

797
static int __unmap_and_move(struct page *page, struct page *newpage,
798
				int force, enum migrate_mode mode)
799
{
800
	int rc = -EAGAIN;
801
	int page_was_mapped = 0;
802
	struct anon_vma *anon_vma = NULL;
803

N
Nick Piggin 已提交
804
	if (!trylock_page(page)) {
805
		if (!force || mode == MIGRATE_ASYNC)
806
			goto out;
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821

		/*
		 * It's not safe for direct compaction to call lock_page.
		 * For example, during page readahead pages are added locked
		 * to the LRU. Later, when the IO completes the pages are
		 * marked uptodate and unlocked. However, the queueing
		 * could be merging multiple pages for one bio (e.g.
		 * mpage_readpages). If an allocation happens for the
		 * second or third page, the process can end up locking
		 * the same page twice and deadlocking. Rather than
		 * trying to be clever about what pages can be locked,
		 * avoid the use of lock_page for direct compaction
		 * altogether.
		 */
		if (current->flags & PF_MEMALLOC)
822
			goto out;
823

824 825 826 827
		lock_page(page);
	}

	if (PageWriteback(page)) {
828
		/*
829
		 * Only in the case of a full synchronous migration is it
830 831 832
		 * necessary to wait for PageWriteback. In the async case,
		 * the retry loop is too short and in the sync-light case,
		 * the overhead of stalling is too much
833
		 */
834
		if (mode != MIGRATE_SYNC) {
835
			rc = -EBUSY;
836
			goto out_unlock;
837 838
		}
		if (!force)
839
			goto out_unlock;
840 841 842
		wait_on_page_writeback(page);
	}
	/*
843 844
	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
	 * we cannot notice that anon_vma is freed while we migrates a page.
845
	 * This get_anon_vma() delays freeing anon_vma pointer until the end
846
	 * of migration. File cache pages are no problem because of page_lock()
847 848
	 * File Caches may use write_page() or lock_page() in migration, then,
	 * just care Anon page here.
849
	 */
H
Hugh Dickins 已提交
850
	if (PageAnon(page) && !PageKsm(page)) {
851
		/*
852
		 * Only page_lock_anon_vma_read() understands the subtleties of
853 854
		 * getting a hold on an anon_vma from outside one of its mms.
		 */
855
		anon_vma = page_get_anon_vma(page);
856 857
		if (anon_vma) {
			/*
858
			 * Anon page
859 860
			 */
		} else if (PageSwapCache(page)) {
861 862 863 864 865 866 867 868 869 870 871 872 873
			/*
			 * We cannot be sure that the anon_vma of an unmapped
			 * swapcache page is safe to use because we don't
			 * know in advance if the VMA that this page belonged
			 * to still exists. If the VMA and others sharing the
			 * data have been freed, then the anon_vma could
			 * already be invalid.
			 *
			 * To avoid this possibility, swapcache pages get
			 * migrated but are not remapped when migration
			 * completes
			 */
		} else {
874
			goto out_unlock;
875
		}
876
	}
877

878
	if (unlikely(isolated_balloon_page(page))) {
879 880 881 882 883 884 885 886
		/*
		 * A ballooned page does not need any special attention from
		 * physical to virtual reverse mapping procedures.
		 * Skip any attempt to unmap PTEs or to remap swap cache,
		 * in order to avoid burning cycles at rmap level, and perform
		 * the page migration right away (proteced by page lock).
		 */
		rc = balloon_page_migrate(newpage, page, mode);
887
		goto out_unlock;
888 889
	}

890
	/*
891 892 893 894 895 896 897 898 899 900
	 * Corner case handling:
	 * 1. When a new swap-cache page is read into, it is added to the LRU
	 * and treated as swapcache but it has no rmap yet.
	 * Calling try_to_unmap() against a page->mapping==NULL page will
	 * trigger a BUG.  So handle it here.
	 * 2. An orphaned page (see truncate_complete_page) might have
	 * fs-private metadata. The page can be picked up due to memory
	 * offlining.  Everywhere else except page reclaim, the page is
	 * invisible to the vm, so the page can not be migrated.  So try to
	 * free the metadata, so the page can be freed.
901
	 */
902
	if (!page->mapping) {
903
		VM_BUG_ON_PAGE(PageAnon(page), page);
904
		if (page_has_private(page)) {
905
			try_to_free_buffers(page);
906
			goto out_unlock;
907
		}
908
		goto skip_unmap;
909 910
	}

911
	/* Establish migration ptes or remove ptes */
912 913 914 915 916
	if (page_mapped(page)) {
		try_to_unmap(page,
			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
		page_was_mapped = 1;
	}
917

918
skip_unmap:
919
	if (!page_mapped(page))
920
		rc = move_to_new_page(newpage, page, page_was_mapped, mode);
921

922
	if (rc && page_was_mapped)
923
		remove_migration_ptes(page, page);
924 925

	/* Drop an anon_vma reference if we took one */
926
	if (anon_vma)
927
		put_anon_vma(anon_vma);
928

929
out_unlock:
930
	unlock_page(page);
931 932 933
out:
	return rc;
}
934

935 936 937 938
/*
 * Obtain the lock on page, remove all ptes and migrate the page
 * to the newly allocated page in newpage.
 */
939 940 941
static int unmap_and_move(new_page_t get_new_page, free_page_t put_new_page,
			unsigned long private, struct page *page, int force,
			enum migrate_mode mode)
942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
{
	int rc = 0;
	int *result = NULL;
	struct page *newpage = get_new_page(page, private, &result);

	if (!newpage)
		return -ENOMEM;

	if (page_count(page) == 1) {
		/* page was freed from under us. So we are done. */
		goto out;
	}

	if (unlikely(PageTransHuge(page)))
		if (unlikely(split_huge_page(page)))
			goto out;

959
	rc = __unmap_and_move(page, newpage, force, mode);
960

961
out:
962
	if (rc != -EAGAIN) {
963 964 965 966 967 968 969
		/*
		 * A page that has been migrated has all references
		 * removed and will be freed. A page that has not been
		 * migrated will have kepts its references and be
		 * restored.
		 */
		list_del(&page->lru);
K
KOSAKI Motohiro 已提交
970
		dec_zone_page_state(page, NR_ISOLATED_ANON +
971
				page_is_file_cache(page));
L
Lee Schermerhorn 已提交
972
		putback_lru_page(page);
973
	}
974

975
	/*
976 977 978
	 * If migration was not successful and there's a freeing callback, use
	 * it.  Otherwise, putback_lru_page() will drop the reference grabbed
	 * during isolation.
979
	 */
980 981
	if (rc != MIGRATEPAGE_SUCCESS && put_new_page) {
		ClearPageSwapBacked(newpage);
982
		put_new_page(newpage, private);
983 984 985
	} else if (unlikely(__is_movable_balloon_page(newpage))) {
		/* drop our reference, page already in the balloon */
		put_page(newpage);
986
	} else
987 988
		putback_lru_page(newpage);

989 990 991 992 993 994
	if (result) {
		if (rc)
			*result = rc;
		else
			*result = page_to_nid(newpage);
	}
995 996 997
	return rc;
}

N
Naoya Horiguchi 已提交
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
/*
 * Counterpart of unmap_and_move_page() for hugepage migration.
 *
 * This function doesn't wait the completion of hugepage I/O
 * because there is no race between I/O and migration for hugepage.
 * Note that currently hugepage I/O occurs only in direct I/O
 * where no lock is held and PG_writeback is irrelevant,
 * and writeback status of all subpages are counted in the reference
 * count of the head page (i.e. if all subpages of a 2MB hugepage are
 * under direct I/O, the reference of the head page is 512 and a bit more.)
 * This means that when we try to migrate hugepage whose subpages are
 * doing direct I/O, some references remain after try_to_unmap() and
 * hugepage migration fails without data corruption.
 *
 * There is also no race when direct I/O is issued on the page under migration,
 * because then pte is replaced with migration swap entry and direct I/O code
 * will wait in the page fault for migration to complete.
 */
static int unmap_and_move_huge_page(new_page_t get_new_page,
1017 1018 1019
				free_page_t put_new_page, unsigned long private,
				struct page *hpage, int force,
				enum migrate_mode mode)
N
Naoya Horiguchi 已提交
1020 1021 1022
{
	int rc = 0;
	int *result = NULL;
1023
	int page_was_mapped = 0;
1024
	struct page *new_hpage;
N
Naoya Horiguchi 已提交
1025 1026
	struct anon_vma *anon_vma = NULL;

1027 1028 1029 1030 1031 1032 1033
	/*
	 * Movability of hugepages depends on architectures and hugepage size.
	 * This check is necessary because some callers of hugepage migration
	 * like soft offline and memory hotremove don't walk through page
	 * tables or check whether the hugepage is pmd-based or not before
	 * kicking migration.
	 */
1034
	if (!hugepage_migration_supported(page_hstate(hpage))) {
1035
		putback_active_hugepage(hpage);
1036
		return -ENOSYS;
1037
	}
1038

1039
	new_hpage = get_new_page(hpage, private, &result);
N
Naoya Horiguchi 已提交
1040 1041 1042 1043 1044 1045
	if (!new_hpage)
		return -ENOMEM;

	rc = -EAGAIN;

	if (!trylock_page(hpage)) {
1046
		if (!force || mode != MIGRATE_SYNC)
N
Naoya Horiguchi 已提交
1047 1048 1049 1050
			goto out;
		lock_page(hpage);
	}

1051 1052
	if (PageAnon(hpage))
		anon_vma = page_get_anon_vma(hpage);
N
Naoya Horiguchi 已提交
1053

1054 1055 1056 1057 1058
	if (page_mapped(hpage)) {
		try_to_unmap(hpage,
			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
		page_was_mapped = 1;
	}
N
Naoya Horiguchi 已提交
1059 1060

	if (!page_mapped(hpage))
1061
		rc = move_to_new_page(new_hpage, hpage, page_was_mapped, mode);
N
Naoya Horiguchi 已提交
1062

1063
	if (rc != MIGRATEPAGE_SUCCESS && page_was_mapped)
N
Naoya Horiguchi 已提交
1064 1065
		remove_migration_ptes(hpage, hpage);

H
Hugh Dickins 已提交
1066
	if (anon_vma)
1067
		put_anon_vma(anon_vma);
1068

1069
	if (rc == MIGRATEPAGE_SUCCESS)
1070 1071
		hugetlb_cgroup_migrate(hpage, new_hpage);

N
Naoya Horiguchi 已提交
1072
	unlock_page(hpage);
1073
out:
1074 1075
	if (rc != -EAGAIN)
		putback_active_hugepage(hpage);
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086

	/*
	 * If migration was not successful and there's a freeing callback, use
	 * it.  Otherwise, put_page() will drop the reference grabbed during
	 * isolation.
	 */
	if (rc != MIGRATEPAGE_SUCCESS && put_new_page)
		put_new_page(new_hpage, private);
	else
		put_page(new_hpage);

N
Naoya Horiguchi 已提交
1087 1088 1089 1090 1091 1092 1093 1094 1095
	if (result) {
		if (rc)
			*result = rc;
		else
			*result = page_to_nid(new_hpage);
	}
	return rc;
}

C
Christoph Lameter 已提交
1096
/*
1097 1098
 * migrate_pages - migrate the pages specified in a list, to the free pages
 *		   supplied as the target for the page migration
C
Christoph Lameter 已提交
1099
 *
1100 1101 1102
 * @from:		The list of pages to be migrated.
 * @get_new_page:	The function used to allocate free pages to be used
 *			as the target of the page migration.
1103 1104
 * @put_new_page:	The function used to free target pages if migration
 *			fails, or NULL if no special handling is necessary.
1105 1106 1107 1108
 * @private:		Private data to be passed on to get_new_page()
 * @mode:		The migration mode that specifies the constraints for
 *			page migration, if any.
 * @reason:		The reason for page migration.
C
Christoph Lameter 已提交
1109
 *
1110 1111 1112
 * The function returns after 10 attempts or if no pages are movable any more
 * because the list has become empty or no retryable pages exist any more.
 * The caller should call putback_lru_pages() to return pages to the LRU
1113
 * or free list only if ret != 0.
C
Christoph Lameter 已提交
1114
 *
1115
 * Returns the number of pages that were not migrated, or an error code.
C
Christoph Lameter 已提交
1116
 */
1117
int migrate_pages(struct list_head *from, new_page_t get_new_page,
1118 1119
		free_page_t put_new_page, unsigned long private,
		enum migrate_mode mode, int reason)
C
Christoph Lameter 已提交
1120
{
1121
	int retry = 1;
C
Christoph Lameter 已提交
1122
	int nr_failed = 0;
1123
	int nr_succeeded = 0;
C
Christoph Lameter 已提交
1124 1125 1126 1127 1128 1129 1130 1131 1132
	int pass = 0;
	struct page *page;
	struct page *page2;
	int swapwrite = current->flags & PF_SWAPWRITE;
	int rc;

	if (!swapwrite)
		current->flags |= PF_SWAPWRITE;

1133 1134
	for(pass = 0; pass < 10 && retry; pass++) {
		retry = 0;
C
Christoph Lameter 已提交
1135

1136 1137
		list_for_each_entry_safe(page, page2, from, lru) {
			cond_resched();
1138

1139 1140
			if (PageHuge(page))
				rc = unmap_and_move_huge_page(get_new_page,
1141 1142
						put_new_page, private, page,
						pass > 2, mode);
1143
			else
1144 1145
				rc = unmap_and_move(get_new_page, put_new_page,
						private, page, pass > 2, mode);
1146

1147
			switch(rc) {
1148 1149
			case -ENOMEM:
				goto out;
1150
			case -EAGAIN:
1151
				retry++;
1152
				break;
1153
			case MIGRATEPAGE_SUCCESS:
1154
				nr_succeeded++;
1155 1156
				break;
			default:
1157 1158 1159 1160 1161 1162
				/*
				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
				 * unlike -EAGAIN case, the failed page is
				 * removed from migration page list and not
				 * retried in the next outer loop.
				 */
1163
				nr_failed++;
1164
				break;
1165
			}
C
Christoph Lameter 已提交
1166 1167
		}
	}
1168
	rc = nr_failed + retry;
1169
out:
1170 1171 1172 1173
	if (nr_succeeded)
		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
	if (nr_failed)
		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1174 1175
	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);

C
Christoph Lameter 已提交
1176 1177 1178
	if (!swapwrite)
		current->flags &= ~PF_SWAPWRITE;

1179
	return rc;
C
Christoph Lameter 已提交
1180
}
1181

1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
#ifdef CONFIG_NUMA
/*
 * Move a list of individual pages
 */
struct page_to_node {
	unsigned long addr;
	struct page *page;
	int node;
	int status;
};

static struct page *new_page_node(struct page *p, unsigned long private,
		int **result)
{
	struct page_to_node *pm = (struct page_to_node *)private;

	while (pm->node != MAX_NUMNODES && pm->page != p)
		pm++;

	if (pm->node == MAX_NUMNODES)
		return NULL;

	*result = &pm->status;

1206 1207 1208 1209 1210
	if (PageHuge(p))
		return alloc_huge_page_node(page_hstate(compound_head(p)),
					pm->node);
	else
		return alloc_pages_exact_node(pm->node,
1211
				GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1212 1213 1214 1215 1216 1217
}

/*
 * Move a set of pages as indicated in the pm array. The addr
 * field must be set to the virtual address of the page to be moved
 * and the node number must contain a valid target node.
1218
 * The pm array ends with node = MAX_NUMNODES.
1219
 */
1220 1221 1222
static int do_move_page_to_node_array(struct mm_struct *mm,
				      struct page_to_node *pm,
				      int migrate_all)
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
{
	int err;
	struct page_to_node *pp;
	LIST_HEAD(pagelist);

	down_read(&mm->mmap_sem);

	/*
	 * Build a list of pages to migrate
	 */
	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
		struct vm_area_struct *vma;
		struct page *page;

		err = -EFAULT;
		vma = find_vma(mm, pp->addr);
1239
		if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1240 1241
			goto set_status;

1242
		page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
1243 1244 1245 1246 1247

		err = PTR_ERR(page);
		if (IS_ERR(page))
			goto set_status;

1248 1249 1250 1251
		err = -ENOENT;
		if (!page)
			goto set_status;

1252
		/* Use PageReserved to check for zero page */
H
Hugh Dickins 已提交
1253
		if (PageReserved(page))
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
			goto put_and_set;

		pp->page = page;
		err = page_to_nid(page);

		if (err == pp->node)
			/*
			 * Node already in the right place
			 */
			goto put_and_set;

		err = -EACCES;
		if (page_mapcount(page) > 1 &&
				!migrate_all)
			goto put_and_set;

1270 1271 1272 1273 1274
		if (PageHuge(page)) {
			isolate_huge_page(page, &pagelist);
			goto put_and_set;
		}

1275
		err = isolate_lru_page(page);
1276
		if (!err) {
1277
			list_add_tail(&page->lru, &pagelist);
1278 1279 1280
			inc_zone_page_state(page, NR_ISOLATED_ANON +
					    page_is_file_cache(page));
		}
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
put_and_set:
		/*
		 * Either remove the duplicate refcount from
		 * isolate_lru_page() or drop the page ref if it was
		 * not isolated.
		 */
		put_page(page);
set_status:
		pp->status = err;
	}

1292
	err = 0;
1293
	if (!list_empty(&pagelist)) {
1294
		err = migrate_pages(&pagelist, new_page_node, NULL,
1295
				(unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1296
		if (err)
1297
			putback_movable_pages(&pagelist);
1298
	}
1299 1300 1301 1302 1303

	up_read(&mm->mmap_sem);
	return err;
}

1304 1305 1306 1307
/*
 * Migrate an array of page address onto an array of nodes and fill
 * the corresponding array of status.
 */
1308
static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1309 1310 1311 1312 1313
			 unsigned long nr_pages,
			 const void __user * __user *pages,
			 const int __user *nodes,
			 int __user *status, int flags)
{
1314 1315 1316 1317
	struct page_to_node *pm;
	unsigned long chunk_nr_pages;
	unsigned long chunk_start;
	int err;
1318

1319 1320 1321
	err = -ENOMEM;
	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
	if (!pm)
1322
		goto out;
1323 1324 1325

	migrate_prep();

1326
	/*
1327 1328
	 * Store a chunk of page_to_node array in a page,
	 * but keep the last one as a marker
1329
	 */
1330
	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1331

1332 1333 1334 1335
	for (chunk_start = 0;
	     chunk_start < nr_pages;
	     chunk_start += chunk_nr_pages) {
		int j;
1336

1337 1338 1339 1340 1341 1342
		if (chunk_start + chunk_nr_pages > nr_pages)
			chunk_nr_pages = nr_pages - chunk_start;

		/* fill the chunk pm with addrs and nodes from user-space */
		for (j = 0; j < chunk_nr_pages; j++) {
			const void __user *p;
1343 1344
			int node;

1345 1346 1347 1348 1349 1350
			err = -EFAULT;
			if (get_user(p, pages + j + chunk_start))
				goto out_pm;
			pm[j].addr = (unsigned long) p;

			if (get_user(node, nodes + j + chunk_start))
1351 1352 1353
				goto out_pm;

			err = -ENODEV;
1354 1355 1356
			if (node < 0 || node >= MAX_NUMNODES)
				goto out_pm;

1357
			if (!node_state(node, N_MEMORY))
1358 1359 1360 1361 1362 1363
				goto out_pm;

			err = -EACCES;
			if (!node_isset(node, task_nodes))
				goto out_pm;

1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
			pm[j].node = node;
		}

		/* End marker for this chunk */
		pm[chunk_nr_pages].node = MAX_NUMNODES;

		/* Migrate this chunk */
		err = do_move_page_to_node_array(mm, pm,
						 flags & MPOL_MF_MOVE_ALL);
		if (err < 0)
			goto out_pm;
1375 1376

		/* Return status information */
1377 1378
		for (j = 0; j < chunk_nr_pages; j++)
			if (put_user(pm[j].status, status + j + chunk_start)) {
1379
				err = -EFAULT;
1380 1381 1382 1383
				goto out_pm;
			}
	}
	err = 0;
1384 1385

out_pm:
1386
	free_page((unsigned long)pm);
1387 1388 1389 1390
out:
	return err;
}

1391
/*
1392
 * Determine the nodes of an array of pages and store it in an array of status.
1393
 */
1394 1395
static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
				const void __user **pages, int *status)
1396
{
1397 1398
	unsigned long i;

1399 1400
	down_read(&mm->mmap_sem);

1401
	for (i = 0; i < nr_pages; i++) {
1402
		unsigned long addr = (unsigned long)(*pages);
1403 1404
		struct vm_area_struct *vma;
		struct page *page;
1405
		int err = -EFAULT;
1406 1407

		vma = find_vma(mm, addr);
1408
		if (!vma || addr < vma->vm_start)
1409 1410
			goto set_status;

1411
		page = follow_page(vma, addr, 0);
1412 1413 1414 1415 1416

		err = PTR_ERR(page);
		if (IS_ERR(page))
			goto set_status;

1417 1418
		err = -ENOENT;
		/* Use PageReserved to check for zero page */
H
Hugh Dickins 已提交
1419
		if (!page || PageReserved(page))
1420 1421 1422 1423
			goto set_status;

		err = page_to_nid(page);
set_status:
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
		*status = err;

		pages++;
		status++;
	}

	up_read(&mm->mmap_sem);
}

/*
 * Determine the nodes of a user array of pages and store it in
 * a user array of status.
 */
static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
			 const void __user * __user *pages,
			 int __user *status)
{
#define DO_PAGES_STAT_CHUNK_NR 16
	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
	int chunk_status[DO_PAGES_STAT_CHUNK_NR];

1445 1446
	while (nr_pages) {
		unsigned long chunk_nr;
1447

1448 1449 1450 1451 1452 1453
		chunk_nr = nr_pages;
		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
			chunk_nr = DO_PAGES_STAT_CHUNK_NR;

		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
			break;
1454 1455 1456

		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);

1457 1458
		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
			break;
1459

1460 1461 1462 1463 1464
		pages += chunk_nr;
		status += chunk_nr;
		nr_pages -= chunk_nr;
	}
	return nr_pages ? -EFAULT : 0;
1465 1466 1467 1468 1469 1470
}

/*
 * Move a list of pages in the address space of the currently executing
 * process.
 */
1471 1472 1473 1474
SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
		const void __user * __user *, pages,
		const int __user *, nodes,
		int __user *, status, int, flags)
1475
{
1476
	const struct cred *cred = current_cred(), *tcred;
1477 1478
	struct task_struct *task;
	struct mm_struct *mm;
1479
	int err;
1480
	nodemask_t task_nodes;
1481 1482 1483 1484 1485 1486 1487 1488 1489

	/* Check flags */
	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
		return -EINVAL;

	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
		return -EPERM;

	/* Find the mm_struct */
1490
	rcu_read_lock();
1491
	task = pid ? find_task_by_vpid(pid) : current;
1492
	if (!task) {
1493
		rcu_read_unlock();
1494 1495
		return -ESRCH;
	}
1496
	get_task_struct(task);
1497 1498 1499 1500 1501 1502 1503

	/*
	 * Check if this process has the right to modify the specified
	 * process. The right exists if the process has administrative
	 * capabilities, superuser privileges or the same
	 * userid as the target process.
	 */
1504
	tcred = __task_cred(task);
1505 1506
	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1507
	    !capable(CAP_SYS_NICE)) {
1508
		rcu_read_unlock();
1509
		err = -EPERM;
1510
		goto out;
1511
	}
1512
	rcu_read_unlock();
1513

1514 1515
 	err = security_task_movememory(task);
 	if (err)
1516
		goto out;
1517

1518 1519 1520 1521
	task_nodes = cpuset_mems_allowed(task);
	mm = get_task_mm(task);
	put_task_struct(task);

1522 1523 1524 1525 1526 1527 1528 1529
	if (!mm)
		return -EINVAL;

	if (nodes)
		err = do_pages_move(mm, task_nodes, nr_pages, pages,
				    nodes, status, flags);
	else
		err = do_pages_stat(mm, nr_pages, pages, status);
1530 1531 1532

	mmput(mm);
	return err;
1533 1534 1535 1536

out:
	put_task_struct(task);
	return err;
1537 1538
}

1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
/*
 * Call migration functions in the vma_ops that may prepare
 * memory in a vm for migration. migration functions may perform
 * the migration for vmas that do not have an underlying page struct.
 */
int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
	const nodemask_t *from, unsigned long flags)
{
 	struct vm_area_struct *vma;
 	int err = 0;

1550
	for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
1551 1552 1553 1554 1555 1556 1557 1558
 		if (vma->vm_ops && vma->vm_ops->migrate) {
 			err = vma->vm_ops->migrate(vma, to, from, flags);
 			if (err)
 				break;
 		}
 	}
 	return err;
}
1559 1560 1561 1562 1563 1564 1565

#ifdef CONFIG_NUMA_BALANCING
/*
 * Returns true if this is a safe migration target node for misplaced NUMA
 * pages. Currently it only checks the watermarks which crude
 */
static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1566
				   unsigned long nr_migrate_pages)
1567 1568 1569 1570 1571 1572 1573 1574
{
	int z;
	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
		struct zone *zone = pgdat->node_zones + z;

		if (!populated_zone(zone))
			continue;

1575
		if (!zone_reclaimable(zone))
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
			continue;

		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
		if (!zone_watermark_ok(zone, 0,
				       high_wmark_pages(zone) +
				       nr_migrate_pages,
				       0, 0))
			continue;
		return true;
	}
	return false;
}

static struct page *alloc_misplaced_dst_page(struct page *page,
					   unsigned long data,
					   int **result)
{
	int nid = (int) data;
	struct page *newpage;

	newpage = alloc_pages_exact_node(nid,
1597 1598 1599
					 (GFP_HIGHUSER_MOVABLE |
					  __GFP_THISNODE | __GFP_NOMEMALLOC |
					  __GFP_NORETRY | __GFP_NOWARN) &
1600
					 ~GFP_IOFS, 0);
1601

1602 1603 1604
	return newpage;
}

1605 1606 1607 1608
/*
 * page migration rate limiting control.
 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
 * window of time. Default here says do not migrate more than 1280M per second.
1609 1610 1611 1612
 * If a node is rate-limited then PTE NUMA updates are also rate-limited. However
 * as it is faults that reset the window, pte updates will happen unconditionally
 * if there has not been a fault since @pteupdate_interval_millisecs after the
 * throttle window closed.
1613 1614
 */
static unsigned int migrate_interval_millisecs __read_mostly = 100;
1615
static unsigned int pteupdate_interval_millisecs __read_mostly = 1000;
1616 1617
static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);

1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
/* Returns true if NUMA migration is currently rate limited */
bool migrate_ratelimited(int node)
{
	pg_data_t *pgdat = NODE_DATA(node);

	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window +
				msecs_to_jiffies(pteupdate_interval_millisecs)))
		return false;

	if (pgdat->numabalancing_migrate_nr_pages < ratelimit_pages)
		return false;

	return true;
}

1633
/* Returns true if the node is migrate rate-limited after the update */
1634 1635
static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
					unsigned long nr_pages)
1636
{
1637 1638 1639 1640 1641 1642
	/*
	 * Rate-limit the amount of data that is being migrated to a node.
	 * Optimal placement is no good if the memory bus is saturated and
	 * all the time is being spent migrating!
	 */
	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1643
		spin_lock(&pgdat->numabalancing_migrate_lock);
1644 1645 1646
		pgdat->numabalancing_migrate_nr_pages = 0;
		pgdat->numabalancing_migrate_next_window = jiffies +
			msecs_to_jiffies(migrate_interval_millisecs);
1647
		spin_unlock(&pgdat->numabalancing_migrate_lock);
1648
	}
1649 1650 1651
	if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
		trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
								nr_pages);
1652
		return true;
1653
	}
1654 1655 1656 1657 1658 1659 1660 1661 1662

	/*
	 * This is an unlocked non-atomic update so errors are possible.
	 * The consequences are failing to migrate when we potentiall should
	 * have which is not severe enough to warrant locking. If it is ever
	 * a problem, it can be converted to a per-cpu counter.
	 */
	pgdat->numabalancing_migrate_nr_pages += nr_pages;
	return false;
1663 1664
}

1665
static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1666
{
1667
	int page_lru;
1668

1669
	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1670

1671
	/* Avoid migrating to a node that is nearly full */
1672 1673
	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
		return 0;
1674

1675 1676
	if (isolate_lru_page(page))
		return 0;
1677

1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
	/*
	 * migrate_misplaced_transhuge_page() skips page migration's usual
	 * check on page_count(), so we must do it here, now that the page
	 * has been isolated: a GUP pin, or any other pin, prevents migration.
	 * The expected page count is 3: 1 for page's mapcount and 1 for the
	 * caller's pin and 1 for the reference taken by isolate_lru_page().
	 */
	if (PageTransHuge(page) && page_count(page) != 3) {
		putback_lru_page(page);
		return 0;
1688 1689
	}

1690 1691 1692 1693
	page_lru = page_is_file_cache(page);
	mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
				hpage_nr_pages(page));

1694
	/*
1695 1696 1697
	 * Isolating the page has taken another reference, so the
	 * caller's reference can be safely dropped without the page
	 * disappearing underneath us during migration.
1698 1699
	 */
	put_page(page);
1700
	return 1;
1701 1702
}

1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
bool pmd_trans_migrating(pmd_t pmd)
{
	struct page *page = pmd_page(pmd);
	return PageLocked(page);
}

void wait_migrate_huge_page(struct anon_vma *anon_vma, pmd_t *pmd)
{
	struct page *page = pmd_page(*pmd);
	wait_on_page_locked(page);
}

1715 1716 1717 1718 1719
/*
 * Attempt to migrate a misplaced page to the specified destination
 * node. Caller is expected to have an elevated reference count on
 * the page that will be dropped by this function before returning.
 */
1720 1721
int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
			   int node)
1722 1723
{
	pg_data_t *pgdat = NODE_DATA(node);
1724
	int isolated;
1725 1726 1727 1728
	int nr_remaining;
	LIST_HEAD(migratepages);

	/*
1729 1730
	 * Don't migrate file pages that are mapped in multiple processes
	 * with execute permissions as they are probably shared libraries.
1731
	 */
1732 1733
	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
	    (vma->vm_flags & VM_EXEC))
1734 1735 1736 1737 1738 1739 1740
		goto out;

	/*
	 * Rate-limit the amount of data that is being migrated to a node.
	 * Optimal placement is no good if the memory bus is saturated and
	 * all the time is being spent migrating!
	 */
1741
	if (numamigrate_update_ratelimit(pgdat, 1))
1742 1743 1744 1745 1746 1747 1748
		goto out;

	isolated = numamigrate_isolate_page(pgdat, page);
	if (!isolated)
		goto out;

	list_add(&page->lru, &migratepages);
1749
	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1750 1751
				     NULL, node, MIGRATE_ASYNC,
				     MR_NUMA_MISPLACED);
1752
	if (nr_remaining) {
1753 1754 1755 1756 1757 1758
		if (!list_empty(&migratepages)) {
			list_del(&page->lru);
			dec_zone_page_state(page, NR_ISOLATED_ANON +
					page_is_file_cache(page));
			putback_lru_page(page);
		}
1759 1760 1761
		isolated = 0;
	} else
		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1762 1763
	BUG_ON(!list_empty(&migratepages));
	return isolated;
1764 1765 1766 1767

out:
	put_page(page);
	return 0;
1768
}
1769
#endif /* CONFIG_NUMA_BALANCING */
1770

1771
#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1772 1773 1774 1775
/*
 * Migrates a THP to a given target node. page must be locked and is unlocked
 * before returning.
 */
1776 1777 1778 1779 1780 1781
int migrate_misplaced_transhuge_page(struct mm_struct *mm,
				struct vm_area_struct *vma,
				pmd_t *pmd, pmd_t entry,
				unsigned long address,
				struct page *page, int node)
{
1782
	spinlock_t *ptl;
1783 1784 1785 1786
	pg_data_t *pgdat = NODE_DATA(node);
	int isolated = 0;
	struct page *new_page = NULL;
	int page_lru = page_is_file_cache(page);
1787 1788
	unsigned long mmun_start = address & HPAGE_PMD_MASK;
	unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1789
	pmd_t orig_entry;
1790 1791 1792 1793 1794 1795

	/*
	 * Rate-limit the amount of data that is being migrated to a node.
	 * Optimal placement is no good if the memory bus is saturated and
	 * all the time is being spent migrating!
	 */
1796
	if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1797 1798 1799
		goto out_dropref;

	new_page = alloc_pages_node(node,
1800 1801
		(GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_WAIT,
		HPAGE_PMD_ORDER);
1802 1803 1804
	if (!new_page)
		goto out_fail;

1805
	isolated = numamigrate_isolate_page(pgdat, page);
1806
	if (!isolated) {
1807
		put_page(new_page);
1808
		goto out_fail;
1809 1810
	}

1811 1812 1813
	if (mm_tlb_flush_pending(mm))
		flush_tlb_range(vma, mmun_start, mmun_end);

1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
	/* Prepare a page as a migration target */
	__set_page_locked(new_page);
	SetPageSwapBacked(new_page);

	/* anon mapping, we can simply copy page->mapping to the new page: */
	new_page->mapping = page->mapping;
	new_page->index = page->index;
	migrate_page_copy(new_page, page);
	WARN_ON(PageLRU(new_page));

	/* Recheck the target PMD */
1825
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1826
	ptl = pmd_lock(mm, pmd);
1827 1828
	if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
fail_putback:
1829
		spin_unlock(ptl);
1830
		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841

		/* Reverse changes made by migrate_page_copy() */
		if (TestClearPageActive(new_page))
			SetPageActive(page);
		if (TestClearPageUnevictable(new_page))
			SetPageUnevictable(page);
		mlock_migrate_page(page, new_page);

		unlock_page(new_page);
		put_page(new_page);		/* Free it */

1842 1843
		/* Retake the callers reference and putback on LRU */
		get_page(page);
1844
		putback_lru_page(page);
1845 1846
		mod_zone_page_state(page_zone(page),
			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1847 1848

		goto out_unlock;
1849 1850
	}

1851
	orig_entry = *pmd;
1852 1853
	entry = mk_pmd(new_page, vma->vm_page_prot);
	entry = pmd_mkhuge(entry);
1854
	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1855

1856 1857 1858 1859 1860 1861 1862
	/*
	 * Clear the old entry under pagetable lock and establish the new PTE.
	 * Any parallel GUP will either observe the old page blocking on the
	 * page lock, block on the page table lock or observe the new page.
	 * The SetPageUptodate on the new page and page_add_new_anon_rmap
	 * guarantee the copy is visible before the pagetable update.
	 */
1863
	flush_cache_range(vma, mmun_start, mmun_end);
1864
	page_add_anon_rmap(new_page, vma, mmun_start);
1865 1866 1867
	pmdp_clear_flush(vma, mmun_start, pmd);
	set_pmd_at(mm, mmun_start, pmd, entry);
	flush_tlb_range(vma, mmun_start, mmun_end);
1868
	update_mmu_cache_pmd(vma, address, &entry);
1869 1870

	if (page_count(page) != 2) {
1871 1872
		set_pmd_at(mm, mmun_start, pmd, orig_entry);
		flush_tlb_range(vma, mmun_start, mmun_end);
1873 1874 1875 1876 1877
		update_mmu_cache_pmd(vma, address, &entry);
		page_remove_rmap(new_page);
		goto fail_putback;
	}

1878 1879
	mem_cgroup_migrate(page, new_page, false);

1880
	page_remove_rmap(page);
1881

1882
	spin_unlock(ptl);
1883
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1884

1885 1886 1887 1888
	/* Take an "isolate" reference and put new page on the LRU. */
	get_page(new_page);
	putback_lru_page(new_page);

1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
	unlock_page(new_page);
	unlock_page(page);
	put_page(page);			/* Drop the rmap reference */
	put_page(page);			/* Drop the LRU isolation reference */

	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);

	mod_zone_page_state(page_zone(page),
			NR_ISOLATED_ANON + page_lru,
			-HPAGE_PMD_NR);
	return isolated;

1902 1903
out_fail:
	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1904
out_dropref:
1905 1906 1907
	ptl = pmd_lock(mm, pmd);
	if (pmd_same(*pmd, entry)) {
		entry = pmd_mknonnuma(entry);
1908
		set_pmd_at(mm, mmun_start, pmd, entry);
1909 1910 1911
		update_mmu_cache_pmd(vma, address, &entry);
	}
	spin_unlock(ptl);
1912

1913
out_unlock:
1914
	unlock_page(page);
1915 1916 1917
	put_page(page);
	return 0;
}
1918 1919 1920
#endif /* CONFIG_NUMA_BALANCING */

#endif /* CONFIG_NUMA */