rcutree.c 70.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Read-Copy Update mechanism for mutual exclusion
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright IBM Corporation, 2008
 *
 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
 *	    Manfred Spraul <manfred@colorfullife.com>
 *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
 *
 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 *
 * For detailed explanation of Read-Copy Update mechanism see -
28
 *	Documentation/RCU
29 30 31 32 33 34 35 36 37
 */
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/rcupdate.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
38
#include <linux/nmi.h>
39 40 41 42 43 44 45 46 47 48
#include <asm/atomic.h>
#include <linux/bitops.h>
#include <linux/module.h>
#include <linux/completion.h>
#include <linux/moduleparam.h>
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/mutex.h>
#include <linux/time.h>
49
#include <linux/kernel_stat.h>
50 51
#include <linux/wait.h>
#include <linux/kthread.h>
52
#include <linux/prefetch.h>
53

54 55
#include "rcutree.h"

56 57
/* Data structures. */

58
static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
59

60 61
#define RCU_STATE_INITIALIZER(structname) { \
	.level = { &structname.node[0] }, \
62 63 64 65
	.levelcnt = { \
		NUM_RCU_LVL_0,  /* root of hierarchy. */ \
		NUM_RCU_LVL_1, \
		NUM_RCU_LVL_2, \
66 67
		NUM_RCU_LVL_3, \
		NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
68
	}, \
69
	.signaled = RCU_GP_IDLE, \
70 71
	.gpnum = -300, \
	.completed = -300, \
72 73
	.onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname.onofflock), \
	.fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname.fqslock), \
74 75
	.n_force_qs = 0, \
	.n_force_qs_ngp = 0, \
76
	.name = #structname, \
77 78
}

79 80
struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched_state);
DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
81

82 83
struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state);
DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
84

85 86
static struct rcu_state *rcu_state;

87 88 89
int rcu_scheduler_active __read_mostly;
EXPORT_SYMBOL_GPL(rcu_scheduler_active);

90 91 92 93 94
/*
 * Control variables for per-CPU and per-rcu_node kthreads.  These
 * handle all flavors of RCU.
 */
static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
95
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
96
DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
97
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
98
static DEFINE_PER_CPU(wait_queue_head_t, rcu_cpu_wq);
99
DEFINE_PER_CPU(char, rcu_cpu_has_work);
100 101
static char rcu_kthreads_spawnable;

102
static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
103
static void invoke_rcu_cpu_kthread(void);
104 105 106

#define RCU_KTHREAD_PRIO 1	/* RT priority for per-CPU kthreads. */

107 108 109 110 111 112 113 114 115 116 117 118
/*
 * Track the rcutorture test sequence number and the update version
 * number within a given test.  The rcutorture_testseq is incremented
 * on every rcutorture module load and unload, so has an odd value
 * when a test is running.  The rcutorture_vernum is set to zero
 * when rcutorture starts and is incremented on each rcutorture update.
 * These variables enable correlating rcutorture output with the
 * RCU tracing information.
 */
unsigned long rcutorture_testseq;
unsigned long rcutorture_vernum;

119 120 121 122 123 124 125 126 127 128
/*
 * Return true if an RCU grace period is in progress.  The ACCESS_ONCE()s
 * permit this function to be invoked without holding the root rcu_node
 * structure's ->lock, but of course results can be subject to change.
 */
static int rcu_gp_in_progress(struct rcu_state *rsp)
{
	return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
}

129
/*
130
 * Note a quiescent state.  Because we do not need to know
131
 * how many quiescent states passed, just if there was at least
132
 * one since the start of the grace period, this just sets a flag.
133
 */
134
void rcu_sched_qs(int cpu)
135
{
136
	struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
137

138
	rdp->passed_quiesc_completed = rdp->gpnum - 1;
139 140
	barrier();
	rdp->passed_quiesc = 1;
141 142
}

143
void rcu_bh_qs(int cpu)
144
{
145
	struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
146

147
	rdp->passed_quiesc_completed = rdp->gpnum - 1;
148 149
	barrier();
	rdp->passed_quiesc = 1;
150
}
151

152 153 154 155 156 157 158 159 160
/*
 * Note a context switch.  This is a quiescent state for RCU-sched,
 * and requires special handling for preemptible RCU.
 */
void rcu_note_context_switch(int cpu)
{
	rcu_sched_qs(cpu);
	rcu_preempt_note_context_switch(cpu);
}
161
EXPORT_SYMBOL_GPL(rcu_note_context_switch);
162

163
#ifdef CONFIG_NO_HZ
164 165
DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
	.dynticks_nesting = 1,
166
	.dynticks = ATOMIC_INIT(1),
167
};
168 169 170 171 172 173
#endif /* #ifdef CONFIG_NO_HZ */

static int blimit = 10;		/* Maximum callbacks per softirq. */
static int qhimark = 10000;	/* If this many pending, ignore blimit. */
static int qlowmark = 100;	/* Once only this many pending, use blimit. */

174 175 176 177
module_param(blimit, int, 0);
module_param(qhimark, int, 0);
module_param(qlowmark, int, 0);

178
int rcu_cpu_stall_suppress __read_mostly;
179
module_param(rcu_cpu_stall_suppress, int, 0644);
180

181
static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
182
static int rcu_pending(int cpu);
183 184

/*
185
 * Return the number of RCU-sched batches processed thus far for debug & stats.
186
 */
187
long rcu_batches_completed_sched(void)
188
{
189
	return rcu_sched_state.completed;
190
}
191
EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
192 193 194 195 196 197 198 199 200 201

/*
 * Return the number of RCU BH batches processed thus far for debug & stats.
 */
long rcu_batches_completed_bh(void)
{
	return rcu_bh_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);

202 203 204 205 206 207 208 209 210
/*
 * Force a quiescent state for RCU BH.
 */
void rcu_bh_force_quiescent_state(void)
{
	force_quiescent_state(&rcu_bh_state, 0);
}
EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
/*
 * Record the number of times rcutorture tests have been initiated and
 * terminated.  This information allows the debugfs tracing stats to be
 * correlated to the rcutorture messages, even when the rcutorture module
 * is being repeatedly loaded and unloaded.  In other words, we cannot
 * store this state in rcutorture itself.
 */
void rcutorture_record_test_transition(void)
{
	rcutorture_testseq++;
	rcutorture_vernum = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);

/*
 * Record the number of writer passes through the current rcutorture test.
 * This is also used to correlate debugfs tracing stats with the rcutorture
 * messages.
 */
void rcutorture_record_progress(unsigned long vernum)
{
	rcutorture_vernum++;
}
EXPORT_SYMBOL_GPL(rcutorture_record_progress);

236 237 238 239 240 241 242 243 244
/*
 * Force a quiescent state for RCU-sched.
 */
void rcu_sched_force_quiescent_state(void)
{
	force_quiescent_state(&rcu_sched_state, 0);
}
EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);

245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
/*
 * Does the CPU have callbacks ready to be invoked?
 */
static int
cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
{
	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
}

/*
 * Does the current CPU require a yet-as-unscheduled grace period?
 */
static int
cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
{
260
	return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
}

/*
 * Return the root node of the specified rcu_state structure.
 */
static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
{
	return &rsp->node[0];
}

#ifdef CONFIG_SMP

/*
 * If the specified CPU is offline, tell the caller that it is in
 * a quiescent state.  Otherwise, whack it with a reschedule IPI.
 * Grace periods can end up waiting on an offline CPU when that
 * CPU is in the process of coming online -- it will be added to the
 * rcu_node bitmasks before it actually makes it online.  The same thing
 * can happen while a CPU is in the process of coming online.  Because this
 * race is quite rare, we check for it after detecting that the grace
 * period has been delayed rather than checking each and every CPU
 * each and every time we start a new grace period.
 */
static int rcu_implicit_offline_qs(struct rcu_data *rdp)
{
	/*
	 * If the CPU is offline, it is in a quiescent state.  We can
	 * trust its state not to change because interrupts are disabled.
	 */
	if (cpu_is_offline(rdp->cpu)) {
		rdp->offline_fqs++;
		return 1;
	}

P
Paul E. McKenney 已提交
295 296
	/* If preemptible RCU, no point in sending reschedule IPI. */
	if (rdp->preemptible)
297 298
		return 0;

299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
	/* The CPU is online, so send it a reschedule IPI. */
	if (rdp->cpu != smp_processor_id())
		smp_send_reschedule(rdp->cpu);
	else
		set_need_resched();
	rdp->resched_ipi++;
	return 0;
}

#endif /* #ifdef CONFIG_SMP */

#ifdef CONFIG_NO_HZ

/**
 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
 *
 * Enter nohz mode, in other words, -leave- the mode in which RCU
 * read-side critical sections can occur.  (Though RCU read-side
 * critical sections can occur in irq handlers in nohz mode, a possibility
 * handled by rcu_irq_enter() and rcu_irq_exit()).
 */
void rcu_enter_nohz(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
327 328 329 330 331 332 333 334 335
	if (--rdtp->dynticks_nesting) {
		local_irq_restore(flags);
		return;
	}
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
	smp_mb__before_atomic_inc();  /* See above. */
	atomic_inc(&rdtp->dynticks);
	smp_mb__after_atomic_inc();  /* Force ordering with next sojourn. */
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
336
	local_irq_restore(flags);
337 338 339 340 341 342 343

	/* If the interrupt queued a callback, get out of dyntick mode. */
	if (in_irq() &&
	    (__get_cpu_var(rcu_sched_data).nxtlist ||
	     __get_cpu_var(rcu_bh_data).nxtlist ||
	     rcu_preempt_needs_cpu(smp_processor_id())))
		set_need_resched();
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
}

/*
 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
 *
 * Exit nohz mode, in other words, -enter- the mode in which RCU
 * read-side critical sections normally occur.
 */
void rcu_exit_nohz(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
359 360 361 362 363 364 365 366 367
	if (rdtp->dynticks_nesting++) {
		local_irq_restore(flags);
		return;
	}
	smp_mb__before_atomic_inc();  /* Force ordering w/previous sojourn. */
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
	smp_mb__after_atomic_inc();  /* See above. */
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
368 369 370 371 372 373 374 375 376 377 378 379 380 381
	local_irq_restore(flags);
}

/**
 * rcu_nmi_enter - inform RCU of entry to NMI context
 *
 * If the CPU was idle with dynamic ticks active, and there is no
 * irq handler running, this updates rdtp->dynticks_nmi to let the
 * RCU grace-period handling know that the CPU is active.
 */
void rcu_nmi_enter(void)
{
	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);

382 383
	if (rdtp->dynticks_nmi_nesting == 0 &&
	    (atomic_read(&rdtp->dynticks) & 0x1))
384
		return;
385 386 387 388 389 390
	rdtp->dynticks_nmi_nesting++;
	smp_mb__before_atomic_inc();  /* Force delay from prior write. */
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
	smp_mb__after_atomic_inc();  /* See above. */
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
391 392 393 394 395 396 397 398 399 400 401 402 403
}

/**
 * rcu_nmi_exit - inform RCU of exit from NMI context
 *
 * If the CPU was idle with dynamic ticks active, and there is no
 * irq handler running, this updates rdtp->dynticks_nmi to let the
 * RCU grace-period handling know that the CPU is no longer active.
 */
void rcu_nmi_exit(void)
{
	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);

404 405
	if (rdtp->dynticks_nmi_nesting == 0 ||
	    --rdtp->dynticks_nmi_nesting != 0)
406
		return;
407 408 409 410 411
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
	smp_mb__before_atomic_inc();  /* See above. */
	atomic_inc(&rdtp->dynticks);
	smp_mb__after_atomic_inc();  /* Force delay to next write. */
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
412 413 414 415 416 417 418 419 420 421
}

/**
 * rcu_irq_enter - inform RCU of entry to hard irq context
 *
 * If the CPU was idle with dynamic ticks active, this updates the
 * rdtp->dynticks to let the RCU handling know that the CPU is active.
 */
void rcu_irq_enter(void)
{
422
	rcu_exit_nohz();
423 424 425 426 427 428 429 430 431 432 433
}

/**
 * rcu_irq_exit - inform RCU of exit from hard irq context
 *
 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
 * to put let the RCU handling be aware that the CPU is going back to idle
 * with no ticks.
 */
void rcu_irq_exit(void)
{
434
	rcu_enter_nohz();
435 436 437 438 439 440 441
}

#ifdef CONFIG_SMP

/*
 * Snapshot the specified CPU's dynticks counter so that we can later
 * credit them with an implicit quiescent state.  Return 1 if this CPU
442
 * is in dynticks idle mode, which is an extended quiescent state.
443 444 445
 */
static int dyntick_save_progress_counter(struct rcu_data *rdp)
{
446 447
	rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
	return 0;
448 449 450 451 452 453 454 455 456 457
}

/*
 * Return true if the specified CPU has passed through a quiescent
 * state by virtue of being in or having passed through an dynticks
 * idle state since the last call to dyntick_save_progress_counter()
 * for this same CPU.
 */
static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
{
458 459
	unsigned long curr;
	unsigned long snap;
460

461 462
	curr = (unsigned long)atomic_add_return(0, &rdp->dynticks->dynticks);
	snap = (unsigned long)rdp->dynticks_snap;
463 464 465 466 467 468 469 470 471

	/*
	 * If the CPU passed through or entered a dynticks idle phase with
	 * no active irq/NMI handlers, then we can safely pretend that the CPU
	 * already acknowledged the request to pass through a quiescent
	 * state.  Either way, that CPU cannot possibly be in an RCU
	 * read-side critical section that started before the beginning
	 * of the current RCU grace period.
	 */
472
	if ((curr & 0x1) == 0 || ULONG_CMP_GE(curr, snap + 2)) {
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
		rdp->dynticks_fqs++;
		return 1;
	}

	/* Go check for the CPU being offline. */
	return rcu_implicit_offline_qs(rdp);
}

#endif /* #ifdef CONFIG_SMP */

#else /* #ifdef CONFIG_NO_HZ */

#ifdef CONFIG_SMP

static int dyntick_save_progress_counter(struct rcu_data *rdp)
{
	return 0;
}

static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
{
	return rcu_implicit_offline_qs(rdp);
}

#endif /* #ifdef CONFIG_SMP */

#endif /* #else #ifdef CONFIG_NO_HZ */

501
int rcu_cpu_stall_suppress __read_mostly;
502

503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
static void record_gp_stall_check_time(struct rcu_state *rsp)
{
	rsp->gp_start = jiffies;
	rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
}

static void print_other_cpu_stall(struct rcu_state *rsp)
{
	int cpu;
	long delta;
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Only let one CPU complain about others per time interval. */

P
Paul E. McKenney 已提交
518
	raw_spin_lock_irqsave(&rnp->lock, flags);
519
	delta = jiffies - rsp->jiffies_stall;
520
	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
521
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
522 523 524
		return;
	}
	rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
525 526 527 528 529 530

	/*
	 * Now rat on any tasks that got kicked up to the root rcu_node
	 * due to CPU offlining.
	 */
	rcu_print_task_stall(rnp);
P
Paul E. McKenney 已提交
531
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
532

533 534 535 536 537
	/*
	 * OK, time to rat on our buddy...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
538 539
	printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks: {",
	       rsp->name);
540
	rcu_for_each_leaf_node(rsp, rnp) {
541
		raw_spin_lock_irqsave(&rnp->lock, flags);
542
		rcu_print_task_stall(rnp);
543
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
544
		if (rnp->qsmask == 0)
545
			continue;
546 547 548
		for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
			if (rnp->qsmask & (1UL << cpu))
				printk(" %d", rnp->grplo + cpu);
549
	}
550
	printk("} (detected by %d, t=%ld jiffies)\n",
551
	       smp_processor_id(), (long)(jiffies - rsp->gp_start));
552 553
	trigger_all_cpu_backtrace();

554 555 556 557
	/* If so configured, complain about tasks blocking the grace period. */

	rcu_print_detail_task_stall(rsp);

558 559 560 561 562 563 564 565
	force_quiescent_state(rsp, 0);  /* Kick them all. */
}

static void print_cpu_stall(struct rcu_state *rsp)
{
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);

566 567 568 569 570
	/*
	 * OK, time to rat on ourselves...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
571 572
	printk(KERN_ERR "INFO: %s detected stall on CPU %d (t=%lu jiffies)\n",
	       rsp->name, smp_processor_id(), jiffies - rsp->gp_start);
573 574
	trigger_all_cpu_backtrace();

P
Paul E. McKenney 已提交
575
	raw_spin_lock_irqsave(&rnp->lock, flags);
576
	if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
577 578
		rsp->jiffies_stall =
			jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
P
Paul E. McKenney 已提交
579
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
580

581 582 583 584 585
	set_need_resched();  /* kick ourselves to get things going. */
}

static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
{
586 587
	unsigned long j;
	unsigned long js;
588 589
	struct rcu_node *rnp;

590
	if (rcu_cpu_stall_suppress)
591
		return;
592 593
	j = ACCESS_ONCE(jiffies);
	js = ACCESS_ONCE(rsp->jiffies_stall);
594
	rnp = rdp->mynode;
595
	if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
596 597 598 599

		/* We haven't checked in, so go dump stack. */
		print_cpu_stall(rsp);

600 601
	} else if (rcu_gp_in_progress(rsp) &&
		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
602

603
		/* They had a few time units to dump stack, so complain. */
604 605 606 607
		print_other_cpu_stall(rsp);
	}
}

608 609
static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
{
610
	rcu_cpu_stall_suppress = 1;
611 612 613
	return NOTIFY_DONE;
}

614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
/**
 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
 *
 * Set the stall-warning timeout way off into the future, thus preventing
 * any RCU CPU stall-warning messages from appearing in the current set of
 * RCU grace periods.
 *
 * The caller must disable hard irqs.
 */
void rcu_cpu_stall_reset(void)
{
	rcu_sched_state.jiffies_stall = jiffies + ULONG_MAX / 2;
	rcu_bh_state.jiffies_stall = jiffies + ULONG_MAX / 2;
	rcu_preempt_stall_reset();
}

630 631 632 633 634 635 636 637 638
static struct notifier_block rcu_panic_block = {
	.notifier_call = rcu_panic,
};

static void __init check_cpu_stall_init(void)
{
	atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
}

639 640 641
/*
 * Update CPU-local rcu_data state to record the newly noticed grace period.
 * This is used both when we started the grace period and when we notice
642 643 644
 * that someone else started the grace period.  The caller must hold the
 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
 *  and must have irqs disabled.
645
 */
646 647 648
static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
	if (rdp->gpnum != rnp->gpnum) {
649 650 651 652 653
		/*
		 * If the current grace period is waiting for this CPU,
		 * set up to detect a quiescent state, otherwise don't
		 * go looking for one.
		 */
654
		rdp->gpnum = rnp->gpnum;
655 656 657 658 659
		if (rnp->qsmask & rdp->grpmask) {
			rdp->qs_pending = 1;
			rdp->passed_quiesc = 0;
		} else
			rdp->qs_pending = 0;
660 661 662
	}
}

663 664
static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
{
665 666 667 668 669 670
	unsigned long flags;
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
	if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
P
Paul E. McKenney 已提交
671
	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
672 673 674 675
		local_irq_restore(flags);
		return;
	}
	__note_new_gpnum(rsp, rnp, rdp);
P
Paul E. McKenney 已提交
676
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
}

/*
 * Did someone else start a new RCU grace period start since we last
 * checked?  Update local state appropriately if so.  Must be called
 * on the CPU corresponding to rdp.
 */
static int
check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
{
	unsigned long flags;
	int ret = 0;

	local_irq_save(flags);
	if (rdp->gpnum != rsp->gpnum) {
		note_new_gpnum(rsp, rdp);
		ret = 1;
	}
	local_irq_restore(flags);
	return ret;
}

699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
/*
 * Advance this CPU's callbacks, but only if the current grace period
 * has ended.  This may be called only from the CPU to whom the rdp
 * belongs.  In addition, the corresponding leaf rcu_node structure's
 * ->lock must be held by the caller, with irqs disabled.
 */
static void
__rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
	/* Did another grace period end? */
	if (rdp->completed != rnp->completed) {

		/* Advance callbacks.  No harm if list empty. */
		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
		rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
		rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];

		/* Remember that we saw this grace-period completion. */
		rdp->completed = rnp->completed;
718

719 720
		/*
		 * If we were in an extended quiescent state, we may have
721
		 * missed some grace periods that others CPUs handled on
722
		 * our behalf. Catch up with this state to avoid noting
723 724 725
		 * spurious new grace periods.  If another grace period
		 * has started, then rnp->gpnum will have advanced, so
		 * we will detect this later on.
726
		 */
727
		if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
728 729
			rdp->gpnum = rdp->completed;

730
		/*
731 732
		 * If RCU does not need a quiescent state from this CPU,
		 * then make sure that this CPU doesn't go looking for one.
733
		 */
734
		if ((rnp->qsmask & rdp->grpmask) == 0)
735
			rdp->qs_pending = 0;
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
	}
}

/*
 * Advance this CPU's callbacks, but only if the current grace period
 * has ended.  This may be called only from the CPU to whom the rdp
 * belongs.
 */
static void
rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
{
	unsigned long flags;
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
	if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
P
Paul E. McKenney 已提交
753
	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
754 755 756 757
		local_irq_restore(flags);
		return;
	}
	__rcu_process_gp_end(rsp, rnp, rdp);
P
Paul E. McKenney 已提交
758
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
}

/*
 * Do per-CPU grace-period initialization for running CPU.  The caller
 * must hold the lock of the leaf rcu_node structure corresponding to
 * this CPU.
 */
static void
rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
	/* Prior grace period ended, so advance callbacks for current CPU. */
	__rcu_process_gp_end(rsp, rnp, rdp);

	/*
	 * Because this CPU just now started the new grace period, we know
	 * that all of its callbacks will be covered by this upcoming grace
	 * period, even the ones that were registered arbitrarily recently.
	 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
	 *
	 * Other CPUs cannot be sure exactly when the grace period started.
	 * Therefore, their recently registered callbacks must pass through
	 * an additional RCU_NEXT_READY stage, so that they will be handled
	 * by the next RCU grace period.
	 */
	rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
	rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
785 786 787

	/* Set state so that this CPU will detect the next quiescent state. */
	__note_new_gpnum(rsp, rnp, rdp);
788 789
}

790 791 792 793 794 795 796 797 798 799
/*
 * Start a new RCU grace period if warranted, re-initializing the hierarchy
 * in preparation for detecting the next grace period.  The caller must hold
 * the root node's ->lock, which is released before return.  Hard irqs must
 * be disabled.
 */
static void
rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
	__releases(rcu_get_root(rsp)->lock)
{
800
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
801 802
	struct rcu_node *rnp = rcu_get_root(rsp);

803
	if (!cpu_needs_another_gp(rsp, rdp) || rsp->fqs_active) {
804 805
		if (cpu_needs_another_gp(rsp, rdp))
			rsp->fqs_need_gp = 1;
806
		if (rnp->completed == rsp->completed) {
P
Paul E. McKenney 已提交
807
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
808 809
			return;
		}
P
Paul E. McKenney 已提交
810
		raw_spin_unlock(&rnp->lock);	 /* irqs remain disabled. */
811 812 813 814 815 816 817

		/*
		 * Propagate new ->completed value to rcu_node structures
		 * so that other CPUs don't have to wait until the start
		 * of the next grace period to process their callbacks.
		 */
		rcu_for_each_node_breadth_first(rsp, rnp) {
P
Paul E. McKenney 已提交
818
			raw_spin_lock(&rnp->lock); /* irqs already disabled. */
819
			rnp->completed = rsp->completed;
P
Paul E. McKenney 已提交
820
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
821 822
		}
		local_irq_restore(flags);
823 824 825 826 827
		return;
	}

	/* Advance to a new grace period and initialize state. */
	rsp->gpnum++;
828
	WARN_ON_ONCE(rsp->signaled == RCU_GP_INIT);
829 830 831 832 833 834
	rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */
	rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
	record_gp_stall_check_time(rsp);

	/* Special-case the common single-level case. */
	if (NUM_RCU_NODES == 1) {
835
		rcu_preempt_check_blocked_tasks(rnp);
836
		rnp->qsmask = rnp->qsmaskinit;
837
		rnp->gpnum = rsp->gpnum;
838
		rnp->completed = rsp->completed;
839
		rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
840
		rcu_start_gp_per_cpu(rsp, rnp, rdp);
841
		rcu_preempt_boost_start_gp(rnp);
P
Paul E. McKenney 已提交
842
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
843 844 845
		return;
	}

P
Paul E. McKenney 已提交
846
	raw_spin_unlock(&rnp->lock);  /* leave irqs disabled. */
847 848 849


	/* Exclude any concurrent CPU-hotplug operations. */
P
Paul E. McKenney 已提交
850
	raw_spin_lock(&rsp->onofflock);  /* irqs already disabled. */
851 852

	/*
853 854 855 856 857 858 859 860 861
	 * Set the quiescent-state-needed bits in all the rcu_node
	 * structures for all currently online CPUs in breadth-first
	 * order, starting from the root rcu_node structure.  This
	 * operation relies on the layout of the hierarchy within the
	 * rsp->node[] array.  Note that other CPUs will access only
	 * the leaves of the hierarchy, which still indicate that no
	 * grace period is in progress, at least until the corresponding
	 * leaf node has been initialized.  In addition, we have excluded
	 * CPU-hotplug operations.
862 863 864 865
	 *
	 * Note that the grace period cannot complete until we finish
	 * the initialization process, as there will be at least one
	 * qsmask bit set in the root node until that time, namely the
866 867
	 * one corresponding to this CPU, due to the fact that we have
	 * irqs disabled.
868
	 */
869
	rcu_for_each_node_breadth_first(rsp, rnp) {
P
Paul E. McKenney 已提交
870
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
871
		rcu_preempt_check_blocked_tasks(rnp);
872
		rnp->qsmask = rnp->qsmaskinit;
873
		rnp->gpnum = rsp->gpnum;
874 875 876
		rnp->completed = rsp->completed;
		if (rnp == rdp->mynode)
			rcu_start_gp_per_cpu(rsp, rnp, rdp);
877
		rcu_preempt_boost_start_gp(rnp);
P
Paul E. McKenney 已提交
878
		raw_spin_unlock(&rnp->lock);	/* irqs remain disabled. */
879 880
	}

881
	rnp = rcu_get_root(rsp);
P
Paul E. McKenney 已提交
882
	raw_spin_lock(&rnp->lock);		/* irqs already disabled. */
883
	rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
P
Paul E. McKenney 已提交
884 885
	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
	raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
886 887
}

888
/*
P
Paul E. McKenney 已提交
889 890 891 892 893
 * Report a full set of quiescent states to the specified rcu_state
 * data structure.  This involves cleaning up after the prior grace
 * period and letting rcu_start_gp() start up the next grace period
 * if one is needed.  Note that the caller must hold rnp->lock, as
 * required by rcu_start_gp(), which will release it.
894
 */
P
Paul E. McKenney 已提交
895
static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
896
	__releases(rcu_get_root(rsp)->lock)
897
{
898 899
	unsigned long gp_duration;

900
	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
P
Paul E. McKenney 已提交
901 902 903 904 905 906

	/*
	 * Ensure that all grace-period and pre-grace-period activity
	 * is seen before the assignment to rsp->completed.
	 */
	smp_mb(); /* See above block comment. */
907 908 909
	gp_duration = jiffies - rsp->gp_start;
	if (gp_duration > rsp->gp_max)
		rsp->gp_max = gp_duration;
910
	rsp->completed = rsp->gpnum;
911
	rsp->signaled = RCU_GP_IDLE;
912 913 914
	rcu_start_gp(rsp, flags);  /* releases root node's rnp->lock. */
}

915
/*
P
Paul E. McKenney 已提交
916 917 918 919 920 921
 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
 * Allows quiescent states for a group of CPUs to be reported at one go
 * to the specified rcu_node structure, though all the CPUs in the group
 * must be represented by the same rcu_node structure (which need not be
 * a leaf rcu_node structure, though it often will be).  That structure's
 * lock must be held upon entry, and it is released before return.
922 923
 */
static void
P
Paul E. McKenney 已提交
924 925
rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
		  struct rcu_node *rnp, unsigned long flags)
926 927
	__releases(rnp->lock)
{
928 929
	struct rcu_node *rnp_c;

930 931 932 933 934
	/* Walk up the rcu_node hierarchy. */
	for (;;) {
		if (!(rnp->qsmask & mask)) {

			/* Our bit has already been cleared, so done. */
P
Paul E. McKenney 已提交
935
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
936 937 938
			return;
		}
		rnp->qsmask &= ~mask;
939
		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
940 941

			/* Other bits still set at this level, so done. */
P
Paul E. McKenney 已提交
942
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
943 944 945 946 947 948 949 950 951
			return;
		}
		mask = rnp->grpmask;
		if (rnp->parent == NULL) {

			/* No more levels.  Exit loop holding root lock. */

			break;
		}
P
Paul E. McKenney 已提交
952
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
953
		rnp_c = rnp;
954
		rnp = rnp->parent;
P
Paul E. McKenney 已提交
955
		raw_spin_lock_irqsave(&rnp->lock, flags);
956
		WARN_ON_ONCE(rnp_c->qsmask);
957 958 959 960
	}

	/*
	 * Get here if we are the last CPU to pass through a quiescent
P
Paul E. McKenney 已提交
961
	 * state for this grace period.  Invoke rcu_report_qs_rsp()
962
	 * to clean up and start the next grace period if one is needed.
963
	 */
P
Paul E. McKenney 已提交
964
	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
965 966 967
}

/*
P
Paul E. McKenney 已提交
968 969 970 971 972 973 974
 * Record a quiescent state for the specified CPU to that CPU's rcu_data
 * structure.  This must be either called from the specified CPU, or
 * called when the specified CPU is known to be offline (and when it is
 * also known that no other CPU is concurrently trying to help the offline
 * CPU).  The lastcomp argument is used to make sure we are still in the
 * grace period of interest.  We don't want to end the current grace period
 * based on quiescent states detected in an earlier grace period!
975 976
 */
static void
P
Paul E. McKenney 已提交
977
rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp)
978 979 980 981 982 983
{
	unsigned long flags;
	unsigned long mask;
	struct rcu_node *rnp;

	rnp = rdp->mynode;
P
Paul E. McKenney 已提交
984
	raw_spin_lock_irqsave(&rnp->lock, flags);
985
	if (lastcomp != rnp->completed) {
986 987 988 989 990 991

		/*
		 * Someone beat us to it for this grace period, so leave.
		 * The race with GP start is resolved by the fact that we
		 * hold the leaf rcu_node lock, so that the per-CPU bits
		 * cannot yet be initialized -- so we would simply find our
P
Paul E. McKenney 已提交
992 993
		 * CPU's bit already cleared in rcu_report_qs_rnp() if this
		 * race occurred.
994 995
		 */
		rdp->passed_quiesc = 0;	/* try again later! */
P
Paul E. McKenney 已提交
996
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
997 998 999 1000
		return;
	}
	mask = rdp->grpmask;
	if ((rnp->qsmask & mask) == 0) {
P
Paul E. McKenney 已提交
1001
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1002 1003 1004 1005 1006 1007 1008 1009 1010
	} else {
		rdp->qs_pending = 0;

		/*
		 * This GP can't end until cpu checks in, so all of our
		 * callbacks can be processed during the next GP.
		 */
		rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];

P
Paul E. McKenney 已提交
1011
		rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
	}
}

/*
 * Check to see if there is a new grace period of which this CPU
 * is not yet aware, and if so, set up local rcu_data state for it.
 * Otherwise, see if this CPU has just passed through its first
 * quiescent state for this grace period, and record that fact if so.
 */
static void
rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
{
	/* If there is now a new grace period, record and return. */
	if (check_for_new_grace_period(rsp, rdp))
		return;

	/*
	 * Does this CPU still need to do its part for current grace period?
	 * If no, return and let the other CPUs do their part as well.
	 */
	if (!rdp->qs_pending)
		return;

	/*
	 * Was there a quiescent state since the beginning of the grace
	 * period? If no, then exit and wait for the next call.
	 */
	if (!rdp->passed_quiesc)
		return;

P
Paul E. McKenney 已提交
1042 1043 1044 1045 1046
	/*
	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
	 * judge of that).
	 */
	rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed);
1047 1048 1049 1050
}

#ifdef CONFIG_HOTPLUG_CPU

1051
/*
1052 1053 1054
 * Move a dying CPU's RCU callbacks to online CPU's callback list.
 * Synchronization is not required because this function executes
 * in stop_machine() context.
1055
 */
1056
static void rcu_send_cbs_to_online(struct rcu_state *rsp)
1057 1058
{
	int i;
1059 1060
	/* current DYING CPU is cleared in the cpu_online_mask */
	int receive_cpu = cpumask_any(cpu_online_mask);
1061
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1062
	struct rcu_data *receive_rdp = per_cpu_ptr(rsp->rda, receive_cpu);
1063 1064 1065

	if (rdp->nxtlist == NULL)
		return;  /* irqs disabled, so comparison is stable. */
1066 1067 1068 1069 1070 1071 1072

	*receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
	receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
	receive_rdp->qlen += rdp->qlen;
	receive_rdp->n_cbs_adopted += rdp->qlen;
	rdp->n_cbs_orphaned += rdp->qlen;

1073 1074 1075 1076 1077 1078
	rdp->nxtlist = NULL;
	for (i = 0; i < RCU_NEXT_SIZE; i++)
		rdp->nxttail[i] = &rdp->nxtlist;
	rdp->qlen = 0;
}

1079 1080 1081
/*
 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
 * and move all callbacks from the outgoing CPU to the current one.
1082 1083
 * There can only be one CPU hotplug operation at a time, so no other
 * CPU can be attempting to update rcu_cpu_kthread_task.
1084 1085 1086 1087 1088
 */
static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
{
	unsigned long flags;
	unsigned long mask;
1089
	int need_report = 0;
1090
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1091
	struct rcu_node *rnp;
1092 1093 1094 1095 1096 1097 1098 1099
	struct task_struct *t;

	/* Stop the CPU's kthread. */
	t = per_cpu(rcu_cpu_kthread_task, cpu);
	if (t != NULL) {
		per_cpu(rcu_cpu_kthread_task, cpu) = NULL;
		kthread_stop(t);
	}
1100 1101

	/* Exclude any attempts to start a new grace period. */
P
Paul E. McKenney 已提交
1102
	raw_spin_lock_irqsave(&rsp->onofflock, flags);
1103 1104

	/* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1105
	rnp = rdp->mynode;	/* this is the outgoing CPU's rnp. */
1106 1107
	mask = rdp->grpmask;	/* rnp->grplo is constant. */
	do {
P
Paul E. McKenney 已提交
1108
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
1109 1110
		rnp->qsmaskinit &= ~mask;
		if (rnp->qsmaskinit != 0) {
1111
			if (rnp != rdp->mynode)
P
Paul E. McKenney 已提交
1112
				raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1113 1114
			break;
		}
1115
		if (rnp == rdp->mynode)
1116
			need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1117
		else
P
Paul E. McKenney 已提交
1118
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1119 1120 1121 1122
		mask = rnp->grpmask;
		rnp = rnp->parent;
	} while (rnp != NULL);

1123 1124 1125
	/*
	 * We still hold the leaf rcu_node structure lock here, and
	 * irqs are still disabled.  The reason for this subterfuge is
P
Paul E. McKenney 已提交
1126 1127
	 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
	 * held leads to deadlock.
1128
	 */
P
Paul E. McKenney 已提交
1129
	raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1130
	rnp = rdp->mynode;
1131
	if (need_report & RCU_OFL_TASKS_NORM_GP)
P
Paul E. McKenney 已提交
1132
		rcu_report_unblock_qs_rnp(rnp, flags);
1133
	else
P
Paul E. McKenney 已提交
1134
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1135 1136
	if (need_report & RCU_OFL_TASKS_EXP_GP)
		rcu_report_exp_rnp(rsp, rnp);
1137
	rcu_node_kthread_setaffinity(rnp, -1);
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
}

/*
 * Remove the specified CPU from the RCU hierarchy and move any pending
 * callbacks that it might have to the current CPU.  This code assumes
 * that at least one CPU in the system will remain running at all times.
 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
 */
static void rcu_offline_cpu(int cpu)
{
1148
	__rcu_offline_cpu(cpu, &rcu_sched_state);
1149
	__rcu_offline_cpu(cpu, &rcu_bh_state);
1150
	rcu_preempt_offline_cpu(cpu);
1151 1152 1153 1154
}

#else /* #ifdef CONFIG_HOTPLUG_CPU */

1155
static void rcu_send_cbs_to_online(struct rcu_state *rsp)
1156 1157 1158
{
}

1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
static void rcu_offline_cpu(int cpu)
{
}

#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */

/*
 * Invoke any RCU callbacks that have made it to the end of their grace
 * period.  Thottle as specified by rdp->blimit.
 */
1169
static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
{
	unsigned long flags;
	struct rcu_head *next, *list, **tail;
	int count;

	/* If no callbacks are ready, just return.*/
	if (!cpu_has_callbacks_ready_to_invoke(rdp))
		return;

	/*
	 * Extract the list of ready callbacks, disabling to prevent
	 * races with call_rcu() from interrupt handlers.
	 */
	local_irq_save(flags);
	list = rdp->nxtlist;
	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
	tail = rdp->nxttail[RCU_DONE_TAIL];
	for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
		if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
			rdp->nxttail[count] = &rdp->nxtlist;
	local_irq_restore(flags);

	/* Invoke callbacks. */
	count = 0;
	while (list) {
		next = list->next;
		prefetch(next);
1198
		debug_rcu_head_unqueue(list);
L
Lai Jiangshan 已提交
1199
		__rcu_reclaim(list);
1200 1201 1202 1203 1204 1205 1206 1207 1208
		list = next;
		if (++count >= rdp->blimit)
			break;
	}

	local_irq_save(flags);

	/* Update count, and requeue any remaining callbacks. */
	rdp->qlen -= count;
1209
	rdp->n_cbs_invoked += count;
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
	if (list != NULL) {
		*tail = rdp->nxtlist;
		rdp->nxtlist = list;
		for (count = 0; count < RCU_NEXT_SIZE; count++)
			if (&rdp->nxtlist == rdp->nxttail[count])
				rdp->nxttail[count] = tail;
			else
				break;
	}

	/* Reinstate batch limit if we have worked down the excess. */
	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
		rdp->blimit = blimit;

1224 1225 1226 1227 1228 1229 1230
	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
		rdp->qlen_last_fqs_check = 0;
		rdp->n_force_qs_snap = rsp->n_force_qs;
	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
		rdp->qlen_last_fqs_check = rdp->qlen;

1231 1232 1233 1234
	local_irq_restore(flags);

	/* Re-raise the RCU softirq if there are callbacks remaining. */
	if (cpu_has_callbacks_ready_to_invoke(rdp))
1235
		invoke_rcu_cpu_kthread();
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
}

/*
 * Check to see if this CPU is in a non-context-switch quiescent state
 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
 * Also schedule the RCU softirq handler.
 *
 * This function must be called with hardirqs disabled.  It is normally
 * invoked from the scheduling-clock interrupt.  If rcu_pending returns
 * false, there is no point in invoking rcu_check_callbacks().
 */
void rcu_check_callbacks(int cpu, int user)
{
	if (user ||
1250 1251
	    (idle_cpu(cpu) && rcu_scheduler_active &&
	     !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
1252 1253 1254 1255 1256

		/*
		 * Get here if this CPU took its interrupt from user
		 * mode or from the idle loop, and if this is not a
		 * nested interrupt.  In this case, the CPU is in
1257
		 * a quiescent state, so note it.
1258 1259
		 *
		 * No memory barrier is required here because both
1260 1261 1262
		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
		 * variables that other CPUs neither access nor modify,
		 * at least not while the corresponding CPU is online.
1263 1264
		 */

1265 1266
		rcu_sched_qs(cpu);
		rcu_bh_qs(cpu);
1267 1268 1269 1270 1271 1272 1273

	} else if (!in_softirq()) {

		/*
		 * Get here if this CPU did not take its interrupt from
		 * softirq, in other words, if it is not interrupting
		 * a rcu_bh read-side critical section.  This is an _bh
1274
		 * critical section, so note it.
1275 1276
		 */

1277
		rcu_bh_qs(cpu);
1278
	}
1279
	rcu_preempt_check_callbacks(cpu);
1280
	if (rcu_pending(cpu))
1281
		invoke_rcu_cpu_kthread();
1282 1283 1284 1285 1286 1287 1288
}

#ifdef CONFIG_SMP

/*
 * Scan the leaf rcu_node structures, processing dyntick state for any that
 * have not yet encountered a quiescent state, using the function specified.
1289 1290
 * Also initiate boosting for any threads blocked on the root rcu_node.
 *
1291
 * The caller must have suppressed start of new grace periods.
1292
 */
1293
static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1294 1295 1296 1297 1298
{
	unsigned long bit;
	int cpu;
	unsigned long flags;
	unsigned long mask;
1299
	struct rcu_node *rnp;
1300

1301
	rcu_for_each_leaf_node(rsp, rnp) {
1302
		mask = 0;
P
Paul E. McKenney 已提交
1303
		raw_spin_lock_irqsave(&rnp->lock, flags);
1304
		if (!rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
1305
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1306
			return;
1307
		}
1308
		if (rnp->qsmask == 0) {
1309
			rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
1310 1311
			continue;
		}
1312
		cpu = rnp->grplo;
1313
		bit = 1;
1314
		for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1315 1316
			if ((rnp->qsmask & bit) != 0 &&
			    f(per_cpu_ptr(rsp->rda, cpu)))
1317 1318
				mask |= bit;
		}
1319
		if (mask != 0) {
1320

P
Paul E. McKenney 已提交
1321 1322
			/* rcu_report_qs_rnp() releases rnp->lock. */
			rcu_report_qs_rnp(mask, rsp, rnp, flags);
1323 1324
			continue;
		}
P
Paul E. McKenney 已提交
1325
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1326
	}
1327
	rnp = rcu_get_root(rsp);
1328 1329 1330 1331
	if (rnp->qsmask == 0) {
		raw_spin_lock_irqsave(&rnp->lock, flags);
		rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
	}
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
}

/*
 * Force quiescent states on reluctant CPUs, and also detect which
 * CPUs are in dyntick-idle mode.
 */
static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
{
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);

1343
	if (!rcu_gp_in_progress(rsp))
1344
		return;  /* No grace period in progress, nothing to force. */
P
Paul E. McKenney 已提交
1345
	if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
1346 1347 1348
		rsp->n_force_qs_lh++; /* Inexact, can lose counts.  Tough! */
		return;	/* Someone else is already on the job. */
	}
1349
	if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
1350
		goto unlock_fqs_ret; /* no emergency and done recently. */
1351
	rsp->n_force_qs++;
P
Paul E. McKenney 已提交
1352
	raw_spin_lock(&rnp->lock);  /* irqs already disabled */
1353
	rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1354
	if(!rcu_gp_in_progress(rsp)) {
1355
		rsp->n_force_qs_ngp++;
P
Paul E. McKenney 已提交
1356
		raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */
1357
		goto unlock_fqs_ret;  /* no GP in progress, time updated. */
1358
	}
1359
	rsp->fqs_active = 1;
1360
	switch (rsp->signaled) {
1361
	case RCU_GP_IDLE:
1362 1363
	case RCU_GP_INIT:

1364
		break; /* grace period idle or initializing, ignore. */
1365 1366 1367 1368 1369

	case RCU_SAVE_DYNTICK:
		if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
			break; /* So gcc recognizes the dead code. */

L
Lai Jiangshan 已提交
1370 1371
		raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */

1372
		/* Record dyntick-idle state. */
1373
		force_qs_rnp(rsp, dyntick_save_progress_counter);
P
Paul E. McKenney 已提交
1374
		raw_spin_lock(&rnp->lock);  /* irqs already disabled */
1375
		if (rcu_gp_in_progress(rsp))
1376
			rsp->signaled = RCU_FORCE_QS;
1377
		break;
1378 1379 1380 1381

	case RCU_FORCE_QS:

		/* Check dyntick-idle state, send IPI to laggarts. */
P
Paul E. McKenney 已提交
1382
		raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */
1383
		force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1384 1385 1386

		/* Leave state in case more forcing is required. */

P
Paul E. McKenney 已提交
1387
		raw_spin_lock(&rnp->lock);  /* irqs already disabled */
1388
		break;
1389
	}
1390
	rsp->fqs_active = 0;
1391
	if (rsp->fqs_need_gp) {
P
Paul E. McKenney 已提交
1392
		raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
1393 1394 1395 1396
		rsp->fqs_need_gp = 0;
		rcu_start_gp(rsp, flags); /* releases rnp->lock */
		return;
	}
P
Paul E. McKenney 已提交
1397
	raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */
1398
unlock_fqs_ret:
P
Paul E. McKenney 已提交
1399
	raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
}

#else /* #ifdef CONFIG_SMP */

static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
{
	set_need_resched();
}

#endif /* #else #ifdef CONFIG_SMP */

/*
 * This does the RCU processing work from softirq context for the
 * specified rcu_state and rcu_data structures.  This may be called
 * only from the CPU to whom the rdp belongs.
 */
static void
__rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
{
	unsigned long flags;

1421 1422
	WARN_ON_ONCE(rdp->beenonline == 0);

1423 1424 1425 1426
	/*
	 * If an RCU GP has gone long enough, go check for dyntick
	 * idle CPUs and, if needed, send resched IPIs.
	 */
1427
	if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
		force_quiescent_state(rsp, 1);

	/*
	 * Advance callbacks in response to end of earlier grace
	 * period that some other CPU ended.
	 */
	rcu_process_gp_end(rsp, rdp);

	/* Update RCU state based on any recent quiescent states. */
	rcu_check_quiescent_state(rsp, rdp);

	/* Does this CPU require a not-yet-started grace period? */
	if (cpu_needs_another_gp(rsp, rdp)) {
P
Paul E. McKenney 已提交
1441
		raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1442 1443 1444 1445
		rcu_start_gp(rsp, flags);  /* releases above lock */
	}

	/* If there are callbacks ready, invoke them. */
1446
	rcu_do_batch(rsp, rdp);
1447 1448 1449 1450 1451
}

/*
 * Do softirq processing for the current CPU.
 */
1452
static void rcu_process_callbacks(void)
1453
{
1454 1455
	__rcu_process_callbacks(&rcu_sched_state,
				&__get_cpu_var(rcu_sched_data));
1456
	__rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1457
	rcu_preempt_process_callbacks();
1458 1459 1460

	/* If we are last CPU on way to dyntick-idle mode, accelerate it. */
	rcu_needs_cpu_flush();
1461 1462
}

1463 1464 1465 1466 1467 1468
/*
 * Wake up the current CPU's kthread.  This replaces raise_softirq()
 * in earlier versions of RCU.  Note that because we are running on
 * the current CPU with interrupts disabled, the rcu_cpu_kthread_task
 * cannot disappear out from under us.
 */
1469
static void invoke_rcu_cpu_kthread(void)
1470 1471 1472 1473
{
	unsigned long flags;

	local_irq_save(flags);
1474 1475
	__this_cpu_write(rcu_cpu_has_work, 1);
	if (__this_cpu_read(rcu_cpu_kthread_task) == NULL) {
1476 1477 1478
		local_irq_restore(flags);
		return;
	}
1479
	wake_up(&__get_cpu_var(rcu_cpu_wq));
1480 1481 1482
	local_irq_restore(flags);
}

1483 1484
/*
 * Wake up the specified per-rcu_node-structure kthread.
1485 1486
 * Because the per-rcu_node kthreads are immortal, we don't need
 * to do anything to keep them alive.
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
 */
static void invoke_rcu_node_kthread(struct rcu_node *rnp)
{
	struct task_struct *t;

	t = rnp->node_kthread_task;
	if (t != NULL)
		wake_up_process(t);
}

1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
/*
 * Set the specified CPU's kthread to run RT or not, as specified by
 * the to_rt argument.  The CPU-hotplug locks are held, so the task
 * is not going away.
 */
static void rcu_cpu_kthread_setrt(int cpu, int to_rt)
{
	int policy;
	struct sched_param sp;
	struct task_struct *t;

	t = per_cpu(rcu_cpu_kthread_task, cpu);
	if (t == NULL)
		return;
	if (to_rt) {
		policy = SCHED_FIFO;
		sp.sched_priority = RCU_KTHREAD_PRIO;
	} else {
		policy = SCHED_NORMAL;
		sp.sched_priority = 0;
	}
	sched_setscheduler_nocheck(t, policy, &sp);
}

1521 1522 1523
/*
 * Timer handler to initiate the waking up of per-CPU kthreads that
 * have yielded the CPU due to excess numbers of RCU callbacks.
1524 1525
 * We wake up the per-rcu_node kthread, which in turn will wake up
 * the booster kthread.
1526 1527 1528 1529
 */
static void rcu_cpu_kthread_timer(unsigned long arg)
{
	unsigned long flags;
1530
	struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, arg);
1531 1532 1533 1534 1535
	struct rcu_node *rnp = rdp->mynode;

	raw_spin_lock_irqsave(&rnp->lock, flags);
	rnp->wakemask |= rdp->grpmask;
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1536
	invoke_rcu_node_kthread(rnp);
1537 1538 1539 1540 1541 1542 1543 1544
}

/*
 * Drop to non-real-time priority and yield, but only after posting a
 * timer that will cause us to regain our real-time priority if we
 * remain preempted.  Either way, we restore our real-time priority
 * before returning.
 */
1545
static void rcu_yield(void (*f)(unsigned long), unsigned long arg)
1546 1547 1548 1549
{
	struct sched_param sp;
	struct timer_list yield_timer;

1550
	setup_timer_on_stack(&yield_timer, f, arg);
1551 1552 1553
	mod_timer(&yield_timer, jiffies + 2);
	sp.sched_priority = 0;
	sched_setscheduler_nocheck(current, SCHED_NORMAL, &sp);
1554
	set_user_nice(current, 19);
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
	schedule();
	sp.sched_priority = RCU_KTHREAD_PRIO;
	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
	del_timer(&yield_timer);
}

/*
 * Handle cases where the rcu_cpu_kthread() ends up on the wrong CPU.
 * This can happen while the corresponding CPU is either coming online
 * or going offline.  We cannot wait until the CPU is fully online
 * before starting the kthread, because the various notifier functions
 * can wait for RCU grace periods.  So we park rcu_cpu_kthread() until
 * the corresponding CPU is online.
 *
 * Return 1 if the kthread needs to stop, 0 otherwise.
 *
 * Caller must disable bh.  This function can momentarily enable it.
 */
static int rcu_cpu_kthread_should_stop(int cpu)
{
	while (cpu_is_offline(cpu) ||
	       !cpumask_equal(&current->cpus_allowed, cpumask_of(cpu)) ||
	       smp_processor_id() != cpu) {
		if (kthread_should_stop())
			return 1;
1580 1581
		per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
		per_cpu(rcu_cpu_kthread_cpu, cpu) = raw_smp_processor_id();
1582 1583 1584 1585 1586 1587
		local_bh_enable();
		schedule_timeout_uninterruptible(1);
		if (!cpumask_equal(&current->cpus_allowed, cpumask_of(cpu)))
			set_cpus_allowed_ptr(current, cpumask_of(cpu));
		local_bh_disable();
	}
1588
	per_cpu(rcu_cpu_kthread_cpu, cpu) = cpu;
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
	return 0;
}

/*
 * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
 * earlier RCU softirq.
 */
static int rcu_cpu_kthread(void *arg)
{
	int cpu = (int)(long)arg;
	unsigned long flags;
	int spincnt = 0;
1601
	unsigned int *statusp = &per_cpu(rcu_cpu_kthread_status, cpu);
1602 1603 1604 1605 1606
	wait_queue_head_t *wqp = &per_cpu(rcu_cpu_wq, cpu);
	char work;
	char *workp = &per_cpu(rcu_cpu_has_work, cpu);

	for (;;) {
1607
		*statusp = RCU_KTHREAD_WAITING;
1608 1609 1610 1611 1612 1613 1614
		wait_event_interruptible(*wqp,
					 *workp != 0 || kthread_should_stop());
		local_bh_disable();
		if (rcu_cpu_kthread_should_stop(cpu)) {
			local_bh_enable();
			break;
		}
1615
		*statusp = RCU_KTHREAD_RUNNING;
1616
		per_cpu(rcu_cpu_kthread_loops, cpu)++;
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
		local_irq_save(flags);
		work = *workp;
		*workp = 0;
		local_irq_restore(flags);
		if (work)
			rcu_process_callbacks();
		local_bh_enable();
		if (*workp != 0)
			spincnt++;
		else
			spincnt = 0;
		if (spincnt > 10) {
1629
			*statusp = RCU_KTHREAD_YIELDING;
1630
			rcu_yield(rcu_cpu_kthread_timer, (unsigned long)cpu);
1631 1632 1633
			spincnt = 0;
		}
	}
1634
	*statusp = RCU_KTHREAD_STOPPED;
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
	return 0;
}

/*
 * Spawn a per-CPU kthread, setting up affinity and priority.
 * Because the CPU hotplug lock is held, no other CPU will be attempting
 * to manipulate rcu_cpu_kthread_task.  There might be another CPU
 * attempting to access it during boot, but the locking in kthread_bind()
 * will enforce sufficient ordering.
 */
static int __cpuinit rcu_spawn_one_cpu_kthread(int cpu)
{
	struct sched_param sp;
	struct task_struct *t;

	if (!rcu_kthreads_spawnable ||
	    per_cpu(rcu_cpu_kthread_task, cpu) != NULL)
		return 0;
	t = kthread_create(rcu_cpu_kthread, (void *)(long)cpu, "rcuc%d", cpu);
	if (IS_ERR(t))
		return PTR_ERR(t);
	kthread_bind(t, cpu);
1657
	per_cpu(rcu_cpu_kthread_cpu, cpu) = cpu;
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
	WARN_ON_ONCE(per_cpu(rcu_cpu_kthread_task, cpu) != NULL);
	per_cpu(rcu_cpu_kthread_task, cpu) = t;
	wake_up_process(t);
	sp.sched_priority = RCU_KTHREAD_PRIO;
	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
	return 0;
}

/*
 * Per-rcu_node kthread, which is in charge of waking up the per-CPU
 * kthreads when needed.  We ignore requests to wake up kthreads
 * for offline CPUs, which is OK because force_quiescent_state()
 * takes care of this case.
 */
static int rcu_node_kthread(void *arg)
{
	int cpu;
	unsigned long flags;
	unsigned long mask;
	struct rcu_node *rnp = (struct rcu_node *)arg;
	struct sched_param sp;
	struct task_struct *t;

	for (;;) {
1682
		rnp->node_kthread_status = RCU_KTHREAD_WAITING;
1683
		wait_event_interruptible(rnp->node_wq, rnp->wakemask != 0);
1684
		rnp->node_kthread_status = RCU_KTHREAD_RUNNING;
1685 1686 1687
		raw_spin_lock_irqsave(&rnp->lock, flags);
		mask = rnp->wakemask;
		rnp->wakemask = 0;
1688
		rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
		for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1) {
			if ((mask & 0x1) == 0)
				continue;
			preempt_disable();
			t = per_cpu(rcu_cpu_kthread_task, cpu);
			if (!cpu_online(cpu) || t == NULL) {
				preempt_enable();
				continue;
			}
			per_cpu(rcu_cpu_has_work, cpu) = 1;
			sp.sched_priority = RCU_KTHREAD_PRIO;
			sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
			preempt_enable();
		}
	}
1704
	/* NOTREACHED */
1705
	rnp->node_kthread_status = RCU_KTHREAD_STOPPED;
1706 1707 1708 1709 1710
	return 0;
}

/*
 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1711 1712
 * served by the rcu_node in question.  The CPU hotplug lock is still
 * held, so the value of rnp->qsmaskinit will be stable.
1713 1714 1715 1716
 *
 * We don't include outgoingcpu in the affinity set, use -1 if there is
 * no outgoing CPU.  If there are no CPUs left in the affinity set,
 * this function allows the kthread to execute on any CPU.
1717
 */
1718
static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1719 1720 1721 1722 1723
{
	cpumask_var_t cm;
	int cpu;
	unsigned long mask = rnp->qsmaskinit;

1724
	if (rnp->node_kthread_task == NULL)
1725 1726 1727 1728 1729
		return;
	if (!alloc_cpumask_var(&cm, GFP_KERNEL))
		return;
	cpumask_clear(cm);
	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1730
		if ((mask & 0x1) && cpu != outgoingcpu)
1731
			cpumask_set_cpu(cpu, cm);
1732 1733 1734 1735 1736 1737
	if (cpumask_weight(cm) == 0) {
		cpumask_setall(cm);
		for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
			cpumask_clear_cpu(cpu, cm);
		WARN_ON_ONCE(cpumask_weight(cm) == 0);
	}
1738
	set_cpus_allowed_ptr(rnp->node_kthread_task, cm);
1739
	rcu_boost_kthread_setaffinity(rnp, cm);
1740 1741 1742 1743 1744
	free_cpumask_var(cm);
}

/*
 * Spawn a per-rcu_node kthread, setting priority and affinity.
1745 1746 1747
 * Called during boot before online/offline can happen, or, if
 * during runtime, with the main CPU-hotplug locks held.  So only
 * one of these can be executing at a time.
1748 1749 1750 1751
 */
static int __cpuinit rcu_spawn_one_node_kthread(struct rcu_state *rsp,
						struct rcu_node *rnp)
{
1752
	unsigned long flags;
1753 1754 1755 1756 1757
	int rnp_index = rnp - &rsp->node[0];
	struct sched_param sp;
	struct task_struct *t;

	if (!rcu_kthreads_spawnable ||
1758
	    rnp->qsmaskinit == 0)
1759
		return 0;
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
	if (rnp->node_kthread_task == NULL) {
		t = kthread_create(rcu_node_kthread, (void *)rnp,
				   "rcun%d", rnp_index);
		if (IS_ERR(t))
			return PTR_ERR(t);
		raw_spin_lock_irqsave(&rnp->lock, flags);
		rnp->node_kthread_task = t;
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		wake_up_process(t);
		sp.sched_priority = 99;
		sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
	}
	return rcu_spawn_one_boost_kthread(rsp, rnp, rnp_index);
1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
}

/*
 * Spawn all kthreads -- called as soon as the scheduler is running.
 */
static int __init rcu_spawn_kthreads(void)
{
	int cpu;
	struct rcu_node *rnp;

	rcu_kthreads_spawnable = 1;
	for_each_possible_cpu(cpu) {
		init_waitqueue_head(&per_cpu(rcu_cpu_wq, cpu));
		per_cpu(rcu_cpu_has_work, cpu) = 0;
		if (cpu_online(cpu))
			(void)rcu_spawn_one_cpu_kthread(cpu);
	}
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
	rnp = rcu_get_root(rcu_state);
	init_waitqueue_head(&rnp->node_wq);
	rcu_init_boost_waitqueue(rnp);
	(void)rcu_spawn_one_node_kthread(rcu_state, rnp);
	if (NUM_RCU_NODES > 1)
		rcu_for_each_leaf_node(rcu_state, rnp) {
			init_waitqueue_head(&rnp->node_wq);
			rcu_init_boost_waitqueue(rnp);
			(void)rcu_spawn_one_node_kthread(rcu_state, rnp);
		}
1800 1801 1802 1803
	return 0;
}
early_initcall(rcu_spawn_kthreads);

1804 1805 1806 1807 1808 1809 1810
static void
__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
	   struct rcu_state *rsp)
{
	unsigned long flags;
	struct rcu_data *rdp;

1811
	debug_rcu_head_queue(head);
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
	head->func = func;
	head->next = NULL;

	smp_mb(); /* Ensure RCU update seen before callback registry. */

	/*
	 * Opportunistically note grace-period endings and beginnings.
	 * Note that we might see a beginning right after we see an
	 * end, but never vice versa, since this CPU has to pass through
	 * a quiescent state betweentimes.
	 */
	local_irq_save(flags);
1824
	rdp = this_cpu_ptr(rsp->rda);
1825 1826 1827 1828

	/* Add the callback to our list. */
	*rdp->nxttail[RCU_NEXT_TAIL] = head;
	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1829 1830 1831 1832 1833 1834 1835
	rdp->qlen++;

	/* If interrupts were disabled, don't dive into RCU core. */
	if (irqs_disabled_flags(flags)) {
		local_irq_restore(flags);
		return;
	}
1836

1837 1838 1839 1840 1841 1842 1843
	/*
	 * Force the grace period if too many callbacks or too long waiting.
	 * Enforce hysteresis, and don't invoke force_quiescent_state()
	 * if some other CPU has recently done so.  Also, don't bother
	 * invoking force_quiescent_state() if the newly enqueued callback
	 * is the only one waiting for a grace period to complete.
	 */
1844
	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865

		/* Are we ignoring a completed grace period? */
		rcu_process_gp_end(rsp, rdp);
		check_for_new_grace_period(rsp, rdp);

		/* Start a new grace period if one not already started. */
		if (!rcu_gp_in_progress(rsp)) {
			unsigned long nestflag;
			struct rcu_node *rnp_root = rcu_get_root(rsp);

			raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
			rcu_start_gp(rsp, nestflag);  /* rlses rnp_root->lock */
		} else {
			/* Give the grace period a kick. */
			rdp->blimit = LONG_MAX;
			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
			    *rdp->nxttail[RCU_DONE_TAIL] != head)
				force_quiescent_state(rsp, 0);
			rdp->n_force_qs_snap = rsp->n_force_qs;
			rdp->qlen_last_fqs_check = rdp->qlen;
		}
1866
	} else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1867 1868 1869 1870 1871
		force_quiescent_state(rsp, 1);
	local_irq_restore(flags);
}

/*
1872
 * Queue an RCU-sched callback for invocation after a grace period.
1873
 */
1874
void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1875
{
1876
	__call_rcu(head, func, &rcu_sched_state);
1877
}
1878
EXPORT_SYMBOL_GPL(call_rcu_sched);
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888

/*
 * Queue an RCU for invocation after a quicker grace period.
 */
void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
	__call_rcu(head, func, &rcu_bh_state);
}
EXPORT_SYMBOL_GPL(call_rcu_bh);

1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
/**
 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu-sched
 * grace period has elapsed, in other words after all currently executing
 * rcu-sched read-side critical sections have completed.   These read-side
 * critical sections are delimited by rcu_read_lock_sched() and
 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
 * local_irq_disable(), and so on may be used in place of
 * rcu_read_lock_sched().
 *
 * This means that all preempt_disable code sequences, including NMI and
 * hardware-interrupt handlers, in progress on entry will have completed
 * before this primitive returns.  However, this does not guarantee that
 * softirq handlers will have completed, since in some kernels, these
 * handlers can run in process context, and can block.
 *
 * This primitive provides the guarantees made by the (now removed)
 * synchronize_kernel() API.  In contrast, synchronize_rcu() only
 * guarantees that rcu_read_lock() sections will have completed.
 * In "classic RCU", these two guarantees happen to be one and
 * the same, but can differ in realtime RCU implementations.
 */
void synchronize_sched(void)
{
	struct rcu_synchronize rcu;

	if (rcu_blocking_is_gp())
		return;

1919
	init_rcu_head_on_stack(&rcu.head);
1920 1921 1922 1923 1924
	init_completion(&rcu.completion);
	/* Will wake me after RCU finished. */
	call_rcu_sched(&rcu.head, wakeme_after_rcu);
	/* Wait for it. */
	wait_for_completion(&rcu.completion);
1925
	destroy_rcu_head_on_stack(&rcu.head);
1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
}
EXPORT_SYMBOL_GPL(synchronize_sched);

/**
 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu_bh grace
 * period has elapsed, in other words after all currently executing rcu_bh
 * read-side critical sections have completed.  RCU read-side critical
 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
 * and may be nested.
 */
void synchronize_rcu_bh(void)
{
	struct rcu_synchronize rcu;

	if (rcu_blocking_is_gp())
		return;

1945
	init_rcu_head_on_stack(&rcu.head);
1946 1947 1948 1949 1950
	init_completion(&rcu.completion);
	/* Will wake me after RCU finished. */
	call_rcu_bh(&rcu.head, wakeme_after_rcu);
	/* Wait for it. */
	wait_for_completion(&rcu.completion);
1951
	destroy_rcu_head_on_stack(&rcu.head);
1952 1953 1954
}
EXPORT_SYMBOL_GPL(synchronize_rcu_bh);

1955 1956 1957 1958 1959 1960 1961 1962 1963
/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, for the specified type of RCU, returning 1 if so.
 * The checks are in order of increasing expense: checks that can be
 * carried out against CPU-local state are performed first.  However,
 * we must check for CPU stalls first, else we might not get a chance.
 */
static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
{
1964 1965
	struct rcu_node *rnp = rdp->mynode;

1966 1967 1968 1969 1970 1971
	rdp->n_rcu_pending++;

	/* Check for CPU stalls, if enabled. */
	check_cpu_stall(rsp, rdp);

	/* Is the RCU core waiting for a quiescent state from this CPU? */
1972
	if (rdp->qs_pending && !rdp->passed_quiesc) {
1973 1974 1975 1976 1977 1978

		/*
		 * If force_quiescent_state() coming soon and this CPU
		 * needs a quiescent state, and this is either RCU-sched
		 * or RCU-bh, force a local reschedule.
		 */
1979
		rdp->n_rp_qs_pending++;
P
Paul E. McKenney 已提交
1980
		if (!rdp->preemptible &&
1981 1982 1983
		    ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
				 jiffies))
			set_need_resched();
1984 1985
	} else if (rdp->qs_pending && rdp->passed_quiesc) {
		rdp->n_rp_report_qs++;
1986
		return 1;
1987
	}
1988 1989

	/* Does this CPU have callbacks ready to invoke? */
1990 1991
	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
		rdp->n_rp_cb_ready++;
1992
		return 1;
1993
	}
1994 1995

	/* Has RCU gone idle with this CPU needing another grace period? */
1996 1997
	if (cpu_needs_another_gp(rsp, rdp)) {
		rdp->n_rp_cpu_needs_gp++;
1998
		return 1;
1999
	}
2000 2001

	/* Has another RCU grace period completed?  */
2002
	if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
2003
		rdp->n_rp_gp_completed++;
2004
		return 1;
2005
	}
2006 2007

	/* Has a new RCU grace period started? */
2008
	if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
2009
		rdp->n_rp_gp_started++;
2010
		return 1;
2011
	}
2012 2013

	/* Has an RCU GP gone long enough to send resched IPIs &c? */
2014
	if (rcu_gp_in_progress(rsp) &&
2015
	    ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
2016
		rdp->n_rp_need_fqs++;
2017
		return 1;
2018
	}
2019 2020

	/* nothing to do */
2021
	rdp->n_rp_need_nothing++;
2022 2023 2024 2025 2026 2027 2028 2029
	return 0;
}

/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, returning 1 if so.  This function is part of the
 * RCU implementation; it is -not- an exported member of the RCU API.
 */
2030
static int rcu_pending(int cpu)
2031
{
2032
	return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
2033 2034
	       __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
	       rcu_preempt_pending(cpu);
2035 2036 2037 2038 2039
}

/*
 * Check to see if any future RCU-related work will need to be done
 * by the current CPU, even if none need be done immediately, returning
2040
 * 1 if so.
2041
 */
2042
static int rcu_needs_cpu_quick_check(int cpu)
2043 2044
{
	/* RCU callbacks either ready or pending? */
2045
	return per_cpu(rcu_sched_data, cpu).nxtlist ||
2046 2047
	       per_cpu(rcu_bh_data, cpu).nxtlist ||
	       rcu_preempt_needs_cpu(cpu);
2048 2049
}

2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
static atomic_t rcu_barrier_cpu_count;
static DEFINE_MUTEX(rcu_barrier_mutex);
static struct completion rcu_barrier_completion;

static void rcu_barrier_callback(struct rcu_head *notused)
{
	if (atomic_dec_and_test(&rcu_barrier_cpu_count))
		complete(&rcu_barrier_completion);
}

/*
 * Called with preemption disabled, and from cross-cpu IRQ context.
 */
static void rcu_barrier_func(void *type)
{
	int cpu = smp_processor_id();
	struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
	void (*call_rcu_func)(struct rcu_head *head,
			      void (*func)(struct rcu_head *head));

	atomic_inc(&rcu_barrier_cpu_count);
	call_rcu_func = type;
	call_rcu_func(head, rcu_barrier_callback);
}

/*
 * Orchestrate the specified type of RCU barrier, waiting for all
 * RCU callbacks of the specified type to complete.
 */
2080 2081
static void _rcu_barrier(struct rcu_state *rsp,
			 void (*call_rcu_func)(struct rcu_head *head,
2082 2083 2084
					       void (*func)(struct rcu_head *head)))
{
	BUG_ON(in_interrupt());
2085
	/* Take mutex to serialize concurrent rcu_barrier() requests. */
2086 2087 2088 2089 2090 2091 2092 2093 2094
	mutex_lock(&rcu_barrier_mutex);
	init_completion(&rcu_barrier_completion);
	/*
	 * Initialize rcu_barrier_cpu_count to 1, then invoke
	 * rcu_barrier_func() on each CPU, so that each CPU also has
	 * incremented rcu_barrier_cpu_count.  Only then is it safe to
	 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
	 * might complete its grace period before all of the other CPUs
	 * did their increment, causing this function to return too
2095 2096 2097
	 * early.  Note that on_each_cpu() disables irqs, which prevents
	 * any CPUs from coming online or going offline until each online
	 * CPU has queued its RCU-barrier callback.
2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
	 */
	atomic_set(&rcu_barrier_cpu_count, 1);
	on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
	if (atomic_dec_and_test(&rcu_barrier_cpu_count))
		complete(&rcu_barrier_completion);
	wait_for_completion(&rcu_barrier_completion);
	mutex_unlock(&rcu_barrier_mutex);
}

/**
 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
 */
void rcu_barrier_bh(void)
{
2112
	_rcu_barrier(&rcu_bh_state, call_rcu_bh);
2113 2114 2115 2116 2117 2118 2119 2120
}
EXPORT_SYMBOL_GPL(rcu_barrier_bh);

/**
 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
 */
void rcu_barrier_sched(void)
{
2121
	_rcu_barrier(&rcu_sched_state, call_rcu_sched);
2122 2123 2124
}
EXPORT_SYMBOL_GPL(rcu_barrier_sched);

2125
/*
2126
 * Do boot-time initialization of a CPU's per-CPU RCU data.
2127
 */
2128 2129
static void __init
rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
2130 2131 2132
{
	unsigned long flags;
	int i;
2133
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2134 2135 2136
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
2137
	raw_spin_lock_irqsave(&rnp->lock, flags);
2138 2139 2140 2141 2142 2143 2144 2145 2146
	rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
	rdp->nxtlist = NULL;
	for (i = 0; i < RCU_NEXT_SIZE; i++)
		rdp->nxttail[i] = &rdp->nxtlist;
	rdp->qlen = 0;
#ifdef CONFIG_NO_HZ
	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
#endif /* #ifdef CONFIG_NO_HZ */
	rdp->cpu = cpu;
P
Paul E. McKenney 已提交
2147
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
2148 2149 2150 2151 2152 2153 2154
}

/*
 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
 * offline event can be happening at a given time.  Note also that we
 * can accept some slop in the rsp->completed access due to the fact
 * that this CPU cannot possibly have any RCU callbacks in flight yet.
2155
 */
2156
static void __cpuinit
P
Paul E. McKenney 已提交
2157
rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
2158 2159 2160
{
	unsigned long flags;
	unsigned long mask;
2161
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2162 2163 2164
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
2165
	raw_spin_lock_irqsave(&rnp->lock, flags);
2166 2167 2168
	rdp->passed_quiesc = 0;  /* We could be racing with new GP, */
	rdp->qs_pending = 1;	 /*  so set up to respond to current GP. */
	rdp->beenonline = 1;	 /* We have now been online. */
P
Paul E. McKenney 已提交
2169
	rdp->preemptible = preemptible;
2170 2171
	rdp->qlen_last_fqs_check = 0;
	rdp->n_force_qs_snap = rsp->n_force_qs;
2172
	rdp->blimit = blimit;
P
Paul E. McKenney 已提交
2173
	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
2174 2175 2176 2177 2178 2179 2180

	/*
	 * A new grace period might start here.  If so, we won't be part
	 * of it, but that is OK, as we are currently in a quiescent state.
	 */

	/* Exclude any attempts to start a new GP on large systems. */
P
Paul E. McKenney 已提交
2181
	raw_spin_lock(&rsp->onofflock);		/* irqs already disabled. */
2182 2183 2184 2185 2186 2187

	/* Add CPU to rcu_node bitmasks. */
	rnp = rdp->mynode;
	mask = rdp->grpmask;
	do {
		/* Exclude any attempts to start a new GP on small systems. */
P
Paul E. McKenney 已提交
2188
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
2189 2190
		rnp->qsmaskinit |= mask;
		mask = rnp->grpmask;
2191 2192 2193 2194 2195
		if (rnp == rdp->mynode) {
			rdp->gpnum = rnp->completed; /* if GP in progress... */
			rdp->completed = rnp->completed;
			rdp->passed_quiesc_completed = rnp->completed - 1;
		}
P
Paul E. McKenney 已提交
2196
		raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
2197 2198 2199
		rnp = rnp->parent;
	} while (rnp != NULL && !(rnp->qsmaskinit & mask));

P
Paul E. McKenney 已提交
2200
	raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2201 2202 2203 2204
}

static void __cpuinit rcu_online_cpu(int cpu)
{
2205 2206 2207
	rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
	rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
	rcu_preempt_init_percpu_data(cpu);
2208 2209
}

2210 2211
static void __cpuinit rcu_online_kthreads(int cpu)
{
2212
	struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2213 2214 2215 2216 2217 2218
	struct rcu_node *rnp = rdp->mynode;

	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
	if (rcu_kthreads_spawnable) {
		(void)rcu_spawn_one_cpu_kthread(cpu);
		if (rnp->node_kthread_task == NULL)
2219
			(void)rcu_spawn_one_node_kthread(rcu_state, rnp);
2220 2221 2222
	}
}

2223
/*
2224
 * Handle CPU online/offline notification events.
2225
 */
2226 2227
static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
				    unsigned long action, void *hcpu)
2228 2229
{
	long cpu = (long)hcpu;
2230
	struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2231
	struct rcu_node *rnp = rdp->mynode;
2232 2233 2234 2235 2236

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
		rcu_online_cpu(cpu);
2237 2238 2239
		rcu_online_kthreads(cpu);
		break;
	case CPU_ONLINE:
2240 2241
	case CPU_DOWN_FAILED:
		rcu_node_kthread_setaffinity(rnp, -1);
2242
		rcu_cpu_kthread_setrt(cpu, 1);
2243 2244 2245
		break;
	case CPU_DOWN_PREPARE:
		rcu_node_kthread_setaffinity(rnp, cpu);
2246
		rcu_cpu_kthread_setrt(cpu, 0);
2247
		break;
2248 2249 2250
	case CPU_DYING:
	case CPU_DYING_FROZEN:
		/*
2251 2252 2253
		 * The whole machine is "stopped" except this CPU, so we can
		 * touch any data without introducing corruption. We send the
		 * dying CPU's callbacks to an arbitrarily chosen online CPU.
2254
		 */
2255 2256 2257
		rcu_send_cbs_to_online(&rcu_bh_state);
		rcu_send_cbs_to_online(&rcu_sched_state);
		rcu_preempt_send_cbs_to_online();
2258
		break;
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
		rcu_offline_cpu(cpu);
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285
/*
 * This function is invoked towards the end of the scheduler's initialization
 * process.  Before this is called, the idle task might contain
 * RCU read-side critical sections (during which time, this idle
 * task is booting the system).  After this function is called, the
 * idle tasks are prohibited from containing RCU read-side critical
 * sections.  This function also enables RCU lockdep checking.
 */
void rcu_scheduler_starting(void)
{
	WARN_ON(num_online_cpus() != 1);
	WARN_ON(nr_context_switches() > 0);
	rcu_scheduler_active = 1;
}

2286 2287 2288 2289 2290 2291 2292 2293 2294
/*
 * Compute the per-level fanout, either using the exact fanout specified
 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
 */
#ifdef CONFIG_RCU_FANOUT_EXACT
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int i;

2295
	for (i = NUM_RCU_LVLS - 1; i > 0; i--)
2296
		rsp->levelspread[i] = CONFIG_RCU_FANOUT;
2297
	rsp->levelspread[0] = RCU_FANOUT_LEAF;
2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
}
#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int ccur;
	int cprv;
	int i;

	cprv = NR_CPUS;
	for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
		ccur = rsp->levelcnt[i];
		rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
		cprv = ccur;
	}
}
#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */

/*
 * Helper function for rcu_init() that initializes one rcu_state structure.
 */
2318 2319
static void __init rcu_init_one(struct rcu_state *rsp,
		struct rcu_data __percpu *rda)
2320
{
2321 2322 2323 2324
	static char *buf[] = { "rcu_node_level_0",
			       "rcu_node_level_1",
			       "rcu_node_level_2",
			       "rcu_node_level_3" };  /* Match MAX_RCU_LVLS */
2325 2326 2327 2328 2329
	int cpustride = 1;
	int i;
	int j;
	struct rcu_node *rnp;

2330 2331
	BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */

2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
	/* Initialize the level-tracking arrays. */

	for (i = 1; i < NUM_RCU_LVLS; i++)
		rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
	rcu_init_levelspread(rsp);

	/* Initialize the elements themselves, starting from the leaves. */

	for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
		cpustride *= rsp->levelspread[i];
		rnp = rsp->level[i];
		for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
P
Paul E. McKenney 已提交
2344
			raw_spin_lock_init(&rnp->lock);
2345 2346
			lockdep_set_class_and_name(&rnp->lock,
						   &rcu_node_class[i], buf[i]);
2347
			rnp->gpnum = 0;
2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364
			rnp->qsmask = 0;
			rnp->qsmaskinit = 0;
			rnp->grplo = j * cpustride;
			rnp->grphi = (j + 1) * cpustride - 1;
			if (rnp->grphi >= NR_CPUS)
				rnp->grphi = NR_CPUS - 1;
			if (i == 0) {
				rnp->grpnum = 0;
				rnp->grpmask = 0;
				rnp->parent = NULL;
			} else {
				rnp->grpnum = j % rsp->levelspread[i - 1];
				rnp->grpmask = 1UL << rnp->grpnum;
				rnp->parent = rsp->level[i - 1] +
					      j / rsp->levelspread[i - 1];
			}
			rnp->level = i;
2365
			INIT_LIST_HEAD(&rnp->blkd_tasks);
2366 2367
		}
	}
2368

2369
	rsp->rda = rda;
2370 2371
	rnp = rsp->level[NUM_RCU_LVLS - 1];
	for_each_possible_cpu(i) {
2372
		while (i > rnp->grphi)
2373
			rnp++;
2374
		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
2375 2376
		rcu_boot_init_percpu_data(i, rsp);
	}
2377 2378
}

2379
void __init rcu_init(void)
2380
{
P
Paul E. McKenney 已提交
2381
	int cpu;
2382

2383
	rcu_bootup_announce();
2384 2385
	rcu_init_one(&rcu_sched_state, &rcu_sched_data);
	rcu_init_one(&rcu_bh_state, &rcu_bh_data);
2386
	__rcu_init_preempt();
2387 2388 2389 2390 2391 2392 2393

	/*
	 * We don't need protection against CPU-hotplug here because
	 * this is called early in boot, before either interrupts
	 * or the scheduler are operational.
	 */
	cpu_notifier(rcu_cpu_notify, 0);
P
Paul E. McKenney 已提交
2394 2395
	for_each_online_cpu(cpu)
		rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
2396
	check_cpu_stall_init();
2397 2398
}

2399
#include "rcutree_plugin.h"