slub.c 133.8 KB
Newer Older
C
Christoph Lameter 已提交
1 2 3 4
/*
 * SLUB: A slab allocator that limits cache line use instead of queuing
 * objects in per cpu and per node lists.
 *
5 6
 * The allocator synchronizes using per slab locks or atomic operatios
 * and only uses a centralized lock to manage a pool of partial slabs.
C
Christoph Lameter 已提交
7
 *
C
Christoph Lameter 已提交
8
 * (C) 2007 SGI, Christoph Lameter
9
 * (C) 2011 Linux Foundation, Christoph Lameter
C
Christoph Lameter 已提交
10 11 12
 */

#include <linux/mm.h>
N
Nick Piggin 已提交
13
#include <linux/swap.h> /* struct reclaim_state */
C
Christoph Lameter 已提交
14 15 16 17 18
#include <linux/module.h>
#include <linux/bit_spinlock.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/slab.h>
19
#include "slab.h"
20
#include <linux/proc_fs.h>
21
#include <linux/notifier.h>
C
Christoph Lameter 已提交
22
#include <linux/seq_file.h>
23
#include <linux/kasan.h>
V
Vegard Nossum 已提交
24
#include <linux/kmemcheck.h>
C
Christoph Lameter 已提交
25 26 27 28
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/mempolicy.h>
#include <linux/ctype.h>
29
#include <linux/debugobjects.h>
C
Christoph Lameter 已提交
30
#include <linux/kallsyms.h>
31
#include <linux/memory.h>
R
Roman Zippel 已提交
32
#include <linux/math64.h>
A
Akinobu Mita 已提交
33
#include <linux/fault-inject.h>
34
#include <linux/stacktrace.h>
35
#include <linux/prefetch.h>
36
#include <linux/memcontrol.h>
C
Christoph Lameter 已提交
37

38 39
#include <trace/events/kmem.h>

40 41
#include "internal.h"

C
Christoph Lameter 已提交
42 43
/*
 * Lock order:
44
 *   1. slab_mutex (Global Mutex)
45 46
 *   2. node->list_lock
 *   3. slab_lock(page) (Only on some arches and for debugging)
C
Christoph Lameter 已提交
47
 *
48
 *   slab_mutex
49
 *
50
 *   The role of the slab_mutex is to protect the list of all the slabs
51 52 53 54 55 56 57 58 59 60 61 62 63 64
 *   and to synchronize major metadata changes to slab cache structures.
 *
 *   The slab_lock is only used for debugging and on arches that do not
 *   have the ability to do a cmpxchg_double. It only protects the second
 *   double word in the page struct. Meaning
 *	A. page->freelist	-> List of object free in a page
 *	B. page->counters	-> Counters of objects
 *	C. page->frozen		-> frozen state
 *
 *   If a slab is frozen then it is exempt from list management. It is not
 *   on any list. The processor that froze the slab is the one who can
 *   perform list operations on the page. Other processors may put objects
 *   onto the freelist but the processor that froze the slab is the only
 *   one that can retrieve the objects from the page's freelist.
C
Christoph Lameter 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
 *
 *   The list_lock protects the partial and full list on each node and
 *   the partial slab counter. If taken then no new slabs may be added or
 *   removed from the lists nor make the number of partial slabs be modified.
 *   (Note that the total number of slabs is an atomic value that may be
 *   modified without taking the list lock).
 *
 *   The list_lock is a centralized lock and thus we avoid taking it as
 *   much as possible. As long as SLUB does not have to handle partial
 *   slabs, operations can continue without any centralized lock. F.e.
 *   allocating a long series of objects that fill up slabs does not require
 *   the list lock.
 *   Interrupts are disabled during allocation and deallocation in order to
 *   make the slab allocator safe to use in the context of an irq. In addition
 *   interrupts are disabled to ensure that the processor does not change
 *   while handling per_cpu slabs, due to kernel preemption.
 *
 * SLUB assigns one slab for allocation to each processor.
 * Allocations only occur from these slabs called cpu slabs.
 *
C
Christoph Lameter 已提交
85 86
 * Slabs with free elements are kept on a partial list and during regular
 * operations no list for full slabs is used. If an object in a full slab is
C
Christoph Lameter 已提交
87
 * freed then the slab will show up again on the partial lists.
C
Christoph Lameter 已提交
88 89
 * We track full slabs for debugging purposes though because otherwise we
 * cannot scan all objects.
C
Christoph Lameter 已提交
90 91 92 93 94 95 96
 *
 * Slabs are freed when they become empty. Teardown and setup is
 * minimal so we rely on the page allocators per cpu caches for
 * fast frees and allocs.
 *
 * Overloading of page flags that are otherwise used for LRU management.
 *
97 98 99 100 101 102 103 104 105 106 107 108
 * PageActive 		The slab is frozen and exempt from list processing.
 * 			This means that the slab is dedicated to a purpose
 * 			such as satisfying allocations for a specific
 * 			processor. Objects may be freed in the slab while
 * 			it is frozen but slab_free will then skip the usual
 * 			list operations. It is up to the processor holding
 * 			the slab to integrate the slab into the slab lists
 * 			when the slab is no longer needed.
 *
 * 			One use of this flag is to mark slabs that are
 * 			used for allocations. Then such a slab becomes a cpu
 * 			slab. The cpu slab may be equipped with an additional
109
 * 			freelist that allows lockless access to
110 111
 * 			free objects in addition to the regular freelist
 * 			that requires the slab lock.
C
Christoph Lameter 已提交
112 113 114
 *
 * PageError		Slab requires special handling due to debug
 * 			options set. This moves	slab handling out of
115
 * 			the fast path and disables lockless freelists.
C
Christoph Lameter 已提交
116 117
 */

118 119
static inline int kmem_cache_debug(struct kmem_cache *s)
{
120
#ifdef CONFIG_SLUB_DEBUG
121
	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
122
#else
123
	return 0;
124
#endif
125
}
126

J
Joonsoo Kim 已提交
127 128 129 130 131 132 133 134
static inline void *fixup_red_left(struct kmem_cache *s, void *p)
{
	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
		p += s->red_left_pad;

	return p;
}

135 136 137 138 139 140 141 142 143
static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_CPU_PARTIAL
	return !kmem_cache_debug(s);
#else
	return false;
#endif
}

C
Christoph Lameter 已提交
144 145 146 147 148 149 150 151 152 153 154
/*
 * Issues still to be resolved:
 *
 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 *
 * - Variable sizing of the per node arrays
 */

/* Enable to test recovery from slab corruption on boot */
#undef SLUB_RESILIENCY_TEST

155 156 157
/* Enable to log cmpxchg failures */
#undef SLUB_DEBUG_CMPXCHG

158 159 160 161
/*
 * Mininum number of partial slabs. These will be left on the partial
 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 */
C
Christoph Lameter 已提交
162
#define MIN_PARTIAL 5
C
Christoph Lameter 已提交
163

164 165 166
/*
 * Maximum number of desirable partial slabs.
 * The existence of more partial slabs makes kmem_cache_shrink
Z
Zhi Yong Wu 已提交
167
 * sort the partial list by the number of objects in use.
168 169 170
 */
#define MAX_PARTIAL 10

171
#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
C
Christoph Lameter 已提交
172
				SLAB_POISON | SLAB_STORE_USER)
C
Christoph Lameter 已提交
173

174 175 176 177 178 179 180 181
/*
 * These debug flags cannot use CMPXCHG because there might be consistency
 * issues when checking or reading debug information
 */
#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
				SLAB_TRACE)


182
/*
183 184 185
 * Debugging flags that require metadata to be stored in the slab.  These get
 * disabled when slub_debug=O is used and a cache's min order increases with
 * metadata.
186
 */
187
#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
188

189 190
#define OO_SHIFT	16
#define OO_MASK		((1 << OO_SHIFT) - 1)
191
#define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
192

C
Christoph Lameter 已提交
193
/* Internal SLUB flags */
C
Christoph Lameter 已提交
194
#define __OBJECT_POISON		0x80000000UL /* Poison object */
195
#define __CMPXCHG_DOUBLE	0x40000000UL /* Use cmpxchg_double */
C
Christoph Lameter 已提交
196 197 198 199 200

#ifdef CONFIG_SMP
static struct notifier_block slab_notifier;
#endif

201 202 203
/*
 * Tracking user of a slab.
 */
204
#define TRACK_ADDRS_COUNT 16
205
struct track {
206
	unsigned long addr;	/* Called from address */
207 208 209
#ifdef CONFIG_STACKTRACE
	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
#endif
210 211 212 213 214 215 216
	int cpu;		/* Was running on cpu */
	int pid;		/* Pid context */
	unsigned long when;	/* When did the operation occur */
};

enum track_item { TRACK_ALLOC, TRACK_FREE };

217
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
218 219
static int sysfs_slab_add(struct kmem_cache *);
static int sysfs_slab_alias(struct kmem_cache *, const char *);
220
static void memcg_propagate_slab_attrs(struct kmem_cache *s);
C
Christoph Lameter 已提交
221
#else
222 223 224
static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
							{ return 0; }
225
static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
C
Christoph Lameter 已提交
226 227
#endif

228
static inline void stat(const struct kmem_cache *s, enum stat_item si)
229 230
{
#ifdef CONFIG_SLUB_STATS
231 232 233 234 235
	/*
	 * The rmw is racy on a preemptible kernel but this is acceptable, so
	 * avoid this_cpu_add()'s irq-disable overhead.
	 */
	raw_cpu_inc(s->cpu_slab->stat[si]);
236 237 238
#endif
}

C
Christoph Lameter 已提交
239 240 241 242
/********************************************************************
 * 			Core slab cache functions
 *******************************************************************/

243 244 245 246 247
static inline void *get_freepointer(struct kmem_cache *s, void *object)
{
	return *(void **)(object + s->offset);
}

248 249 250 251 252
static void prefetch_freepointer(const struct kmem_cache *s, void *object)
{
	prefetch(object + s->offset);
}

253 254 255 256 257 258 259 260 261 262 263 264
static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
{
	void *p;

#ifdef CONFIG_DEBUG_PAGEALLOC
	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
#else
	p = get_freepointer(s, object);
#endif
	return p;
}

265 266 267 268 269 270
static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
{
	*(void **)(object + s->offset) = fp;
}

/* Loop over all objects in a slab */
271
#define for_each_object(__p, __s, __addr, __objects) \
J
Joonsoo Kim 已提交
272 273 274
	for (__p = fixup_red_left(__s, __addr); \
		__p < (__addr) + (__objects) * (__s)->size; \
		__p += (__s)->size)
275

276
#define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
J
Joonsoo Kim 已提交
277 278 279
	for (__p = fixup_red_left(__s, __addr), __idx = 1; \
		__idx <= __objects; \
		__p += (__s)->size, __idx++)
280

281 282 283 284 285 286
/* Determine object index from a given position */
static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
{
	return (p - addr) / s->size;
}

287 288 289 290 291
static inline int order_objects(int order, unsigned long size, int reserved)
{
	return ((PAGE_SIZE << order) - reserved) / size;
}

292
static inline struct kmem_cache_order_objects oo_make(int order,
293
		unsigned long size, int reserved)
294 295
{
	struct kmem_cache_order_objects x = {
296
		(order << OO_SHIFT) + order_objects(order, size, reserved)
297 298 299 300 301 302 303
	};

	return x;
}

static inline int oo_order(struct kmem_cache_order_objects x)
{
304
	return x.x >> OO_SHIFT;
305 306 307 308
}

static inline int oo_objects(struct kmem_cache_order_objects x)
{
309
	return x.x & OO_MASK;
310 311
}

312 313 314 315 316
/*
 * Per slab locking using the pagelock
 */
static __always_inline void slab_lock(struct page *page)
{
317
	VM_BUG_ON_PAGE(PageTail(page), page);
318 319 320 321 322
	bit_spin_lock(PG_locked, &page->flags);
}

static __always_inline void slab_unlock(struct page *page)
{
323
	VM_BUG_ON_PAGE(PageTail(page), page);
324 325 326
	__bit_spin_unlock(PG_locked, &page->flags);
}

327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
{
	struct page tmp;
	tmp.counters = counters_new;
	/*
	 * page->counters can cover frozen/inuse/objects as well
	 * as page->_count.  If we assign to ->counters directly
	 * we run the risk of losing updates to page->_count, so
	 * be careful and only assign to the fields we need.
	 */
	page->frozen  = tmp.frozen;
	page->inuse   = tmp.inuse;
	page->objects = tmp.objects;
}

342 343 344 345 346 347 348
/* Interrupts must be disabled (for the fallback code to work right) */
static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
	VM_BUG_ON(!irqs_disabled());
349 350
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
351
	if (s->flags & __CMPXCHG_DOUBLE) {
352
		if (cmpxchg_double(&page->freelist, &page->counters,
353 354
				   freelist_old, counters_old,
				   freelist_new, counters_new))
355
			return true;
356 357 358 359
	} else
#endif
	{
		slab_lock(page);
360 361
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
362
			page->freelist = freelist_new;
363
			set_page_slub_counters(page, counters_new);
364
			slab_unlock(page);
365
			return true;
366 367 368 369 370 371 372 373
		}
		slab_unlock(page);
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
374
	pr_info("%s %s: cmpxchg double redo ", n, s->name);
375 376
#endif

377
	return false;
378 379
}

380 381 382 383 384
static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
385 386
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
387
	if (s->flags & __CMPXCHG_DOUBLE) {
388
		if (cmpxchg_double(&page->freelist, &page->counters,
389 390
				   freelist_old, counters_old,
				   freelist_new, counters_new))
391
			return true;
392 393 394
	} else
#endif
	{
395 396 397
		unsigned long flags;

		local_irq_save(flags);
398
		slab_lock(page);
399 400
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
401
			page->freelist = freelist_new;
402
			set_page_slub_counters(page, counters_new);
403
			slab_unlock(page);
404
			local_irq_restore(flags);
405
			return true;
406
		}
407
		slab_unlock(page);
408
		local_irq_restore(flags);
409 410 411 412 413 414
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
415
	pr_info("%s %s: cmpxchg double redo ", n, s->name);
416 417
#endif

418
	return false;
419 420
}

C
Christoph Lameter 已提交
421
#ifdef CONFIG_SLUB_DEBUG
422 423 424
/*
 * Determine a map of object in use on a page.
 *
425
 * Node listlock must be held to guarantee that the page does
426 427 428 429 430 431 432 433 434 435 436
 * not vanish from under us.
 */
static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
{
	void *p;
	void *addr = page_address(page);

	for (p = page->freelist; p; p = get_freepointer(s, p))
		set_bit(slab_index(p, s, addr), map);
}

J
Joonsoo Kim 已提交
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
static inline int size_from_object(struct kmem_cache *s)
{
	if (s->flags & SLAB_RED_ZONE)
		return s->size - s->red_left_pad;

	return s->size;
}

static inline void *restore_red_left(struct kmem_cache *s, void *p)
{
	if (s->flags & SLAB_RED_ZONE)
		p -= s->red_left_pad;

	return p;
}

C
Christoph Lameter 已提交
453 454 455
/*
 * Debug settings:
 */
456
#if defined(CONFIG_SLUB_DEBUG_ON)
457
static int slub_debug = DEBUG_DEFAULT_FLAGS;
458 459
#elif defined(CONFIG_KASAN)
static int slub_debug = SLAB_STORE_USER;
460
#else
C
Christoph Lameter 已提交
461
static int slub_debug;
462
#endif
C
Christoph Lameter 已提交
463 464

static char *slub_debug_slabs;
465
static int disable_higher_order_debug;
C
Christoph Lameter 已提交
466

467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
/*
 * slub is about to manipulate internal object metadata.  This memory lies
 * outside the range of the allocated object, so accessing it would normally
 * be reported by kasan as a bounds error.  metadata_access_enable() is used
 * to tell kasan that these accesses are OK.
 */
static inline void metadata_access_enable(void)
{
	kasan_disable_current();
}

static inline void metadata_access_disable(void)
{
	kasan_enable_current();
}

C
Christoph Lameter 已提交
483 484 485
/*
 * Object debugging
 */
J
Joonsoo Kim 已提交
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505

/* Verify that a pointer has an address that is valid within a slab page */
static inline int check_valid_pointer(struct kmem_cache *s,
				struct page *page, void *object)
{
	void *base;

	if (!object)
		return 1;

	base = page_address(page);
	object = restore_red_left(s, object);
	if (object < base || object >= base + page->objects * s->size ||
		(object - base) % s->size) {
		return 0;
	}

	return 1;
}

C
Christoph Lameter 已提交
506 507
static void print_section(char *text, u8 *addr, unsigned int length)
{
508
	metadata_access_enable();
509 510
	print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
			length, 1);
511
	metadata_access_disable();
C
Christoph Lameter 已提交
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
}

static struct track *get_track(struct kmem_cache *s, void *object,
	enum track_item alloc)
{
	struct track *p;

	if (s->offset)
		p = object + s->offset + sizeof(void *);
	else
		p = object + s->inuse;

	return p + alloc;
}

static void set_track(struct kmem_cache *s, void *object,
528
			enum track_item alloc, unsigned long addr)
C
Christoph Lameter 已提交
529
{
A
Akinobu Mita 已提交
530
	struct track *p = get_track(s, object, alloc);
C
Christoph Lameter 已提交
531 532

	if (addr) {
533 534 535 536 537 538 539 540
#ifdef CONFIG_STACKTRACE
		struct stack_trace trace;
		int i;

		trace.nr_entries = 0;
		trace.max_entries = TRACK_ADDRS_COUNT;
		trace.entries = p->addrs;
		trace.skip = 3;
541
		metadata_access_enable();
542
		save_stack_trace(&trace);
543
		metadata_access_disable();
544 545 546 547 548 549 550 551 552

		/* See rant in lockdep.c */
		if (trace.nr_entries != 0 &&
		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
			trace.nr_entries--;

		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
			p->addrs[i] = 0;
#endif
C
Christoph Lameter 已提交
553 554
		p->addr = addr;
		p->cpu = smp_processor_id();
A
Alexey Dobriyan 已提交
555
		p->pid = current->pid;
C
Christoph Lameter 已提交
556 557 558 559 560 561 562
		p->when = jiffies;
	} else
		memset(p, 0, sizeof(struct track));
}

static void init_tracking(struct kmem_cache *s, void *object)
{
563 564 565
	if (!(s->flags & SLAB_STORE_USER))
		return;

566 567
	set_track(s, object, TRACK_FREE, 0UL);
	set_track(s, object, TRACK_ALLOC, 0UL);
C
Christoph Lameter 已提交
568 569 570 571 572 573 574
}

static void print_track(const char *s, struct track *t)
{
	if (!t->addr)
		return;

575 576
	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
	       s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
577 578 579 580 581
#ifdef CONFIG_STACKTRACE
	{
		int i;
		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
			if (t->addrs[i])
582
				pr_err("\t%pS\n", (void *)t->addrs[i]);
583 584 585 586
			else
				break;
	}
#endif
587 588 589 590 591 592 593 594 595 596 597 598 599
}

static void print_tracking(struct kmem_cache *s, void *object)
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
	print_track("Freed", get_track(s, object, TRACK_FREE));
}

static void print_page_info(struct page *page)
{
600
	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
601
	       page, page->objects, page->inuse, page->freelist, page->flags);
602 603 604 605 606

}

static void slab_bug(struct kmem_cache *s, char *fmt, ...)
{
607
	struct va_format vaf;
608 609 610
	va_list args;

	va_start(args, fmt);
611 612
	vaf.fmt = fmt;
	vaf.va = &args;
613
	pr_err("=============================================================================\n");
614
	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
615
	pr_err("-----------------------------------------------------------------------------\n\n");
616

617
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
618
	va_end(args);
C
Christoph Lameter 已提交
619 620
}

621 622
static void slab_fix(struct kmem_cache *s, char *fmt, ...)
{
623
	struct va_format vaf;
624 625 626
	va_list args;

	va_start(args, fmt);
627 628 629
	vaf.fmt = fmt;
	vaf.va = &args;
	pr_err("FIX %s: %pV\n", s->name, &vaf);
630 631 632 633
	va_end(args);
}

static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
C
Christoph Lameter 已提交
634 635
{
	unsigned int off;	/* Offset of last byte */
636
	u8 *addr = page_address(page);
637 638 639 640 641

	print_tracking(s, p);

	print_page_info(page);

642 643
	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
	       p, p - addr, get_freepointer(s, p));
644

J
Joonsoo Kim 已提交
645 646 647
	if (s->flags & SLAB_RED_ZONE)
		print_section("Redzone ", p - s->red_left_pad, s->red_left_pad);
	else if (p > addr + 16)
648
		print_section("Bytes b4 ", p - 16, 16);
C
Christoph Lameter 已提交
649

650
	print_section("Object ", p, min_t(unsigned long, s->object_size,
651
				PAGE_SIZE));
C
Christoph Lameter 已提交
652
	if (s->flags & SLAB_RED_ZONE)
653 654
		print_section("Redzone ", p + s->object_size,
			s->inuse - s->object_size);
C
Christoph Lameter 已提交
655 656 657 658 659 660

	if (s->offset)
		off = s->offset + sizeof(void *);
	else
		off = s->inuse;

661
	if (s->flags & SLAB_STORE_USER)
C
Christoph Lameter 已提交
662 663
		off += 2 * sizeof(struct track);

J
Joonsoo Kim 已提交
664
	if (off != size_from_object(s))
C
Christoph Lameter 已提交
665
		/* Beginning of the filler is the free pointer */
J
Joonsoo Kim 已提交
666
		print_section("Padding ", p + off, size_from_object(s) - off);
667 668

	dump_stack();
C
Christoph Lameter 已提交
669 670
}

671
void object_err(struct kmem_cache *s, struct page *page,
C
Christoph Lameter 已提交
672 673
			u8 *object, char *reason)
{
674
	slab_bug(s, "%s", reason);
675
	print_trailer(s, page, object);
C
Christoph Lameter 已提交
676 677
}

678 679
static void slab_err(struct kmem_cache *s, struct page *page,
			const char *fmt, ...)
C
Christoph Lameter 已提交
680 681 682 683
{
	va_list args;
	char buf[100];

684 685
	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
C
Christoph Lameter 已提交
686
	va_end(args);
687
	slab_bug(s, "%s", buf);
688
	print_page_info(page);
C
Christoph Lameter 已提交
689 690 691
	dump_stack();
}

692
static void init_object(struct kmem_cache *s, void *object, u8 val)
C
Christoph Lameter 已提交
693 694 695
{
	u8 *p = object;

J
Joonsoo Kim 已提交
696 697 698
	if (s->flags & SLAB_RED_ZONE)
		memset(p - s->red_left_pad, val, s->red_left_pad);

C
Christoph Lameter 已提交
699
	if (s->flags & __OBJECT_POISON) {
700 701
		memset(p, POISON_FREE, s->object_size - 1);
		p[s->object_size - 1] = POISON_END;
C
Christoph Lameter 已提交
702 703 704
	}

	if (s->flags & SLAB_RED_ZONE)
705
		memset(p + s->object_size, val, s->inuse - s->object_size);
C
Christoph Lameter 已提交
706 707
}

708 709 710 711 712 713 714 715 716
static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
						void *from, void *to)
{
	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
	memset(from, data, to - from);
}

static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
			u8 *object, char *what,
P
Pekka Enberg 已提交
717
			u8 *start, unsigned int value, unsigned int bytes)
718 719 720 721
{
	u8 *fault;
	u8 *end;

722
	metadata_access_enable();
723
	fault = memchr_inv(start, value, bytes);
724
	metadata_access_disable();
725 726 727 728 729 730 731 732
	if (!fault)
		return 1;

	end = start + bytes;
	while (end > fault && end[-1] == value)
		end--;

	slab_bug(s, "%s overwritten", what);
733
	pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
734 735 736 737 738
					fault, end - 1, fault[0], value);
	print_trailer(s, page, object);

	restore_bytes(s, what, value, fault, end);
	return 0;
C
Christoph Lameter 已提交
739 740 741 742 743 744 745 746 747
}

/*
 * Object layout:
 *
 * object address
 * 	Bytes of the object to be managed.
 * 	If the freepointer may overlay the object then the free
 * 	pointer is the first word of the object.
C
Christoph Lameter 已提交
748
 *
C
Christoph Lameter 已提交
749 750 751
 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
 * 	0xa5 (POISON_END)
 *
752
 * object + s->object_size
C
Christoph Lameter 已提交
753
 * 	Padding to reach word boundary. This is also used for Redzoning.
C
Christoph Lameter 已提交
754
 * 	Padding is extended by another word if Redzoning is enabled and
755
 * 	object_size == inuse.
C
Christoph Lameter 已提交
756
 *
C
Christoph Lameter 已提交
757 758 759 760
 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 * 	0xcc (RED_ACTIVE) for objects in use.
 *
 * object + s->inuse
C
Christoph Lameter 已提交
761 762
 * 	Meta data starts here.
 *
C
Christoph Lameter 已提交
763 764
 * 	A. Free pointer (if we cannot overwrite object on free)
 * 	B. Tracking data for SLAB_STORE_USER
C
Christoph Lameter 已提交
765
 * 	C. Padding to reach required alignment boundary or at mininum
C
Christoph Lameter 已提交
766
 * 		one word if debugging is on to be able to detect writes
C
Christoph Lameter 已提交
767 768 769
 * 		before the word boundary.
 *
 *	Padding is done using 0x5a (POISON_INUSE)
C
Christoph Lameter 已提交
770 771
 *
 * object + s->size
C
Christoph Lameter 已提交
772
 * 	Nothing is used beyond s->size.
C
Christoph Lameter 已提交
773
 *
774
 * If slabcaches are merged then the object_size and inuse boundaries are mostly
C
Christoph Lameter 已提交
775
 * ignored. And therefore no slab options that rely on these boundaries
C
Christoph Lameter 已提交
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
 * may be used with merged slabcaches.
 */

static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
{
	unsigned long off = s->inuse;	/* The end of info */

	if (s->offset)
		/* Freepointer is placed after the object. */
		off += sizeof(void *);

	if (s->flags & SLAB_STORE_USER)
		/* We also have user information there */
		off += 2 * sizeof(struct track);

J
Joonsoo Kim 已提交
791
	if (size_from_object(s) == off)
C
Christoph Lameter 已提交
792 793
		return 1;

794
	return check_bytes_and_report(s, page, p, "Object padding",
J
Joonsoo Kim 已提交
795
			p + off, POISON_INUSE, size_from_object(s) - off);
C
Christoph Lameter 已提交
796 797
}

798
/* Check the pad bytes at the end of a slab page */
C
Christoph Lameter 已提交
799 800
static int slab_pad_check(struct kmem_cache *s, struct page *page)
{
801 802 803 804 805
	u8 *start;
	u8 *fault;
	u8 *end;
	int length;
	int remainder;
C
Christoph Lameter 已提交
806 807 808 809

	if (!(s->flags & SLAB_POISON))
		return 1;

810
	start = page_address(page);
811
	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
812 813
	end = start + length;
	remainder = length % s->size;
C
Christoph Lameter 已提交
814 815 816
	if (!remainder)
		return 1;

817
	metadata_access_enable();
818
	fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
819
	metadata_access_disable();
820 821 822 823 824 825
	if (!fault)
		return 1;
	while (end > fault && end[-1] == POISON_INUSE)
		end--;

	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
826
	print_section("Padding ", end - remainder, remainder);
827

E
Eric Dumazet 已提交
828
	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
829
	return 0;
C
Christoph Lameter 已提交
830 831 832
}

static int check_object(struct kmem_cache *s, struct page *page,
833
					void *object, u8 val)
C
Christoph Lameter 已提交
834 835
{
	u8 *p = object;
836
	u8 *endobject = object + s->object_size;
C
Christoph Lameter 已提交
837 838

	if (s->flags & SLAB_RED_ZONE) {
J
Joonsoo Kim 已提交
839 840 841 842
		if (!check_bytes_and_report(s, page, object, "Redzone",
			object - s->red_left_pad, val, s->red_left_pad))
			return 0;

843
		if (!check_bytes_and_report(s, page, object, "Redzone",
844
			endobject, val, s->inuse - s->object_size))
C
Christoph Lameter 已提交
845 846
			return 0;
	} else {
847
		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
I
Ingo Molnar 已提交
848
			check_bytes_and_report(s, page, p, "Alignment padding",
849 850
				endobject, POISON_INUSE,
				s->inuse - s->object_size);
I
Ingo Molnar 已提交
851
		}
C
Christoph Lameter 已提交
852 853 854
	}

	if (s->flags & SLAB_POISON) {
855
		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
856
			(!check_bytes_and_report(s, page, p, "Poison", p,
857
					POISON_FREE, s->object_size - 1) ||
858
			 !check_bytes_and_report(s, page, p, "Poison",
859
				p + s->object_size - 1, POISON_END, 1)))
C
Christoph Lameter 已提交
860 861 862 863 864 865 866
			return 0;
		/*
		 * check_pad_bytes cleans up on its own.
		 */
		check_pad_bytes(s, page, p);
	}

867
	if (!s->offset && val == SLUB_RED_ACTIVE)
C
Christoph Lameter 已提交
868 869 870 871 872 873 874 875 876 877
		/*
		 * Object and freepointer overlap. Cannot check
		 * freepointer while object is allocated.
		 */
		return 1;

	/* Check free pointer validity */
	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
		object_err(s, page, p, "Freepointer corrupt");
		/*
N
Nick Andrew 已提交
878
		 * No choice but to zap it and thus lose the remainder
C
Christoph Lameter 已提交
879
		 * of the free objects in this slab. May cause
C
Christoph Lameter 已提交
880
		 * another error because the object count is now wrong.
C
Christoph Lameter 已提交
881
		 */
882
		set_freepointer(s, p, NULL);
C
Christoph Lameter 已提交
883 884 885 886 887 888 889
		return 0;
	}
	return 1;
}

static int check_slab(struct kmem_cache *s, struct page *page)
{
890 891
	int maxobj;

C
Christoph Lameter 已提交
892 893 894
	VM_BUG_ON(!irqs_disabled());

	if (!PageSlab(page)) {
895
		slab_err(s, page, "Not a valid slab page");
C
Christoph Lameter 已提交
896 897
		return 0;
	}
898

899
	maxobj = order_objects(compound_order(page), s->size, s->reserved);
900 901
	if (page->objects > maxobj) {
		slab_err(s, page, "objects %u > max %u",
902
			page->objects, maxobj);
903 904 905
		return 0;
	}
	if (page->inuse > page->objects) {
906
		slab_err(s, page, "inuse %u > max %u",
907
			page->inuse, page->objects);
C
Christoph Lameter 已提交
908 909 910 911 912 913 914 915
		return 0;
	}
	/* Slab_pad_check fixes things up after itself */
	slab_pad_check(s, page);
	return 1;
}

/*
C
Christoph Lameter 已提交
916 917
 * Determine if a certain object on a page is on the freelist. Must hold the
 * slab lock to guarantee that the chains are in a consistent state.
C
Christoph Lameter 已提交
918 919 920 921
 */
static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
{
	int nr = 0;
922
	void *fp;
C
Christoph Lameter 已提交
923
	void *object = NULL;
924
	int max_objects;
C
Christoph Lameter 已提交
925

926
	fp = page->freelist;
927
	while (fp && nr <= page->objects) {
C
Christoph Lameter 已提交
928 929 930 931 932 933
		if (fp == search)
			return 1;
		if (!check_valid_pointer(s, page, fp)) {
			if (object) {
				object_err(s, page, object,
					"Freechain corrupt");
934
				set_freepointer(s, object, NULL);
C
Christoph Lameter 已提交
935
			} else {
936
				slab_err(s, page, "Freepointer corrupt");
937
				page->freelist = NULL;
938
				page->inuse = page->objects;
939
				slab_fix(s, "Freelist cleared");
C
Christoph Lameter 已提交
940 941 942 943 944 945 946 947 948
				return 0;
			}
			break;
		}
		object = fp;
		fp = get_freepointer(s, object);
		nr++;
	}

949
	max_objects = order_objects(compound_order(page), s->size, s->reserved);
950 951
	if (max_objects > MAX_OBJS_PER_PAGE)
		max_objects = MAX_OBJS_PER_PAGE;
952 953 954 955 956 957 958

	if (page->objects != max_objects) {
		slab_err(s, page, "Wrong number of objects. Found %d but "
			"should be %d", page->objects, max_objects);
		page->objects = max_objects;
		slab_fix(s, "Number of objects adjusted.");
	}
959
	if (page->inuse != page->objects - nr) {
960
		slab_err(s, page, "Wrong object count. Counter is %d but "
961 962
			"counted were %d", page->inuse, page->objects - nr);
		page->inuse = page->objects - nr;
963
		slab_fix(s, "Object count adjusted.");
C
Christoph Lameter 已提交
964 965 966 967
	}
	return search == NULL;
}

968 969
static void trace(struct kmem_cache *s, struct page *page, void *object,
								int alloc)
C
Christoph Lameter 已提交
970 971
{
	if (s->flags & SLAB_TRACE) {
972
		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
C
Christoph Lameter 已提交
973 974 975 976 977 978
			s->name,
			alloc ? "alloc" : "free",
			object, page->inuse,
			page->freelist);

		if (!alloc)
979 980
			print_section("Object ", (void *)object,
					s->object_size);
C
Christoph Lameter 已提交
981 982 983 984 985

		dump_stack();
	}
}

986
/*
C
Christoph Lameter 已提交
987
 * Tracking of fully allocated slabs for debugging purposes.
988
 */
989 990
static void add_full(struct kmem_cache *s,
	struct kmem_cache_node *n, struct page *page)
991
{
992 993 994
	if (!(s->flags & SLAB_STORE_USER))
		return;

995
	lockdep_assert_held(&n->list_lock);
996 997 998
	list_add(&page->lru, &n->full);
}

P
Peter Zijlstra 已提交
999
static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1000 1001 1002 1003
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

1004
	lockdep_assert_held(&n->list_lock);
1005 1006 1007
	list_del(&page->lru);
}

1008 1009 1010 1011 1012 1013 1014 1015
/* Tracking of the number of slabs for debugging purposes */
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
{
	struct kmem_cache_node *n = get_node(s, node);

	return atomic_long_read(&n->nr_slabs);
}

1016 1017 1018 1019 1020
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
{
	return atomic_long_read(&n->nr_slabs);
}

1021
static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1022 1023 1024 1025 1026 1027 1028 1029 1030
{
	struct kmem_cache_node *n = get_node(s, node);

	/*
	 * May be called early in order to allocate a slab for the
	 * kmem_cache_node structure. Solve the chicken-egg
	 * dilemma by deferring the increment of the count during
	 * bootstrap (see early_kmem_cache_node_alloc).
	 */
1031
	if (likely(n)) {
1032
		atomic_long_inc(&n->nr_slabs);
1033 1034
		atomic_long_add(objects, &n->total_objects);
	}
1035
}
1036
static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1037 1038 1039 1040
{
	struct kmem_cache_node *n = get_node(s, node);

	atomic_long_dec(&n->nr_slabs);
1041
	atomic_long_sub(objects, &n->total_objects);
1042 1043 1044
}

/* Object debug checks for alloc/free paths */
C
Christoph Lameter 已提交
1045 1046 1047 1048 1049 1050
static void setup_object_debug(struct kmem_cache *s, struct page *page,
								void *object)
{
	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
		return;

1051
	init_object(s, object, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1052 1053 1054
	init_tracking(s, object);
}

1055
static inline int alloc_consistency_checks(struct kmem_cache *s,
1056
					struct page *page,
1057
					void *object, unsigned long addr)
C
Christoph Lameter 已提交
1058 1059
{
	if (!check_slab(s, page))
1060
		return 0;
C
Christoph Lameter 已提交
1061 1062 1063

	if (!check_valid_pointer(s, page, object)) {
		object_err(s, page, object, "Freelist Pointer check fails");
1064
		return 0;
C
Christoph Lameter 已提交
1065 1066
	}

1067
	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
		return 0;

	return 1;
}

static noinline int alloc_debug_processing(struct kmem_cache *s,
					struct page *page,
					void *object, unsigned long addr)
{
	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
		if (!alloc_consistency_checks(s, page, object, addr))
			goto bad;
	}
C
Christoph Lameter 已提交
1081

C
Christoph Lameter 已提交
1082 1083 1084 1085
	/* Success perform special debug activities for allocs */
	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_ALLOC, addr);
	trace(s, page, object, 1);
1086
	init_object(s, object, SLUB_RED_ACTIVE);
C
Christoph Lameter 已提交
1087
	return 1;
C
Christoph Lameter 已提交
1088

C
Christoph Lameter 已提交
1089 1090 1091 1092 1093
bad:
	if (PageSlab(page)) {
		/*
		 * If this is a slab page then lets do the best we can
		 * to avoid issues in the future. Marking all objects
C
Christoph Lameter 已提交
1094
		 * as used avoids touching the remaining objects.
C
Christoph Lameter 已提交
1095
		 */
1096
		slab_fix(s, "Marking all objects used");
1097
		page->inuse = page->objects;
1098
		page->freelist = NULL;
C
Christoph Lameter 已提交
1099 1100 1101 1102
	}
	return 0;
}

1103 1104
static inline int free_consistency_checks(struct kmem_cache *s,
		struct page *page, void *object, unsigned long addr)
C
Christoph Lameter 已提交
1105 1106
{
	if (!check_valid_pointer(s, page, object)) {
1107
		slab_err(s, page, "Invalid object pointer 0x%p", object);
1108
		return 0;
C
Christoph Lameter 已提交
1109 1110 1111
	}

	if (on_freelist(s, page, object)) {
1112
		object_err(s, page, object, "Object already free");
1113
		return 0;
C
Christoph Lameter 已提交
1114 1115
	}

1116
	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1117
		return 0;
C
Christoph Lameter 已提交
1118

1119
	if (unlikely(s != page->slab_cache)) {
I
Ingo Molnar 已提交
1120
		if (!PageSlab(page)) {
1121 1122
			slab_err(s, page, "Attempt to free object(0x%p) "
				"outside of slab", object);
1123
		} else if (!page->slab_cache) {
1124 1125
			pr_err("SLUB <none>: no slab for object 0x%p.\n",
			       object);
1126
			dump_stack();
P
Pekka Enberg 已提交
1127
		} else
1128 1129
			object_err(s, page, object,
					"page slab pointer corrupt.");
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
		return 0;
	}
	return 1;
}

/* Supports checking bulk free of a constructed freelist */
static noinline int free_debug_processing(
	struct kmem_cache *s, struct page *page,
	void *head, void *tail, int bulk_cnt,
	unsigned long addr)
{
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
	void *object = head;
	int cnt = 0;
	unsigned long uninitialized_var(flags);
	int ret = 0;

	spin_lock_irqsave(&n->list_lock, flags);
	slab_lock(page);

	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
		if (!check_slab(s, page))
			goto out;
	}

next_object:
	cnt++;

	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
		if (!free_consistency_checks(s, page, object, addr))
			goto out;
C
Christoph Lameter 已提交
1161
	}
C
Christoph Lameter 已提交
1162 1163 1164 1165

	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_FREE, addr);
	trace(s, page, object, 0);
1166
	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1167
	init_object(s, object, SLUB_RED_INACTIVE);
1168 1169 1170 1171 1172 1173

	/* Reached end of constructed freelist yet? */
	if (object != tail) {
		object = get_freepointer(s, object);
		goto next_object;
	}
1174 1175
	ret = 1;

1176
out:
1177 1178 1179 1180
	if (cnt != bulk_cnt)
		slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
			 bulk_cnt, cnt);

1181
	slab_unlock(page);
1182
	spin_unlock_irqrestore(&n->list_lock, flags);
1183 1184 1185
	if (!ret)
		slab_fix(s, "Object at 0x%p not freed", object);
	return ret;
C
Christoph Lameter 已提交
1186 1187
}

C
Christoph Lameter 已提交
1188 1189
static int __init setup_slub_debug(char *str)
{
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
	slub_debug = DEBUG_DEFAULT_FLAGS;
	if (*str++ != '=' || !*str)
		/*
		 * No options specified. Switch on full debugging.
		 */
		goto out;

	if (*str == ',')
		/*
		 * No options but restriction on slabs. This means full
		 * debugging for slabs matching a pattern.
		 */
		goto check_slabs;

	slub_debug = 0;
	if (*str == '-')
		/*
		 * Switch off all debugging measures.
		 */
		goto out;

	/*
	 * Determine which debug features should be switched on
	 */
P
Pekka Enberg 已提交
1214
	for (; *str && *str != ','; str++) {
1215 1216
		switch (tolower(*str)) {
		case 'f':
1217
			slub_debug |= SLAB_CONSISTENCY_CHECKS;
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
			break;
		case 'z':
			slub_debug |= SLAB_RED_ZONE;
			break;
		case 'p':
			slub_debug |= SLAB_POISON;
			break;
		case 'u':
			slub_debug |= SLAB_STORE_USER;
			break;
		case 't':
			slub_debug |= SLAB_TRACE;
			break;
1231 1232 1233
		case 'a':
			slub_debug |= SLAB_FAILSLAB;
			break;
1234 1235 1236 1237 1238 1239 1240
		case 'o':
			/*
			 * Avoid enabling debugging on caches if its minimum
			 * order would increase as a result.
			 */
			disable_higher_order_debug = 1;
			break;
1241
		default:
1242 1243
			pr_err("slub_debug option '%c' unknown. skipped\n",
			       *str);
1244
		}
C
Christoph Lameter 已提交
1245 1246
	}

1247
check_slabs:
C
Christoph Lameter 已提交
1248 1249
	if (*str == ',')
		slub_debug_slabs = str + 1;
1250
out:
C
Christoph Lameter 已提交
1251 1252 1253 1254 1255
	return 1;
}

__setup("slub_debug", setup_slub_debug);

1256
unsigned long kmem_cache_flags(unsigned long object_size,
1257
	unsigned long flags, const char *name,
1258
	void (*ctor)(void *))
C
Christoph Lameter 已提交
1259 1260
{
	/*
1261
	 * Enable debugging if selected on the kernel commandline.
C
Christoph Lameter 已提交
1262
	 */
1263 1264
	if (slub_debug && (!slub_debug_slabs || (name &&
		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1265
		flags |= slub_debug;
1266 1267

	return flags;
C
Christoph Lameter 已提交
1268
}
1269
#else /* !CONFIG_SLUB_DEBUG */
C
Christoph Lameter 已提交
1270 1271
static inline void setup_object_debug(struct kmem_cache *s,
			struct page *page, void *object) {}
C
Christoph Lameter 已提交
1272

C
Christoph Lameter 已提交
1273
static inline int alloc_debug_processing(struct kmem_cache *s,
1274
	struct page *page, void *object, unsigned long addr) { return 0; }
C
Christoph Lameter 已提交
1275

1276
static inline int free_debug_processing(
1277 1278
	struct kmem_cache *s, struct page *page,
	void *head, void *tail, int bulk_cnt,
1279
	unsigned long addr) { return 0; }
C
Christoph Lameter 已提交
1280 1281 1282 1283

static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
			{ return 1; }
static inline int check_object(struct kmem_cache *s, struct page *page,
1284
			void *object, u8 val) { return 1; }
1285 1286
static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
P
Peter Zijlstra 已提交
1287 1288
static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
1289
unsigned long kmem_cache_flags(unsigned long object_size,
1290
	unsigned long flags, const char *name,
1291
	void (*ctor)(void *))
1292 1293 1294
{
	return flags;
}
C
Christoph Lameter 已提交
1295
#define slub_debug 0
1296

1297 1298
#define disable_higher_order_debug 0

1299 1300
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
							{ return 0; }
1301 1302
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
							{ return 0; }
1303 1304 1305 1306
static inline void inc_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
static inline void dec_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
1307

1308 1309 1310 1311 1312 1313
#endif /* CONFIG_SLUB_DEBUG */

/*
 * Hooks for other subsystems that check memory allocations. In a typical
 * production configuration these hooks all should produce no code at all.
 */
1314 1315 1316
static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
{
	kmemleak_alloc(ptr, size, 1, flags);
1317
	kasan_kmalloc_large(ptr, size);
1318 1319 1320 1321 1322
}

static inline void kfree_hook(const void *x)
{
	kmemleak_free(x);
1323
	kasan_kfree_large(x);
1324 1325 1326 1327 1328
}

static inline void slab_free_hook(struct kmem_cache *s, void *x)
{
	kmemleak_free_recursive(x, s->flags);
1329

1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
	/*
	 * Trouble is that we may no longer disable interrupts in the fast path
	 * So in order to make the debug calls that expect irqs to be
	 * disabled we need to disable interrupts temporarily.
	 */
#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
	{
		unsigned long flags;

		local_irq_save(flags);
		kmemcheck_slab_free(s, x, s->object_size);
		debug_check_no_locks_freed(x, s->object_size);
		local_irq_restore(flags);
	}
#endif
	if (!(s->flags & SLAB_DEBUG_OBJECTS))
		debug_check_no_obj_freed(x, s->object_size);
1347 1348

	kasan_slab_free(s, x);
1349
}
1350

1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
static inline void slab_free_freelist_hook(struct kmem_cache *s,
					   void *head, void *tail)
{
/*
 * Compiler cannot detect this function can be removed if slab_free_hook()
 * evaluates to nothing.  Thus, catch all relevant config debug options here.
 */
#if defined(CONFIG_KMEMCHECK) ||		\
	defined(CONFIG_LOCKDEP)	||		\
	defined(CONFIG_DEBUG_KMEMLEAK) ||	\
	defined(CONFIG_DEBUG_OBJECTS_FREE) ||	\
	defined(CONFIG_KASAN)

	void *object = head;
	void *tail_obj = tail ? : head;

	do {
		slab_free_hook(s, object);
	} while ((object != tail_obj) &&
		 (object = get_freepointer(s, object)));
#endif
}

1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
static void setup_object(struct kmem_cache *s, struct page *page,
				void *object)
{
	setup_object_debug(s, page, object);
	if (unlikely(s->ctor)) {
		kasan_unpoison_object_data(s, object);
		s->ctor(object);
		kasan_poison_object_data(s, object);
	}
}

C
Christoph Lameter 已提交
1385 1386 1387
/*
 * Slab allocation and freeing
 */
1388 1389
static inline struct page *alloc_slab_page(struct kmem_cache *s,
		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1390
{
1391
	struct page *page;
1392 1393
	int order = oo_order(oo);

1394 1395
	flags |= __GFP_NOTRACK;

1396
	if (node == NUMA_NO_NODE)
1397
		page = alloc_pages(flags, order);
1398
	else
1399
		page = __alloc_pages_node(node, flags, order);
1400

1401 1402 1403 1404
	if (page && memcg_charge_slab(page, flags, order, s)) {
		__free_pages(page, order);
		page = NULL;
	}
1405 1406

	return page;
1407 1408
}

C
Christoph Lameter 已提交
1409 1410
static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
{
P
Pekka Enberg 已提交
1411
	struct page *page;
1412
	struct kmem_cache_order_objects oo = s->oo;
1413
	gfp_t alloc_gfp;
1414 1415
	void *start, *p;
	int idx, order;
C
Christoph Lameter 已提交
1416

1417 1418
	flags &= gfp_allowed_mask;

1419
	if (gfpflags_allow_blocking(flags))
1420 1421
		local_irq_enable();

1422
	flags |= s->allocflags;
1423

1424 1425 1426 1427 1428
	/*
	 * Let the initial higher-order allocation fail under memory pressure
	 * so we fall-back to the minimum order allocation.
	 */
	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1429 1430
	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_DIRECT_RECLAIM;
1431

1432
	page = alloc_slab_page(s, alloc_gfp, node, oo);
1433 1434
	if (unlikely(!page)) {
		oo = s->min;
1435
		alloc_gfp = flags;
1436 1437 1438 1439
		/*
		 * Allocation may have failed due to fragmentation.
		 * Try a lower order alloc if possible
		 */
1440
		page = alloc_slab_page(s, alloc_gfp, node, oo);
1441 1442 1443
		if (unlikely(!page))
			goto out;
		stat(s, ORDER_FALLBACK);
1444
	}
V
Vegard Nossum 已提交
1445

1446 1447
	if (kmemcheck_enabled &&
	    !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1448 1449
		int pages = 1 << oo_order(oo);

1450
		kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1451 1452 1453 1454 1455 1456 1457 1458 1459

		/*
		 * Objects from caches that have a constructor don't get
		 * cleared when they're allocated, so we need to do it here.
		 */
		if (s->ctor)
			kmemcheck_mark_uninitialized_pages(page, pages);
		else
			kmemcheck_mark_unallocated_pages(page, pages);
V
Vegard Nossum 已提交
1460 1461
	}

1462
	page->objects = oo_objects(oo);
C
Christoph Lameter 已提交
1463

G
Glauber Costa 已提交
1464
	order = compound_order(page);
1465
	page->slab_cache = s;
1466
	__SetPageSlab(page);
1467
	if (page_is_pfmemalloc(page))
1468
		SetPageSlabPfmemalloc(page);
C
Christoph Lameter 已提交
1469 1470 1471 1472

	start = page_address(page);

	if (unlikely(s->flags & SLAB_POISON))
G
Glauber Costa 已提交
1473
		memset(start, POISON_INUSE, PAGE_SIZE << order);
C
Christoph Lameter 已提交
1474

1475 1476
	kasan_poison_slab(page);

1477 1478 1479 1480 1481 1482
	for_each_object_idx(p, idx, s, start, page->objects) {
		setup_object(s, page, p);
		if (likely(idx < page->objects))
			set_freepointer(s, p, p + s->size);
		else
			set_freepointer(s, p, NULL);
C
Christoph Lameter 已提交
1483 1484
	}

J
Joonsoo Kim 已提交
1485
	page->freelist = fixup_red_left(s, start);
1486
	page->inuse = page->objects;
1487
	page->frozen = 1;
1488

C
Christoph Lameter 已提交
1489
out:
1490
	if (gfpflags_allow_blocking(flags))
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
		local_irq_disable();
	if (!page)
		return NULL;

	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
		1 << oo_order(oo));

	inc_slabs_node(s, page_to_nid(page), page->objects);

C
Christoph Lameter 已提交
1502 1503 1504
	return page;
}

1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
{
	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
		pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
		BUG();
	}

	return allocate_slab(s,
		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
}

C
Christoph Lameter 已提交
1516 1517
static void __free_slab(struct kmem_cache *s, struct page *page)
{
1518 1519
	int order = compound_order(page);
	int pages = 1 << order;
C
Christoph Lameter 已提交
1520

1521
	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
C
Christoph Lameter 已提交
1522 1523 1524
		void *p;

		slab_pad_check(s, page);
1525 1526
		for_each_object(p, s, page_address(page),
						page->objects)
1527
			check_object(s, page, p, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1528 1529
	}

1530
	kmemcheck_free_shadow(page, compound_order(page));
V
Vegard Nossum 已提交
1531

C
Christoph Lameter 已提交
1532 1533 1534
	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
P
Pekka Enberg 已提交
1535
		-pages);
C
Christoph Lameter 已提交
1536

1537
	__ClearPageSlabPfmemalloc(page);
1538
	__ClearPageSlab(page);
G
Glauber Costa 已提交
1539

1540
	page_mapcount_reset(page);
N
Nick Piggin 已提交
1541 1542
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += pages;
1543 1544
	memcg_uncharge_slab(page, order, s);
	__free_pages(page, order);
C
Christoph Lameter 已提交
1545 1546
}

1547 1548 1549
#define need_reserve_slab_rcu						\
	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))

C
Christoph Lameter 已提交
1550 1551 1552 1553
static void rcu_free_slab(struct rcu_head *h)
{
	struct page *page;

1554 1555 1556 1557 1558
	if (need_reserve_slab_rcu)
		page = virt_to_head_page(h);
	else
		page = container_of((struct list_head *)h, struct page, lru);

1559
	__free_slab(page->slab_cache, page);
C
Christoph Lameter 已提交
1560 1561 1562 1563 1564
}

static void free_slab(struct kmem_cache *s, struct page *page)
{
	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1565 1566 1567 1568 1569 1570 1571 1572 1573
		struct rcu_head *head;

		if (need_reserve_slab_rcu) {
			int order = compound_order(page);
			int offset = (PAGE_SIZE << order) - s->reserved;

			VM_BUG_ON(s->reserved != sizeof(*head));
			head = page_address(page) + offset;
		} else {
1574
			head = &page->rcu_head;
1575
		}
C
Christoph Lameter 已提交
1576 1577 1578 1579 1580 1581 1582 1583

		call_rcu(head, rcu_free_slab);
	} else
		__free_slab(s, page);
}

static void discard_slab(struct kmem_cache *s, struct page *page)
{
1584
	dec_slabs_node(s, page_to_nid(page), page->objects);
C
Christoph Lameter 已提交
1585 1586 1587 1588
	free_slab(s, page);
}

/*
1589
 * Management of partially allocated slabs.
C
Christoph Lameter 已提交
1590
 */
1591 1592
static inline void
__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
C
Christoph Lameter 已提交
1593
{
C
Christoph Lameter 已提交
1594
	n->nr_partial++;
1595
	if (tail == DEACTIVATE_TO_TAIL)
1596 1597 1598
		list_add_tail(&page->lru, &n->partial);
	else
		list_add(&page->lru, &n->partial);
C
Christoph Lameter 已提交
1599 1600
}

1601 1602
static inline void add_partial(struct kmem_cache_node *n,
				struct page *page, int tail)
1603
{
P
Peter Zijlstra 已提交
1604
	lockdep_assert_held(&n->list_lock);
1605 1606
	__add_partial(n, page, tail);
}
P
Peter Zijlstra 已提交
1607

1608 1609 1610 1611
static inline void remove_partial(struct kmem_cache_node *n,
					struct page *page)
{
	lockdep_assert_held(&n->list_lock);
1612 1613
	list_del(&page->lru);
	n->nr_partial--;
1614 1615
}

C
Christoph Lameter 已提交
1616
/*
1617 1618
 * Remove slab from the partial list, freeze it and
 * return the pointer to the freelist.
C
Christoph Lameter 已提交
1619
 *
1620
 * Returns a list of objects or NULL if it fails.
C
Christoph Lameter 已提交
1621
 */
1622
static inline void *acquire_slab(struct kmem_cache *s,
1623
		struct kmem_cache_node *n, struct page *page,
1624
		int mode, int *objects)
C
Christoph Lameter 已提交
1625
{
1626 1627 1628 1629
	void *freelist;
	unsigned long counters;
	struct page new;

P
Peter Zijlstra 已提交
1630 1631
	lockdep_assert_held(&n->list_lock);

1632 1633 1634 1635 1636
	/*
	 * Zap the freelist and set the frozen bit.
	 * The old freelist is the list of objects for the
	 * per cpu allocation list.
	 */
1637 1638 1639
	freelist = page->freelist;
	counters = page->counters;
	new.counters = counters;
1640
	*objects = new.objects - new.inuse;
1641
	if (mode) {
1642
		new.inuse = page->objects;
1643 1644 1645 1646
		new.freelist = NULL;
	} else {
		new.freelist = freelist;
	}
1647

1648
	VM_BUG_ON(new.frozen);
1649
	new.frozen = 1;
1650

1651
	if (!__cmpxchg_double_slab(s, page,
1652
			freelist, counters,
1653
			new.freelist, new.counters,
1654 1655
			"acquire_slab"))
		return NULL;
1656 1657

	remove_partial(n, page);
1658
	WARN_ON(!freelist);
1659
	return freelist;
C
Christoph Lameter 已提交
1660 1661
}

1662
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1663
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1664

C
Christoph Lameter 已提交
1665
/*
C
Christoph Lameter 已提交
1666
 * Try to allocate a partial slab from a specific node.
C
Christoph Lameter 已提交
1667
 */
1668 1669
static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
				struct kmem_cache_cpu *c, gfp_t flags)
C
Christoph Lameter 已提交
1670
{
1671 1672
	struct page *page, *page2;
	void *object = NULL;
1673 1674
	int available = 0;
	int objects;
C
Christoph Lameter 已提交
1675 1676 1677 1678

	/*
	 * Racy check. If we mistakenly see no partial slabs then we
	 * just allocate an empty slab. If we mistakenly try to get a
C
Christoph Lameter 已提交
1679 1680
	 * partial slab and there is none available then get_partials()
	 * will return NULL.
C
Christoph Lameter 已提交
1681 1682 1683 1684 1685
	 */
	if (!n || !n->nr_partial)
		return NULL;

	spin_lock(&n->list_lock);
1686
	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1687
		void *t;
1688

1689 1690 1691
		if (!pfmemalloc_match(page, flags))
			continue;

1692
		t = acquire_slab(s, n, page, object == NULL, &objects);
1693 1694 1695
		if (!t)
			break;

1696
		available += objects;
1697
		if (!object) {
1698 1699 1700 1701
			c->page = page;
			stat(s, ALLOC_FROM_PARTIAL);
			object = t;
		} else {
1702
			put_cpu_partial(s, page, 0);
1703
			stat(s, CPU_PARTIAL_NODE);
1704
		}
1705 1706
		if (!kmem_cache_has_cpu_partial(s)
			|| available > s->cpu_partial / 2)
1707 1708
			break;

1709
	}
C
Christoph Lameter 已提交
1710
	spin_unlock(&n->list_lock);
1711
	return object;
C
Christoph Lameter 已提交
1712 1713 1714
}

/*
C
Christoph Lameter 已提交
1715
 * Get a page from somewhere. Search in increasing NUMA distances.
C
Christoph Lameter 已提交
1716
 */
1717
static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1718
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1719 1720 1721
{
#ifdef CONFIG_NUMA
	struct zonelist *zonelist;
1722
	struct zoneref *z;
1723 1724
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
1725
	void *object;
1726
	unsigned int cpuset_mems_cookie;
C
Christoph Lameter 已提交
1727 1728

	/*
C
Christoph Lameter 已提交
1729 1730 1731 1732
	 * The defrag ratio allows a configuration of the tradeoffs between
	 * inter node defragmentation and node local allocations. A lower
	 * defrag_ratio increases the tendency to do local allocations
	 * instead of attempting to obtain partial slabs from other nodes.
C
Christoph Lameter 已提交
1733
	 *
C
Christoph Lameter 已提交
1734 1735 1736 1737
	 * If the defrag_ratio is set to 0 then kmalloc() always
	 * returns node local objects. If the ratio is higher then kmalloc()
	 * may return off node objects because partial slabs are obtained
	 * from other nodes and filled up.
C
Christoph Lameter 已提交
1738
	 *
C
Christoph Lameter 已提交
1739
	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
C
Christoph Lameter 已提交
1740 1741 1742 1743 1744
	 * defrag_ratio = 1000) then every (well almost) allocation will
	 * first attempt to defrag slab caches on other nodes. This means
	 * scanning over all nodes to look for partial slabs which may be
	 * expensive if we do it every time we are trying to find a slab
	 * with available objects.
C
Christoph Lameter 已提交
1745
	 */
1746 1747
	if (!s->remote_node_defrag_ratio ||
			get_cycles() % 1024 > s->remote_node_defrag_ratio)
C
Christoph Lameter 已提交
1748 1749
		return NULL;

1750
	do {
1751
		cpuset_mems_cookie = read_mems_allowed_begin();
1752
		zonelist = node_zonelist(mempolicy_slab_node(), flags);
1753 1754 1755 1756 1757
		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
			struct kmem_cache_node *n;

			n = get_node(s, zone_to_nid(zone));

1758
			if (n && cpuset_zone_allowed(zone, flags) &&
1759
					n->nr_partial > s->min_partial) {
1760
				object = get_partial_node(s, n, c, flags);
1761 1762
				if (object) {
					/*
1763 1764 1765 1766 1767
					 * Don't check read_mems_allowed_retry()
					 * here - if mems_allowed was updated in
					 * parallel, that was a harmless race
					 * between allocation and the cpuset
					 * update
1768 1769 1770
					 */
					return object;
				}
1771
			}
C
Christoph Lameter 已提交
1772
		}
1773
	} while (read_mems_allowed_retry(cpuset_mems_cookie));
C
Christoph Lameter 已提交
1774 1775 1776 1777 1778 1779 1780
#endif
	return NULL;
}

/*
 * Get a partial page, lock it and return it.
 */
1781
static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1782
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1783
{
1784
	void *object;
1785 1786 1787 1788 1789 1790
	int searchnode = node;

	if (node == NUMA_NO_NODE)
		searchnode = numa_mem_id();
	else if (!node_present_pages(node))
		searchnode = node_to_mem_node(node);
C
Christoph Lameter 已提交
1791

1792
	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1793 1794
	if (object || node != NUMA_NO_NODE)
		return object;
C
Christoph Lameter 已提交
1795

1796
	return get_any_partial(s, flags, c);
C
Christoph Lameter 已提交
1797 1798
}

1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
#ifdef CONFIG_PREEMPT
/*
 * Calculate the next globally unique transaction for disambiguiation
 * during cmpxchg. The transactions start with the cpu number and are then
 * incremented by CONFIG_NR_CPUS.
 */
#define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
#else
/*
 * No preemption supported therefore also no need to check for
 * different cpus.
 */
#define TID_STEP 1
#endif

static inline unsigned long next_tid(unsigned long tid)
{
	return tid + TID_STEP;
}

static inline unsigned int tid_to_cpu(unsigned long tid)
{
	return tid % TID_STEP;
}

static inline unsigned long tid_to_event(unsigned long tid)
{
	return tid / TID_STEP;
}

static inline unsigned int init_tid(int cpu)
{
	return cpu;
}

static inline void note_cmpxchg_failure(const char *n,
		const struct kmem_cache *s, unsigned long tid)
{
#ifdef SLUB_DEBUG_CMPXCHG
	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);

1840
	pr_info("%s %s: cmpxchg redo ", n, s->name);
1841 1842 1843

#ifdef CONFIG_PREEMPT
	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1844
		pr_warn("due to cpu change %d -> %d\n",
1845 1846 1847 1848
			tid_to_cpu(tid), tid_to_cpu(actual_tid));
	else
#endif
	if (tid_to_event(tid) != tid_to_event(actual_tid))
1849
		pr_warn("due to cpu running other code. Event %ld->%ld\n",
1850 1851
			tid_to_event(tid), tid_to_event(actual_tid));
	else
1852
		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1853 1854
			actual_tid, tid, next_tid(tid));
#endif
1855
	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1856 1857
}

1858
static void init_kmem_cache_cpus(struct kmem_cache *s)
1859 1860 1861 1862 1863 1864
{
	int cpu;

	for_each_possible_cpu(cpu)
		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
}
1865

C
Christoph Lameter 已提交
1866 1867 1868
/*
 * Remove the cpu slab
 */
1869 1870
static void deactivate_slab(struct kmem_cache *s, struct page *page,
				void *freelist)
C
Christoph Lameter 已提交
1871
{
1872 1873 1874 1875 1876
	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
	int lock = 0;
	enum slab_modes l = M_NONE, m = M_NONE;
	void *nextfree;
1877
	int tail = DEACTIVATE_TO_HEAD;
1878 1879 1880 1881
	struct page new;
	struct page old;

	if (page->freelist) {
1882
		stat(s, DEACTIVATE_REMOTE_FREES);
1883
		tail = DEACTIVATE_TO_TAIL;
1884 1885
	}

1886
	/*
1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
	 * Stage one: Free all available per cpu objects back
	 * to the page freelist while it is still frozen. Leave the
	 * last one.
	 *
	 * There is no need to take the list->lock because the page
	 * is still frozen.
	 */
	while (freelist && (nextfree = get_freepointer(s, freelist))) {
		void *prior;
		unsigned long counters;

		do {
			prior = page->freelist;
			counters = page->counters;
			set_freepointer(s, freelist, prior);
			new.counters = counters;
			new.inuse--;
1904
			VM_BUG_ON(!new.frozen);
1905

1906
		} while (!__cmpxchg_double_slab(s, page,
1907 1908 1909 1910 1911 1912 1913
			prior, counters,
			freelist, new.counters,
			"drain percpu freelist"));

		freelist = nextfree;
	}

1914
	/*
1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
	 * Stage two: Ensure that the page is unfrozen while the
	 * list presence reflects the actual number of objects
	 * during unfreeze.
	 *
	 * We setup the list membership and then perform a cmpxchg
	 * with the count. If there is a mismatch then the page
	 * is not unfrozen but the page is on the wrong list.
	 *
	 * Then we restart the process which may have to remove
	 * the page from the list that we just put it on again
	 * because the number of objects in the slab may have
	 * changed.
1927
	 */
1928
redo:
1929

1930 1931
	old.freelist = page->freelist;
	old.counters = page->counters;
1932
	VM_BUG_ON(!old.frozen);
1933

1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
	/* Determine target state of the slab */
	new.counters = old.counters;
	if (freelist) {
		new.inuse--;
		set_freepointer(s, freelist, old.freelist);
		new.freelist = freelist;
	} else
		new.freelist = old.freelist;

	new.frozen = 0;

1945
	if (!new.inuse && n->nr_partial >= s->min_partial)
1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
		m = M_FREE;
	else if (new.freelist) {
		m = M_PARTIAL;
		if (!lock) {
			lock = 1;
			/*
			 * Taking the spinlock removes the possiblity
			 * that acquire_slab() will see a slab page that
			 * is frozen
			 */
			spin_lock(&n->list_lock);
		}
	} else {
		m = M_FULL;
		if (kmem_cache_debug(s) && !lock) {
			lock = 1;
			/*
			 * This also ensures that the scanning of full
			 * slabs from diagnostic functions will not see
			 * any frozen slabs.
			 */
			spin_lock(&n->list_lock);
		}
	}

	if (l != m) {

		if (l == M_PARTIAL)

			remove_partial(n, page);

		else if (l == M_FULL)
1978

P
Peter Zijlstra 已提交
1979
			remove_full(s, n, page);
1980 1981 1982 1983

		if (m == M_PARTIAL) {

			add_partial(n, page, tail);
1984
			stat(s, tail);
1985 1986

		} else if (m == M_FULL) {
1987

1988 1989 1990 1991 1992 1993 1994
			stat(s, DEACTIVATE_FULL);
			add_full(s, n, page);

		}
	}

	l = m;
1995
	if (!__cmpxchg_double_slab(s, page,
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"))
		goto redo;

	if (lock)
		spin_unlock(&n->list_lock);

	if (m == M_FREE) {
		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
2008
	}
C
Christoph Lameter 已提交
2009 2010
}

2011 2012 2013
/*
 * Unfreeze all the cpu partial slabs.
 *
2014 2015 2016
 * This function must be called with interrupts disabled
 * for the cpu using c (or some other guarantee must be there
 * to guarantee no concurrent accesses).
2017
 */
2018 2019
static void unfreeze_partials(struct kmem_cache *s,
		struct kmem_cache_cpu *c)
2020
{
2021
#ifdef CONFIG_SLUB_CPU_PARTIAL
2022
	struct kmem_cache_node *n = NULL, *n2 = NULL;
2023
	struct page *page, *discard_page = NULL;
2024 2025 2026 2027 2028 2029

	while ((page = c->partial)) {
		struct page new;
		struct page old;

		c->partial = page->next;
2030 2031 2032 2033 2034 2035 2036 2037 2038

		n2 = get_node(s, page_to_nid(page));
		if (n != n2) {
			if (n)
				spin_unlock(&n->list_lock);

			n = n2;
			spin_lock(&n->list_lock);
		}
2039 2040 2041 2042 2043

		do {

			old.freelist = page->freelist;
			old.counters = page->counters;
2044
			VM_BUG_ON(!old.frozen);
2045 2046 2047 2048 2049 2050

			new.counters = old.counters;
			new.freelist = old.freelist;

			new.frozen = 0;

2051
		} while (!__cmpxchg_double_slab(s, page,
2052 2053 2054 2055
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"));

2056
		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2057 2058
			page->next = discard_page;
			discard_page = page;
2059 2060 2061
		} else {
			add_partial(n, page, DEACTIVATE_TO_TAIL);
			stat(s, FREE_ADD_PARTIAL);
2062 2063 2064 2065 2066
		}
	}

	if (n)
		spin_unlock(&n->list_lock);
2067 2068 2069 2070 2071 2072 2073 2074 2075

	while (discard_page) {
		page = discard_page;
		discard_page = discard_page->next;

		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
	}
2076
#endif
2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
}

/*
 * Put a page that was just frozen (in __slab_free) into a partial page
 * slot if available. This is done without interrupts disabled and without
 * preemption disabled. The cmpxchg is racy and may put the partial page
 * onto a random cpus partial slot.
 *
 * If we did not find a slot then simply move all the partials to the
 * per node partial list.
 */
2088
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2089
{
2090
#ifdef CONFIG_SLUB_CPU_PARTIAL
2091 2092 2093 2094
	struct page *oldpage;
	int pages;
	int pobjects;

2095
	preempt_disable();
2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
	do {
		pages = 0;
		pobjects = 0;
		oldpage = this_cpu_read(s->cpu_slab->partial);

		if (oldpage) {
			pobjects = oldpage->pobjects;
			pages = oldpage->pages;
			if (drain && pobjects > s->cpu_partial) {
				unsigned long flags;
				/*
				 * partial array is full. Move the existing
				 * set to the per node partial list.
				 */
				local_irq_save(flags);
2111
				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2112
				local_irq_restore(flags);
2113
				oldpage = NULL;
2114 2115
				pobjects = 0;
				pages = 0;
2116
				stat(s, CPU_PARTIAL_DRAIN);
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
			}
		}

		pages++;
		pobjects += page->objects - page->inuse;

		page->pages = pages;
		page->pobjects = pobjects;
		page->next = oldpage;

2127 2128
	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
								!= oldpage);
2129 2130 2131 2132 2133 2134 2135 2136
	if (unlikely(!s->cpu_partial)) {
		unsigned long flags;

		local_irq_save(flags);
		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
		local_irq_restore(flags);
	}
	preempt_enable();
2137
#endif
2138 2139
}

2140
static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2141
{
2142
	stat(s, CPUSLAB_FLUSH);
2143 2144 2145 2146 2147
	deactivate_slab(s, c->page, c->freelist);

	c->tid = next_tid(c->tid);
	c->page = NULL;
	c->freelist = NULL;
C
Christoph Lameter 已提交
2148 2149 2150 2151
}

/*
 * Flush cpu slab.
C
Christoph Lameter 已提交
2152
 *
C
Christoph Lameter 已提交
2153 2154
 * Called from IPI handler with interrupts disabled.
 */
2155
static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
C
Christoph Lameter 已提交
2156
{
2157
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
C
Christoph Lameter 已提交
2158

2159 2160 2161 2162
	if (likely(c)) {
		if (c->page)
			flush_slab(s, c);

2163
		unfreeze_partials(s, c);
2164
	}
C
Christoph Lameter 已提交
2165 2166 2167 2168 2169 2170
}

static void flush_cpu_slab(void *d)
{
	struct kmem_cache *s = d;

2171
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
2172 2173
}

2174 2175 2176 2177 2178
static bool has_cpu_slab(int cpu, void *info)
{
	struct kmem_cache *s = info;
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);

2179
	return c->page || c->partial;
2180 2181
}

C
Christoph Lameter 已提交
2182 2183
static void flush_all(struct kmem_cache *s)
{
2184
	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
C
Christoph Lameter 已提交
2185 2186
}

2187 2188 2189 2190
/*
 * Check if the objects in a per cpu structure fit numa
 * locality expectations.
 */
2191
static inline int node_match(struct page *page, int node)
2192 2193
{
#ifdef CONFIG_NUMA
2194
	if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2195 2196 2197 2198 2199
		return 0;
#endif
	return 1;
}

2200
#ifdef CONFIG_SLUB_DEBUG
P
Pekka Enberg 已提交
2201 2202 2203 2204 2205
static int count_free(struct page *page)
{
	return page->objects - page->inuse;
}

2206 2207 2208 2209 2210 2211 2212
static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
{
	return atomic_long_read(&n->total_objects);
}
#endif /* CONFIG_SLUB_DEBUG */

#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
P
Pekka Enberg 已提交
2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
static unsigned long count_partial(struct kmem_cache_node *n,
					int (*get_count)(struct page *))
{
	unsigned long flags;
	unsigned long x = 0;
	struct page *page;

	spin_lock_irqsave(&n->list_lock, flags);
	list_for_each_entry(page, &n->partial, lru)
		x += get_count(page);
	spin_unlock_irqrestore(&n->list_lock, flags);
	return x;
}
2226
#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2227

P
Pekka Enberg 已提交
2228 2229 2230
static noinline void
slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
{
2231 2232 2233
#ifdef CONFIG_SLUB_DEBUG
	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);
P
Pekka Enberg 已提交
2234
	int node;
C
Christoph Lameter 已提交
2235
	struct kmem_cache_node *n;
P
Pekka Enberg 已提交
2236

2237 2238 2239
	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
		return;

2240 2241
	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
		nid, gfpflags, &gfpflags);
2242 2243 2244
	pr_warn("  cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
		s->name, s->object_size, s->size, oo_order(s->oo),
		oo_order(s->min));
P
Pekka Enberg 已提交
2245

2246
	if (oo_order(s->min) > get_order(s->object_size))
2247 2248
		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
			s->name);
2249

C
Christoph Lameter 已提交
2250
	for_each_kmem_cache_node(s, node, n) {
P
Pekka Enberg 已提交
2251 2252 2253 2254
		unsigned long nr_slabs;
		unsigned long nr_objs;
		unsigned long nr_free;

2255 2256 2257
		nr_free  = count_partial(n, count_free);
		nr_slabs = node_nr_slabs(n);
		nr_objs  = node_nr_objs(n);
P
Pekka Enberg 已提交
2258

2259
		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
P
Pekka Enberg 已提交
2260 2261
			node, nr_slabs, nr_objs, nr_free);
	}
2262
#endif
P
Pekka Enberg 已提交
2263 2264
}

2265 2266 2267
static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
			int node, struct kmem_cache_cpu **pc)
{
2268
	void *freelist;
2269 2270
	struct kmem_cache_cpu *c = *pc;
	struct page *page;
2271

2272
	freelist = get_partial(s, flags, node, c);
2273

2274 2275 2276 2277
	if (freelist)
		return freelist;

	page = new_slab(s, flags, node);
2278
	if (page) {
2279
		c = raw_cpu_ptr(s->cpu_slab);
2280 2281 2282 2283 2284 2285 2286
		if (c->page)
			flush_slab(s, c);

		/*
		 * No other reference to the page yet so we can
		 * muck around with it freely without cmpxchg
		 */
2287
		freelist = page->freelist;
2288 2289 2290 2291 2292 2293
		page->freelist = NULL;

		stat(s, ALLOC_SLAB);
		c->page = page;
		*pc = c;
	} else
2294
		freelist = NULL;
2295

2296
	return freelist;
2297 2298
}

2299 2300 2301 2302 2303 2304 2305 2306
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
{
	if (unlikely(PageSlabPfmemalloc(page)))
		return gfp_pfmemalloc_allowed(gfpflags);

	return true;
}

2307
/*
2308 2309
 * Check the page->freelist of a page and either transfer the freelist to the
 * per cpu freelist or deactivate the page.
2310 2311 2312 2313
 *
 * The page is still frozen if the return value is not NULL.
 *
 * If this function returns NULL then the page has been unfrozen.
2314 2315
 *
 * This function must be called with interrupt disabled.
2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
 */
static inline void *get_freelist(struct kmem_cache *s, struct page *page)
{
	struct page new;
	unsigned long counters;
	void *freelist;

	do {
		freelist = page->freelist;
		counters = page->counters;
2326

2327
		new.counters = counters;
2328
		VM_BUG_ON(!new.frozen);
2329 2330 2331 2332

		new.inuse = page->objects;
		new.frozen = freelist != NULL;

2333
	} while (!__cmpxchg_double_slab(s, page,
2334 2335 2336 2337 2338 2339 2340
		freelist, counters,
		NULL, new.counters,
		"get_freelist"));

	return freelist;
}

C
Christoph Lameter 已提交
2341
/*
2342 2343 2344 2345 2346 2347
 * Slow path. The lockless freelist is empty or we need to perform
 * debugging duties.
 *
 * Processing is still very fast if new objects have been freed to the
 * regular freelist. In that case we simply take over the regular freelist
 * as the lockless freelist and zap the regular freelist.
C
Christoph Lameter 已提交
2348
 *
2349 2350 2351
 * If that is not working then we fall back to the partial lists. We take the
 * first element of the freelist as the object to allocate now and move the
 * rest of the freelist to the lockless freelist.
C
Christoph Lameter 已提交
2352
 *
2353
 * And if we were unable to get a new slab from the partial slab lists then
C
Christoph Lameter 已提交
2354 2355
 * we need to allocate a new slab. This is the slowest path since it involves
 * a call to the page allocator and the setup of a new slab.
2356 2357 2358
 *
 * Version of __slab_alloc to use when we know that interrupts are
 * already disabled (which is the case for bulk allocation).
C
Christoph Lameter 已提交
2359
 */
2360
static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2361
			  unsigned long addr, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2362
{
2363
	void *freelist;
2364
	struct page *page;
C
Christoph Lameter 已提交
2365

2366 2367
	page = c->page;
	if (!page)
C
Christoph Lameter 已提交
2368
		goto new_slab;
2369
redo:
2370

2371
	if (unlikely(!node_match(page, node))) {
2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
		int searchnode = node;

		if (node != NUMA_NO_NODE && !node_present_pages(node))
			searchnode = node_to_mem_node(node);

		if (unlikely(!node_match(page, searchnode))) {
			stat(s, ALLOC_NODE_MISMATCH);
			deactivate_slab(s, page, c->freelist);
			c->page = NULL;
			c->freelist = NULL;
			goto new_slab;
		}
2384
	}
C
Christoph Lameter 已提交
2385

2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
	/*
	 * By rights, we should be searching for a slab page that was
	 * PFMEMALLOC but right now, we are losing the pfmemalloc
	 * information when the page leaves the per-cpu allocator
	 */
	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
		deactivate_slab(s, page, c->freelist);
		c->page = NULL;
		c->freelist = NULL;
		goto new_slab;
	}

2398
	/* must check again c->freelist in case of cpu migration or IRQ */
2399 2400
	freelist = c->freelist;
	if (freelist)
2401
		goto load_freelist;
2402

2403
	freelist = get_freelist(s, page);
C
Christoph Lameter 已提交
2404

2405
	if (!freelist) {
2406 2407
		c->page = NULL;
		stat(s, DEACTIVATE_BYPASS);
2408
		goto new_slab;
2409
	}
C
Christoph Lameter 已提交
2410

2411
	stat(s, ALLOC_REFILL);
C
Christoph Lameter 已提交
2412

2413
load_freelist:
2414 2415 2416 2417 2418
	/*
	 * freelist is pointing to the list of objects to be used.
	 * page is pointing to the page from which the objects are obtained.
	 * That page must be frozen for per cpu allocations to work.
	 */
2419
	VM_BUG_ON(!c->page->frozen);
2420
	c->freelist = get_freepointer(s, freelist);
2421
	c->tid = next_tid(c->tid);
2422
	return freelist;
C
Christoph Lameter 已提交
2423 2424

new_slab:
2425

2426
	if (c->partial) {
2427 2428
		page = c->page = c->partial;
		c->partial = page->next;
2429 2430 2431
		stat(s, CPU_PARTIAL_ALLOC);
		c->freelist = NULL;
		goto redo;
C
Christoph Lameter 已提交
2432 2433
	}

2434
	freelist = new_slab_objects(s, gfpflags, node, &c);
2435

2436
	if (unlikely(!freelist)) {
2437
		slab_out_of_memory(s, gfpflags, node);
2438
		return NULL;
C
Christoph Lameter 已提交
2439
	}
2440

2441
	page = c->page;
2442
	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2443
		goto load_freelist;
2444

2445
	/* Only entered in the debug case */
2446 2447
	if (kmem_cache_debug(s) &&
			!alloc_debug_processing(s, page, freelist, addr))
2448
		goto new_slab;	/* Slab failed checks. Next slab needed */
2449

2450
	deactivate_slab(s, page, get_freepointer(s, freelist));
2451 2452
	c->page = NULL;
	c->freelist = NULL;
2453
	return freelist;
2454 2455
}

2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480
/*
 * Another one that disabled interrupt and compensates for possible
 * cpu changes by refetching the per cpu area pointer.
 */
static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
			  unsigned long addr, struct kmem_cache_cpu *c)
{
	void *p;
	unsigned long flags;

	local_irq_save(flags);
#ifdef CONFIG_PREEMPT
	/*
	 * We may have been preempted and rescheduled on a different
	 * cpu before disabling interrupts. Need to reload cpu area
	 * pointer.
	 */
	c = this_cpu_ptr(s->cpu_slab);
#endif

	p = ___slab_alloc(s, gfpflags, node, addr, c);
	local_irq_restore(flags);
	return p;
}

2481 2482 2483 2484 2485 2486 2487 2488 2489 2490
/*
 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
 * have the fastpath folded into their functions. So no function call
 * overhead for requests that can be satisfied on the fastpath.
 *
 * The fastpath works by first checking if the lockless freelist can be used.
 * If not then __slab_alloc is called for slow processing.
 *
 * Otherwise we can simply pick the next object from the lockless free list.
 */
2491
static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2492
		gfp_t gfpflags, int node, unsigned long addr)
2493
{
2494
	void *object;
2495
	struct kmem_cache_cpu *c;
2496
	struct page *page;
2497
	unsigned long tid;
2498

2499 2500
	s = slab_pre_alloc_hook(s, gfpflags);
	if (!s)
A
Akinobu Mita 已提交
2501
		return NULL;
2502 2503 2504 2505 2506 2507
redo:
	/*
	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
	 * enabled. We may switch back and forth between cpus while
	 * reading from one cpu area. That does not matter as long
	 * as we end up on the original cpu again when doing the cmpxchg.
2508
	 *
2509 2510 2511
	 * We should guarantee that tid and kmem_cache are retrieved on
	 * the same cpu. It could be different if CONFIG_PREEMPT so we need
	 * to check if it is matched or not.
2512
	 */
2513 2514 2515
	do {
		tid = this_cpu_read(s->cpu_slab->tid);
		c = raw_cpu_ptr(s->cpu_slab);
2516 2517
	} while (IS_ENABLED(CONFIG_PREEMPT) &&
		 unlikely(tid != READ_ONCE(c->tid)));
2518 2519 2520 2521 2522 2523 2524 2525 2526 2527

	/*
	 * Irqless object alloc/free algorithm used here depends on sequence
	 * of fetching cpu_slab's data. tid should be fetched before anything
	 * on c to guarantee that object and page associated with previous tid
	 * won't be used with current tid. If we fetch tid first, object and
	 * page could be one associated with next tid and our alloc/free
	 * request will be failed. In this case, we will retry. So, no problem.
	 */
	barrier();
2528 2529 2530 2531 2532 2533 2534 2535

	/*
	 * The transaction ids are globally unique per cpu and per operation on
	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
	 * occurs on the right processor and that there was no operation on the
	 * linked list in between.
	 */

2536
	object = c->freelist;
2537
	page = c->page;
D
Dave Hansen 已提交
2538
	if (unlikely(!object || !node_match(page, node))) {
2539
		object = __slab_alloc(s, gfpflags, node, addr, c);
D
Dave Hansen 已提交
2540 2541
		stat(s, ALLOC_SLOWPATH);
	} else {
2542 2543
		void *next_object = get_freepointer_safe(s, object);

2544
		/*
L
Lucas De Marchi 已提交
2545
		 * The cmpxchg will only match if there was no additional
2546 2547
		 * operation and if we are on the right processor.
		 *
2548 2549
		 * The cmpxchg does the following atomically (without lock
		 * semantics!)
2550 2551 2552 2553
		 * 1. Relocate first pointer to the current per cpu area.
		 * 2. Verify that tid and freelist have not been changed
		 * 3. If they were not changed replace tid and freelist
		 *
2554 2555 2556
		 * Since this is without lock semantics the protection is only
		 * against code executing on this cpu *not* from access by
		 * other cpus.
2557
		 */
2558
		if (unlikely(!this_cpu_cmpxchg_double(
2559 2560
				s->cpu_slab->freelist, s->cpu_slab->tid,
				object, tid,
2561
				next_object, next_tid(tid)))) {
2562 2563 2564 2565

			note_cmpxchg_failure("slab_alloc", s, tid);
			goto redo;
		}
2566
		prefetch_freepointer(s, next_object);
2567
		stat(s, ALLOC_FASTPATH);
2568
	}
2569

2570
	if (unlikely(gfpflags & __GFP_ZERO) && object)
2571
		memset(object, 0, s->object_size);
2572

2573
	slab_post_alloc_hook(s, gfpflags, 1, &object);
V
Vegard Nossum 已提交
2574

2575
	return object;
C
Christoph Lameter 已提交
2576 2577
}

2578 2579 2580 2581 2582 2583
static __always_inline void *slab_alloc(struct kmem_cache *s,
		gfp_t gfpflags, unsigned long addr)
{
	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
}

C
Christoph Lameter 已提交
2584 2585
void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
{
2586
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2587

2588 2589
	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
				s->size, gfpflags);
E
Eduard - Gabriel Munteanu 已提交
2590 2591

	return ret;
C
Christoph Lameter 已提交
2592 2593 2594
}
EXPORT_SYMBOL(kmem_cache_alloc);

2595
#ifdef CONFIG_TRACING
2596 2597
void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
{
2598
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2599
	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2600
	kasan_kmalloc(s, ret, size);
2601 2602 2603
	return ret;
}
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
2604 2605
#endif

C
Christoph Lameter 已提交
2606 2607 2608
#ifdef CONFIG_NUMA
void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
{
2609
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2610

2611
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2612
				    s->object_size, s->size, gfpflags, node);
E
Eduard - Gabriel Munteanu 已提交
2613 2614

	return ret;
C
Christoph Lameter 已提交
2615 2616 2617
}
EXPORT_SYMBOL(kmem_cache_alloc_node);

2618
#ifdef CONFIG_TRACING
2619
void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
E
Eduard - Gabriel Munteanu 已提交
2620
				    gfp_t gfpflags,
2621
				    int node, size_t size)
E
Eduard - Gabriel Munteanu 已提交
2622
{
2623
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2624 2625 2626

	trace_kmalloc_node(_RET_IP_, ret,
			   size, s->size, gfpflags, node);
2627 2628

	kasan_kmalloc(s, ret, size);
2629
	return ret;
E
Eduard - Gabriel Munteanu 已提交
2630
}
2631
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
2632
#endif
2633
#endif
E
Eduard - Gabriel Munteanu 已提交
2634

C
Christoph Lameter 已提交
2635
/*
K
Kim Phillips 已提交
2636
 * Slow path handling. This may still be called frequently since objects
2637
 * have a longer lifetime than the cpu slabs in most processing loads.
C
Christoph Lameter 已提交
2638
 *
2639 2640 2641
 * So we still attempt to reduce cache line usage. Just take the slab
 * lock and free the item. If there is no additional partial page
 * handling required then we can return immediately.
C
Christoph Lameter 已提交
2642
 */
2643
static void __slab_free(struct kmem_cache *s, struct page *page,
2644 2645 2646
			void *head, void *tail, int cnt,
			unsigned long addr)

C
Christoph Lameter 已提交
2647 2648
{
	void *prior;
2649 2650 2651 2652
	int was_frozen;
	struct page new;
	unsigned long counters;
	struct kmem_cache_node *n = NULL;
2653
	unsigned long uninitialized_var(flags);
C
Christoph Lameter 已提交
2654

2655
	stat(s, FREE_SLOWPATH);
C
Christoph Lameter 已提交
2656

2657
	if (kmem_cache_debug(s) &&
2658
	    !free_debug_processing(s, page, head, tail, cnt, addr))
2659
		return;
C
Christoph Lameter 已提交
2660

2661
	do {
2662 2663 2664 2665
		if (unlikely(n)) {
			spin_unlock_irqrestore(&n->list_lock, flags);
			n = NULL;
		}
2666 2667
		prior = page->freelist;
		counters = page->counters;
2668
		set_freepointer(s, tail, prior);
2669 2670
		new.counters = counters;
		was_frozen = new.frozen;
2671
		new.inuse -= cnt;
2672
		if ((!new.inuse || !prior) && !was_frozen) {
2673

P
Peter Zijlstra 已提交
2674
			if (kmem_cache_has_cpu_partial(s) && !prior) {
2675 2676

				/*
2677 2678 2679 2680
				 * Slab was on no list before and will be
				 * partially empty
				 * We can defer the list move and instead
				 * freeze it.
2681 2682 2683
				 */
				new.frozen = 1;

P
Peter Zijlstra 已提交
2684
			} else { /* Needs to be taken off a list */
2685

2686
				n = get_node(s, page_to_nid(page));
2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697
				/*
				 * Speculatively acquire the list_lock.
				 * If the cmpxchg does not succeed then we may
				 * drop the list_lock without any processing.
				 *
				 * Otherwise the list_lock will synchronize with
				 * other processors updating the list of slabs.
				 */
				spin_lock_irqsave(&n->list_lock, flags);

			}
2698
		}
C
Christoph Lameter 已提交
2699

2700 2701
	} while (!cmpxchg_double_slab(s, page,
		prior, counters,
2702
		head, new.counters,
2703
		"__slab_free"));
C
Christoph Lameter 已提交
2704

2705
	if (likely(!n)) {
2706 2707 2708 2709 2710

		/*
		 * If we just froze the page then put it onto the
		 * per cpu partial list.
		 */
2711
		if (new.frozen && !was_frozen) {
2712
			put_cpu_partial(s, page, 1);
2713 2714
			stat(s, CPU_PARTIAL_FREE);
		}
2715
		/*
2716 2717 2718
		 * The list lock was not taken therefore no list
		 * activity can be necessary.
		 */
2719 2720 2721 2722
		if (was_frozen)
			stat(s, FREE_FROZEN);
		return;
	}
C
Christoph Lameter 已提交
2723

2724
	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2725 2726
		goto slab_empty;

C
Christoph Lameter 已提交
2727
	/*
2728 2729
	 * Objects left in the slab. If it was not on the partial list before
	 * then add it.
C
Christoph Lameter 已提交
2730
	 */
2731 2732
	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
		if (kmem_cache_debug(s))
P
Peter Zijlstra 已提交
2733
			remove_full(s, n, page);
2734 2735
		add_partial(n, page, DEACTIVATE_TO_TAIL);
		stat(s, FREE_ADD_PARTIAL);
2736
	}
2737
	spin_unlock_irqrestore(&n->list_lock, flags);
C
Christoph Lameter 已提交
2738 2739 2740
	return;

slab_empty:
2741
	if (prior) {
C
Christoph Lameter 已提交
2742
		/*
2743
		 * Slab on the partial list.
C
Christoph Lameter 已提交
2744
		 */
2745
		remove_partial(n, page);
2746
		stat(s, FREE_REMOVE_PARTIAL);
P
Peter Zijlstra 已提交
2747
	} else {
2748
		/* Slab must be on the full list */
P
Peter Zijlstra 已提交
2749 2750
		remove_full(s, n, page);
	}
2751

2752
	spin_unlock_irqrestore(&n->list_lock, flags);
2753
	stat(s, FREE_SLAB);
C
Christoph Lameter 已提交
2754 2755 2756
	discard_slab(s, page);
}

2757 2758 2759 2760 2761 2762 2763 2764 2765 2766
/*
 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
 * can perform fastpath freeing without additional function calls.
 *
 * The fastpath is only possible if we are freeing to the current cpu slab
 * of this processor. This typically the case if we have just allocated
 * the item before.
 *
 * If fastpath is not possible then fall back to __slab_free where we deal
 * with all sorts of special processing.
2767 2768 2769 2770
 *
 * Bulk free of a freelist with several objects (all pointing to the
 * same page) possible by specifying head and tail ptr, plus objects
 * count (cnt). Bulk free indicated by tail pointer being set.
2771
 */
2772 2773 2774
static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
				      void *head, void *tail, int cnt,
				      unsigned long addr)
2775
{
2776
	void *tail_obj = tail ? : head;
2777
	struct kmem_cache_cpu *c;
2778
	unsigned long tid;
2779

2780
	slab_free_freelist_hook(s, head, tail);
2781

2782 2783 2784 2785 2786
redo:
	/*
	 * Determine the currently cpus per cpu slab.
	 * The cpu may change afterward. However that does not matter since
	 * data is retrieved via this pointer. If we are on the same cpu
2787
	 * during the cmpxchg then the free will succeed.
2788
	 */
2789 2790 2791
	do {
		tid = this_cpu_read(s->cpu_slab->tid);
		c = raw_cpu_ptr(s->cpu_slab);
2792 2793
	} while (IS_ENABLED(CONFIG_PREEMPT) &&
		 unlikely(tid != READ_ONCE(c->tid)));
2794

2795 2796
	/* Same with comment on barrier() in slab_alloc_node() */
	barrier();
2797

2798
	if (likely(page == c->page)) {
2799
		set_freepointer(s, tail_obj, c->freelist);
2800

2801
		if (unlikely(!this_cpu_cmpxchg_double(
2802 2803
				s->cpu_slab->freelist, s->cpu_slab->tid,
				c->freelist, tid,
2804
				head, next_tid(tid)))) {
2805 2806 2807 2808

			note_cmpxchg_failure("slab_free", s, tid);
			goto redo;
		}
2809
		stat(s, FREE_FASTPATH);
2810
	} else
2811
		__slab_free(s, page, head, tail_obj, cnt, addr);
2812 2813 2814

}

C
Christoph Lameter 已提交
2815 2816
void kmem_cache_free(struct kmem_cache *s, void *x)
{
2817 2818
	s = cache_from_obj(s, x);
	if (!s)
2819
		return;
2820
	slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
2821
	trace_kmem_cache_free(_RET_IP_, x);
C
Christoph Lameter 已提交
2822 2823 2824
}
EXPORT_SYMBOL(kmem_cache_free);

2825
struct detached_freelist {
2826
	struct page *page;
2827 2828 2829
	void *tail;
	void *freelist;
	int cnt;
2830
	struct kmem_cache *s;
2831
};
2832

2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844
/*
 * This function progressively scans the array with free objects (with
 * a limited look ahead) and extract objects belonging to the same
 * page.  It builds a detached freelist directly within the given
 * page/objects.  This can happen without any need for
 * synchronization, because the objects are owned by running process.
 * The freelist is build up as a single linked list in the objects.
 * The idea is, that this detached freelist can then be bulk
 * transferred to the real freelist(s), but only requiring a single
 * synchronization primitive.  Look ahead in the array is limited due
 * to performance reasons.
 */
2845 2846 2847
static inline
int build_detached_freelist(struct kmem_cache *s, size_t size,
			    void **p, struct detached_freelist *df)
2848 2849 2850 2851
{
	size_t first_skipped_index = 0;
	int lookahead = 3;
	void *object;
2852
	struct page *page;
2853

2854 2855
	/* Always re-init detached_freelist */
	df->page = NULL;
2856

2857 2858
	do {
		object = p[--size];
2859
		/* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
2860
	} while (!object && size);
2861

2862 2863
	if (!object)
		return 0;
2864

2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
	page = virt_to_head_page(object);
	if (!s) {
		/* Handle kalloc'ed objects */
		if (unlikely(!PageSlab(page))) {
			BUG_ON(!PageCompound(page));
			kfree_hook(object);
			__free_kmem_pages(page, compound_order(page));
			p[size] = NULL; /* mark object processed */
			return size;
		}
		/* Derive kmem_cache from object */
		df->s = page->slab_cache;
	} else {
		df->s = cache_from_obj(s, object); /* Support for memcg */
	}
2880

2881
	/* Start new detached freelist */
2882
	df->page = page;
2883
	set_freepointer(df->s, object, NULL);
2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896
	df->tail = object;
	df->freelist = object;
	p[size] = NULL; /* mark object processed */
	df->cnt = 1;

	while (size) {
		object = p[--size];
		if (!object)
			continue; /* Skip processed objects */

		/* df->page is always set at this point */
		if (df->page == virt_to_head_page(object)) {
			/* Opportunity build freelist */
2897
			set_freepointer(df->s, object, df->freelist);
2898 2899 2900 2901 2902
			df->freelist = object;
			df->cnt++;
			p[size] = NULL; /* mark object processed */

			continue;
2903
		}
2904 2905 2906 2907 2908 2909 2910

		/* Limit look ahead search */
		if (!--lookahead)
			break;

		if (!first_skipped_index)
			first_skipped_index = size + 1;
2911
	}
2912 2913 2914 2915 2916

	return first_skipped_index;
}

/* Note that interrupts must be enabled when calling this function. */
2917
void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928
{
	if (WARN_ON(!size))
		return;

	do {
		struct detached_freelist df;

		size = build_detached_freelist(s, size, p, &df);
		if (unlikely(!df.page))
			continue;

2929
		slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
2930
	} while (likely(size));
2931 2932 2933
}
EXPORT_SYMBOL(kmem_cache_free_bulk);

2934
/* Note that interrupts must be enabled when calling this function. */
2935 2936
int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
			  void **p)
2937
{
2938 2939 2940
	struct kmem_cache_cpu *c;
	int i;

2941 2942 2943 2944
	/* memcg and kmem_cache debug support */
	s = slab_pre_alloc_hook(s, flags);
	if (unlikely(!s))
		return false;
2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955
	/*
	 * Drain objects in the per cpu slab, while disabling local
	 * IRQs, which protects against PREEMPT and interrupts
	 * handlers invoking normal fastpath.
	 */
	local_irq_disable();
	c = this_cpu_ptr(s->cpu_slab);

	for (i = 0; i < size; i++) {
		void *object = c->freelist;

2956 2957 2958 2959 2960
		if (unlikely(!object)) {
			/*
			 * Invoking slow path likely have side-effect
			 * of re-populating per CPU c->freelist
			 */
2961
			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
2962
					    _RET_IP_, c);
2963 2964 2965
			if (unlikely(!p[i]))
				goto error;

2966 2967 2968
			c = this_cpu_ptr(s->cpu_slab);
			continue; /* goto for-loop */
		}
2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982
		c->freelist = get_freepointer(s, object);
		p[i] = object;
	}
	c->tid = next_tid(c->tid);
	local_irq_enable();

	/* Clear memory outside IRQ disabled fastpath loop */
	if (unlikely(flags & __GFP_ZERO)) {
		int j;

		for (j = 0; j < i; j++)
			memset(p[j], 0, s->object_size);
	}

2983 2984
	/* memcg and kmem_cache debug support */
	slab_post_alloc_hook(s, flags, size, p);
2985
	return i;
2986 2987
error:
	local_irq_enable();
2988 2989
	slab_post_alloc_hook(s, flags, i, p);
	__kmem_cache_free_bulk(s, i, p);
2990
	return 0;
2991 2992 2993 2994
}
EXPORT_SYMBOL(kmem_cache_alloc_bulk);


C
Christoph Lameter 已提交
2995
/*
C
Christoph Lameter 已提交
2996 2997 2998 2999
 * Object placement in a slab is made very easy because we always start at
 * offset 0. If we tune the size of the object to the alignment then we can
 * get the required alignment by putting one properly sized object after
 * another.
C
Christoph Lameter 已提交
3000 3001 3002 3003
 *
 * Notice that the allocation order determines the sizes of the per cpu
 * caches. Each processor has always one slab available for allocations.
 * Increasing the allocation order reduces the number of times that slabs
C
Christoph Lameter 已提交
3004
 * must be moved on and off the partial lists and is therefore a factor in
C
Christoph Lameter 已提交
3005 3006 3007 3008 3009 3010 3011 3012 3013 3014
 * locking overhead.
 */

/*
 * Mininum / Maximum order of slab pages. This influences locking overhead
 * and slab fragmentation. A higher order reduces the number of partial slabs
 * and increases the number of allocations possible without having to
 * take the list_lock.
 */
static int slub_min_order;
3015
static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3016
static int slub_min_objects;
C
Christoph Lameter 已提交
3017 3018 3019 3020

/*
 * Calculate the order of allocation given an slab object size.
 *
C
Christoph Lameter 已提交
3021 3022 3023 3024
 * The order of allocation has significant impact on performance and other
 * system components. Generally order 0 allocations should be preferred since
 * order 0 does not cause fragmentation in the page allocator. Larger objects
 * be problematic to put into order 0 slabs because there may be too much
C
Christoph Lameter 已提交
3025
 * unused space left. We go to a higher order if more than 1/16th of the slab
C
Christoph Lameter 已提交
3026 3027 3028 3029 3030 3031
 * would be wasted.
 *
 * In order to reach satisfactory performance we must ensure that a minimum
 * number of objects is in one slab. Otherwise we may generate too much
 * activity on the partial lists which requires taking the list_lock. This is
 * less a concern for large slabs though which are rarely used.
C
Christoph Lameter 已提交
3032
 *
C
Christoph Lameter 已提交
3033 3034 3035 3036
 * slub_max_order specifies the order where we begin to stop considering the
 * number of objects in a slab as critical. If we reach slub_max_order then
 * we try to keep the page order as low as possible. So we accept more waste
 * of space in favor of a small page order.
C
Christoph Lameter 已提交
3037
 *
C
Christoph Lameter 已提交
3038 3039 3040 3041
 * Higher order allocations also allow the placement of more objects in a
 * slab and thereby reduce object handling overhead. If the user has
 * requested a higher mininum order then we start with that one instead of
 * the smallest order which will fit the object.
C
Christoph Lameter 已提交
3042
 */
3043
static inline int slab_order(int size, int min_objects,
3044
				int max_order, int fract_leftover, int reserved)
C
Christoph Lameter 已提交
3045 3046 3047
{
	int order;
	int rem;
3048
	int min_order = slub_min_order;
C
Christoph Lameter 已提交
3049

3050
	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
3051
		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3052

3053
	for (order = max(min_order, get_order(min_objects * size + reserved));
3054
			order <= max_order; order++) {
C
Christoph Lameter 已提交
3055

3056
		unsigned long slab_size = PAGE_SIZE << order;
C
Christoph Lameter 已提交
3057

3058
		rem = (slab_size - reserved) % size;
C
Christoph Lameter 已提交
3059

3060
		if (rem <= slab_size / fract_leftover)
C
Christoph Lameter 已提交
3061 3062
			break;
	}
C
Christoph Lameter 已提交
3063

C
Christoph Lameter 已提交
3064 3065 3066
	return order;
}

3067
static inline int calculate_order(int size, int reserved)
3068 3069 3070 3071
{
	int order;
	int min_objects;
	int fraction;
3072
	int max_objects;
3073 3074 3075 3076 3077 3078

	/*
	 * Attempt to find best configuration for a slab. This
	 * works by first attempting to generate a layout with
	 * the best configuration and backing off gradually.
	 *
3079
	 * First we increase the acceptable waste in a slab. Then
3080 3081 3082
	 * we reduce the minimum objects required in a slab.
	 */
	min_objects = slub_min_objects;
3083 3084
	if (!min_objects)
		min_objects = 4 * (fls(nr_cpu_ids) + 1);
3085
	max_objects = order_objects(slub_max_order, size, reserved);
3086 3087
	min_objects = min(min_objects, max_objects);

3088
	while (min_objects > 1) {
C
Christoph Lameter 已提交
3089
		fraction = 16;
3090 3091
		while (fraction >= 4) {
			order = slab_order(size, min_objects,
3092
					slub_max_order, fraction, reserved);
3093 3094 3095 3096
			if (order <= slub_max_order)
				return order;
			fraction /= 2;
		}
3097
		min_objects--;
3098 3099 3100 3101 3102 3103
	}

	/*
	 * We were unable to place multiple objects in a slab. Now
	 * lets see if we can place a single object there.
	 */
3104
	order = slab_order(size, 1, slub_max_order, 1, reserved);
3105 3106 3107 3108 3109 3110
	if (order <= slub_max_order)
		return order;

	/*
	 * Doh this slab cannot be placed using slub_max_order.
	 */
3111
	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
D
David Rientjes 已提交
3112
	if (order < MAX_ORDER)
3113 3114 3115 3116
		return order;
	return -ENOSYS;
}

3117
static void
3118
init_kmem_cache_node(struct kmem_cache_node *n)
C
Christoph Lameter 已提交
3119 3120 3121 3122
{
	n->nr_partial = 0;
	spin_lock_init(&n->list_lock);
	INIT_LIST_HEAD(&n->partial);
3123
#ifdef CONFIG_SLUB_DEBUG
3124
	atomic_long_set(&n->nr_slabs, 0);
3125
	atomic_long_set(&n->total_objects, 0);
3126
	INIT_LIST_HEAD(&n->full);
3127
#endif
C
Christoph Lameter 已提交
3128 3129
}

3130
static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3131
{
3132
	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3133
			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3134

3135
	/*
3136 3137
	 * Must align to double word boundary for the double cmpxchg
	 * instructions to work; see __pcpu_double_call_return_bool().
3138
	 */
3139 3140
	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
				     2 * sizeof(void *));
3141 3142 3143 3144 3145

	if (!s->cpu_slab)
		return 0;

	init_kmem_cache_cpus(s);
3146

3147
	return 1;
3148 3149
}

3150 3151
static struct kmem_cache *kmem_cache_node;

C
Christoph Lameter 已提交
3152 3153 3154 3155 3156
/*
 * No kmalloc_node yet so do it by hand. We know that this is the first
 * slab on the node for this slabcache. There are no concurrent accesses
 * possible.
 *
Z
Zhi Yong Wu 已提交
3157 3158
 * Note that this function only works on the kmem_cache_node
 * when allocating for the kmem_cache_node. This is used for bootstrapping
3159
 * memory on a fresh node that has no slab structures yet.
C
Christoph Lameter 已提交
3160
 */
3161
static void early_kmem_cache_node_alloc(int node)
C
Christoph Lameter 已提交
3162 3163 3164 3165
{
	struct page *page;
	struct kmem_cache_node *n;

3166
	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
C
Christoph Lameter 已提交
3167

3168
	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
C
Christoph Lameter 已提交
3169 3170

	BUG_ON(!page);
3171
	if (page_to_nid(page) != node) {
3172 3173
		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3174 3175
	}

C
Christoph Lameter 已提交
3176 3177
	n = page->freelist;
	BUG_ON(!n);
3178
	page->freelist = get_freepointer(kmem_cache_node, n);
3179
	page->inuse = 1;
3180
	page->frozen = 0;
3181
	kmem_cache_node->node[node] = n;
3182
#ifdef CONFIG_SLUB_DEBUG
3183
	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3184
	init_tracking(kmem_cache_node, n);
3185
#endif
3186
	kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node));
3187
	init_kmem_cache_node(n);
3188
	inc_slabs_node(kmem_cache_node, node, page->objects);
C
Christoph Lameter 已提交
3189

3190
	/*
3191 3192
	 * No locks need to be taken here as it has just been
	 * initialized and there is no concurrent access.
3193
	 */
3194
	__add_partial(n, page, DEACTIVATE_TO_HEAD);
C
Christoph Lameter 已提交
3195 3196 3197 3198 3199
}

static void free_kmem_cache_nodes(struct kmem_cache *s)
{
	int node;
C
Christoph Lameter 已提交
3200
	struct kmem_cache_node *n;
C
Christoph Lameter 已提交
3201

C
Christoph Lameter 已提交
3202 3203
	for_each_kmem_cache_node(s, node, n) {
		kmem_cache_free(kmem_cache_node, n);
C
Christoph Lameter 已提交
3204 3205 3206 3207
		s->node[node] = NULL;
	}
}

3208 3209 3210 3211 3212 3213
void __kmem_cache_release(struct kmem_cache *s)
{
	free_percpu(s->cpu_slab);
	free_kmem_cache_nodes(s);
}

3214
static int init_kmem_cache_nodes(struct kmem_cache *s)
C
Christoph Lameter 已提交
3215 3216 3217
{
	int node;

C
Christoph Lameter 已提交
3218
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
3219 3220
		struct kmem_cache_node *n;

3221
		if (slab_state == DOWN) {
3222
			early_kmem_cache_node_alloc(node);
3223 3224
			continue;
		}
3225
		n = kmem_cache_alloc_node(kmem_cache_node,
3226
						GFP_KERNEL, node);
C
Christoph Lameter 已提交
3227

3228 3229 3230
		if (!n) {
			free_kmem_cache_nodes(s);
			return 0;
C
Christoph Lameter 已提交
3231
		}
3232

C
Christoph Lameter 已提交
3233
		s->node[node] = n;
3234
		init_kmem_cache_node(n);
C
Christoph Lameter 已提交
3235 3236 3237 3238
	}
	return 1;
}

3239
static void set_min_partial(struct kmem_cache *s, unsigned long min)
3240 3241 3242 3243 3244 3245 3246 3247
{
	if (min < MIN_PARTIAL)
		min = MIN_PARTIAL;
	else if (min > MAX_PARTIAL)
		min = MAX_PARTIAL;
	s->min_partial = min;
}

C
Christoph Lameter 已提交
3248 3249 3250 3251
/*
 * calculate_sizes() determines the order and the distribution of data within
 * a slab object.
 */
3252
static int calculate_sizes(struct kmem_cache *s, int forced_order)
C
Christoph Lameter 已提交
3253 3254
{
	unsigned long flags = s->flags;
3255
	unsigned long size = s->object_size;
3256
	int order;
C
Christoph Lameter 已提交
3257

3258 3259 3260 3261 3262 3263 3264 3265
	/*
	 * Round up object size to the next word boundary. We can only
	 * place the free pointer at word boundaries and this determines
	 * the possible location of the free pointer.
	 */
	size = ALIGN(size, sizeof(void *));

#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
3266 3267 3268 3269 3270 3271
	/*
	 * Determine if we can poison the object itself. If the user of
	 * the slab may touch the object after free or before allocation
	 * then we should never poison the object itself.
	 */
	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
3272
			!s->ctor)
C
Christoph Lameter 已提交
3273 3274 3275 3276 3277 3278
		s->flags |= __OBJECT_POISON;
	else
		s->flags &= ~__OBJECT_POISON;


	/*
C
Christoph Lameter 已提交
3279
	 * If we are Redzoning then check if there is some space between the
C
Christoph Lameter 已提交
3280
	 * end of the object and the free pointer. If not then add an
C
Christoph Lameter 已提交
3281
	 * additional word to have some bytes to store Redzone information.
C
Christoph Lameter 已提交
3282
	 */
3283
	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
C
Christoph Lameter 已提交
3284
		size += sizeof(void *);
C
Christoph Lameter 已提交
3285
#endif
C
Christoph Lameter 已提交
3286 3287

	/*
C
Christoph Lameter 已提交
3288 3289
	 * With that we have determined the number of bytes in actual use
	 * by the object. This is the potential offset to the free pointer.
C
Christoph Lameter 已提交
3290 3291 3292 3293
	 */
	s->inuse = size;

	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
3294
		s->ctor)) {
C
Christoph Lameter 已提交
3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306
		/*
		 * Relocate free pointer after the object if it is not
		 * permitted to overwrite the first word of the object on
		 * kmem_cache_free.
		 *
		 * This is the case if we do RCU, have a constructor or
		 * destructor or are poisoning the objects.
		 */
		s->offset = size;
		size += sizeof(void *);
	}

3307
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
3308 3309 3310 3311 3312 3313 3314
	if (flags & SLAB_STORE_USER)
		/*
		 * Need to store information about allocs and frees after
		 * the object.
		 */
		size += 2 * sizeof(struct track);

J
Joonsoo Kim 已提交
3315
	if (flags & SLAB_RED_ZONE) {
C
Christoph Lameter 已提交
3316 3317 3318 3319
		/*
		 * Add some empty padding so that we can catch
		 * overwrites from earlier objects rather than let
		 * tracking information or the free pointer be
3320
		 * corrupted if a user writes before the start
C
Christoph Lameter 已提交
3321 3322 3323
		 * of the object.
		 */
		size += sizeof(void *);
J
Joonsoo Kim 已提交
3324 3325 3326 3327 3328

		s->red_left_pad = sizeof(void *);
		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
		size += s->red_left_pad;
	}
C
Christoph Lameter 已提交
3329
#endif
C
Christoph Lameter 已提交
3330

C
Christoph Lameter 已提交
3331 3332 3333 3334 3335
	/*
	 * SLUB stores one object immediately after another beginning from
	 * offset 0. In order to align the objects we have to simply size
	 * each object to conform to the alignment.
	 */
3336
	size = ALIGN(size, s->align);
C
Christoph Lameter 已提交
3337
	s->size = size;
3338 3339 3340
	if (forced_order >= 0)
		order = forced_order;
	else
3341
		order = calculate_order(size, s->reserved);
C
Christoph Lameter 已提交
3342

3343
	if (order < 0)
C
Christoph Lameter 已提交
3344 3345
		return 0;

3346
	s->allocflags = 0;
3347
	if (order)
3348 3349 3350
		s->allocflags |= __GFP_COMP;

	if (s->flags & SLAB_CACHE_DMA)
3351
		s->allocflags |= GFP_DMA;
3352 3353 3354 3355

	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		s->allocflags |= __GFP_RECLAIMABLE;

C
Christoph Lameter 已提交
3356 3357 3358
	/*
	 * Determine the number of objects per slab
	 */
3359 3360
	s->oo = oo_make(order, size, s->reserved);
	s->min = oo_make(get_order(size), size, s->reserved);
3361 3362
	if (oo_objects(s->oo) > oo_objects(s->max))
		s->max = s->oo;
C
Christoph Lameter 已提交
3363

3364
	return !!oo_objects(s->oo);
C
Christoph Lameter 已提交
3365 3366
}

3367
static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
C
Christoph Lameter 已提交
3368
{
3369
	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3370
	s->reserved = 0;
C
Christoph Lameter 已提交
3371

3372 3373
	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
		s->reserved = sizeof(struct rcu_head);
C
Christoph Lameter 已提交
3374

3375
	if (!calculate_sizes(s, -1))
C
Christoph Lameter 已提交
3376
		goto error;
3377 3378 3379 3380 3381
	if (disable_higher_order_debug) {
		/*
		 * Disable debugging flags that store metadata if the min slab
		 * order increased.
		 */
3382
		if (get_order(s->size) > get_order(s->object_size)) {
3383 3384 3385 3386 3387 3388
			s->flags &= ~DEBUG_METADATA_FLAGS;
			s->offset = 0;
			if (!calculate_sizes(s, -1))
				goto error;
		}
	}
C
Christoph Lameter 已提交
3389

3390 3391
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3392
	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3393 3394 3395 3396
		/* Enable fast mode */
		s->flags |= __CMPXCHG_DOUBLE;
#endif

3397 3398 3399 3400
	/*
	 * The larger the object size is, the more pages we want on the partial
	 * list to avoid pounding the page allocator excessively.
	 */
3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415
	set_min_partial(s, ilog2(s->size) / 2);

	/*
	 * cpu_partial determined the maximum number of objects kept in the
	 * per cpu partial lists of a processor.
	 *
	 * Per cpu partial lists mainly contain slabs that just have one
	 * object freed. If they are used for allocation then they can be
	 * filled up again with minimal effort. The slab will never hit the
	 * per node partial lists and therefore no locking will be required.
	 *
	 * This setting also determines
	 *
	 * A) The number of objects from per cpu partial slabs dumped to the
	 *    per node list when we reach the limit.
3416
	 * B) The number of objects in cpu partial slabs to extract from the
3417 3418
	 *    per node list when we run out of per cpu objects. We only fetch
	 *    50% to keep some capacity around for frees.
3419
	 */
3420
	if (!kmem_cache_has_cpu_partial(s))
3421 3422
		s->cpu_partial = 0;
	else if (s->size >= PAGE_SIZE)
3423 3424 3425 3426 3427 3428 3429 3430
		s->cpu_partial = 2;
	else if (s->size >= 1024)
		s->cpu_partial = 6;
	else if (s->size >= 256)
		s->cpu_partial = 13;
	else
		s->cpu_partial = 30;

C
Christoph Lameter 已提交
3431
#ifdef CONFIG_NUMA
3432
	s->remote_node_defrag_ratio = 1000;
C
Christoph Lameter 已提交
3433
#endif
3434
	if (!init_kmem_cache_nodes(s))
3435
		goto error;
C
Christoph Lameter 已提交
3436

3437
	if (alloc_kmem_cache_cpus(s))
3438
		return 0;
3439

3440
	free_kmem_cache_nodes(s);
C
Christoph Lameter 已提交
3441 3442 3443 3444
error:
	if (flags & SLAB_PANIC)
		panic("Cannot create slab %s size=%lu realsize=%u "
			"order=%u offset=%u flags=%lx\n",
3445 3446
			s->name, (unsigned long)s->size, s->size,
			oo_order(s->oo), s->offset, flags);
3447
	return -EINVAL;
C
Christoph Lameter 已提交
3448 3449
}

3450 3451 3452 3453 3454 3455
static void list_slab_objects(struct kmem_cache *s, struct page *page,
							const char *text)
{
#ifdef CONFIG_SLUB_DEBUG
	void *addr = page_address(page);
	void *p;
N
Namhyung Kim 已提交
3456 3457
	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
				     sizeof(long), GFP_ATOMIC);
E
Eric Dumazet 已提交
3458 3459
	if (!map)
		return;
3460
	slab_err(s, page, text, s->name);
3461 3462
	slab_lock(page);

3463
	get_map(s, page, map);
3464 3465 3466
	for_each_object(p, s, addr, page->objects) {

		if (!test_bit(slab_index(p, s, addr), map)) {
3467
			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3468 3469 3470 3471
			print_tracking(s, p);
		}
	}
	slab_unlock(page);
E
Eric Dumazet 已提交
3472
	kfree(map);
3473 3474 3475
#endif
}

C
Christoph Lameter 已提交
3476
/*
C
Christoph Lameter 已提交
3477
 * Attempt to free all partial slabs on a node.
3478 3479
 * This is called from __kmem_cache_shutdown(). We must take list_lock
 * because sysfs file might still access partial list after the shutdowning.
C
Christoph Lameter 已提交
3480
 */
C
Christoph Lameter 已提交
3481
static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
C
Christoph Lameter 已提交
3482 3483 3484
{
	struct page *page, *h;

3485 3486
	BUG_ON(irqs_disabled());
	spin_lock_irq(&n->list_lock);
3487
	list_for_each_entry_safe(page, h, &n->partial, lru) {
C
Christoph Lameter 已提交
3488
		if (!page->inuse) {
3489
			remove_partial(n, page);
C
Christoph Lameter 已提交
3490
			discard_slab(s, page);
3491 3492
		} else {
			list_slab_objects(s, page,
3493
			"Objects remaining in %s on __kmem_cache_shutdown()");
C
Christoph Lameter 已提交
3494
		}
3495
	}
3496
	spin_unlock_irq(&n->list_lock);
C
Christoph Lameter 已提交
3497 3498 3499
}

/*
C
Christoph Lameter 已提交
3500
 * Release all resources used by a slab cache.
C
Christoph Lameter 已提交
3501
 */
3502
int __kmem_cache_shutdown(struct kmem_cache *s)
C
Christoph Lameter 已提交
3503 3504
{
	int node;
C
Christoph Lameter 已提交
3505
	struct kmem_cache_node *n;
C
Christoph Lameter 已提交
3506 3507 3508

	flush_all(s);
	/* Attempt to free all objects */
C
Christoph Lameter 已提交
3509
	for_each_kmem_cache_node(s, node, n) {
C
Christoph Lameter 已提交
3510 3511
		free_partial(s, n);
		if (n->nr_partial || slabs_node(s, node))
C
Christoph Lameter 已提交
3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522
			return 1;
	}
	return 0;
}

/********************************************************************
 *		Kmalloc subsystem
 *******************************************************************/

static int __init setup_slub_min_order(char *str)
{
P
Pekka Enberg 已提交
3523
	get_option(&str, &slub_min_order);
C
Christoph Lameter 已提交
3524 3525 3526 3527 3528 3529 3530 3531

	return 1;
}

__setup("slub_min_order=", setup_slub_min_order);

static int __init setup_slub_max_order(char *str)
{
P
Pekka Enberg 已提交
3532
	get_option(&str, &slub_max_order);
D
David Rientjes 已提交
3533
	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
C
Christoph Lameter 已提交
3534 3535 3536 3537 3538 3539 3540 3541

	return 1;
}

__setup("slub_max_order=", setup_slub_max_order);

static int __init setup_slub_min_objects(char *str)
{
P
Pekka Enberg 已提交
3542
	get_option(&str, &slub_min_objects);
C
Christoph Lameter 已提交
3543 3544 3545 3546 3547 3548 3549 3550

	return 1;
}

__setup("slub_min_objects=", setup_slub_min_objects);

void *__kmalloc(size_t size, gfp_t flags)
{
3551
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
3552
	void *ret;
C
Christoph Lameter 已提交
3553

3554
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3555
		return kmalloc_large(size, flags);
3556

3557
	s = kmalloc_slab(size, flags);
3558 3559

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3560 3561
		return s;

3562
	ret = slab_alloc(s, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3563

3564
	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3565

3566 3567
	kasan_kmalloc(s, ret, size);

E
Eduard - Gabriel Munteanu 已提交
3568
	return ret;
C
Christoph Lameter 已提交
3569 3570 3571
}
EXPORT_SYMBOL(__kmalloc);

3572
#ifdef CONFIG_NUMA
3573 3574
static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
{
3575
	struct page *page;
3576
	void *ptr = NULL;
3577

V
Vladimir Davydov 已提交
3578 3579
	flags |= __GFP_COMP | __GFP_NOTRACK;
	page = alloc_kmem_pages_node(node, flags, get_order(size));
3580
	if (page)
3581 3582
		ptr = page_address(page);

3583
	kmalloc_large_node_hook(ptr, size, flags);
3584
	return ptr;
3585 3586
}

C
Christoph Lameter 已提交
3587 3588
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3589
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
3590
	void *ret;
C
Christoph Lameter 已提交
3591

3592
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
E
Eduard - Gabriel Munteanu 已提交
3593 3594
		ret = kmalloc_large_node(size, flags, node);

3595 3596 3597
		trace_kmalloc_node(_RET_IP_, ret,
				   size, PAGE_SIZE << get_order(size),
				   flags, node);
E
Eduard - Gabriel Munteanu 已提交
3598 3599 3600

		return ret;
	}
3601

3602
	s = kmalloc_slab(size, flags);
3603 3604

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3605 3606
		return s;

3607
	ret = slab_alloc_node(s, flags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3608

3609
	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
E
Eduard - Gabriel Munteanu 已提交
3610

3611 3612
	kasan_kmalloc(s, ret, size);

E
Eduard - Gabriel Munteanu 已提交
3613
	return ret;
C
Christoph Lameter 已提交
3614 3615 3616 3617
}
EXPORT_SYMBOL(__kmalloc_node);
#endif

3618
static size_t __ksize(const void *object)
C
Christoph Lameter 已提交
3619
{
3620
	struct page *page;
C
Christoph Lameter 已提交
3621

3622
	if (unlikely(object == ZERO_SIZE_PTR))
3623 3624
		return 0;

3625 3626
	page = virt_to_head_page(object);

P
Pekka Enberg 已提交
3627 3628
	if (unlikely(!PageSlab(page))) {
		WARN_ON(!PageCompound(page));
3629
		return PAGE_SIZE << compound_order(page);
P
Pekka Enberg 已提交
3630
	}
C
Christoph Lameter 已提交
3631

3632
	return slab_ksize(page->slab_cache);
C
Christoph Lameter 已提交
3633
}
3634 3635 3636 3637 3638 3639 3640 3641 3642

size_t ksize(const void *object)
{
	size_t size = __ksize(object);
	/* We assume that ksize callers could use whole allocated area,
	   so we need unpoison this area. */
	kasan_krealloc(object, size);
	return size;
}
K
Kirill A. Shutemov 已提交
3643
EXPORT_SYMBOL(ksize);
C
Christoph Lameter 已提交
3644 3645 3646 3647

void kfree(const void *x)
{
	struct page *page;
3648
	void *object = (void *)x;
C
Christoph Lameter 已提交
3649

3650 3651
	trace_kfree(_RET_IP_, x);

3652
	if (unlikely(ZERO_OR_NULL_PTR(x)))
C
Christoph Lameter 已提交
3653 3654
		return;

3655
	page = virt_to_head_page(x);
3656
	if (unlikely(!PageSlab(page))) {
3657
		BUG_ON(!PageCompound(page));
3658
		kfree_hook(x);
V
Vladimir Davydov 已提交
3659
		__free_kmem_pages(page, compound_order(page));
3660 3661
		return;
	}
3662
	slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
C
Christoph Lameter 已提交
3663 3664 3665
}
EXPORT_SYMBOL(kfree);

3666 3667
#define SHRINK_PROMOTE_MAX 32

3668
/*
3669 3670 3671
 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
 * up most to the head of the partial lists. New allocations will then
 * fill those up and thus they can be removed from the partial lists.
C
Christoph Lameter 已提交
3672 3673 3674 3675
 *
 * The slabs with the least items are placed last. This results in them
 * being allocated from last increasing the chance that the last objects
 * are freed in them.
3676
 */
3677
int __kmem_cache_shrink(struct kmem_cache *s, bool deactivate)
3678 3679 3680 3681 3682 3683
{
	int node;
	int i;
	struct kmem_cache_node *n;
	struct page *page;
	struct page *t;
3684 3685
	struct list_head discard;
	struct list_head promote[SHRINK_PROMOTE_MAX];
3686
	unsigned long flags;
3687
	int ret = 0;
3688

3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703
	if (deactivate) {
		/*
		 * Disable empty slabs caching. Used to avoid pinning offline
		 * memory cgroups by kmem pages that can be freed.
		 */
		s->cpu_partial = 0;
		s->min_partial = 0;

		/*
		 * s->cpu_partial is checked locklessly (see put_cpu_partial),
		 * so we have to make sure the change is visible.
		 */
		kick_all_cpus_sync();
	}

3704
	flush_all(s);
C
Christoph Lameter 已提交
3705
	for_each_kmem_cache_node(s, node, n) {
3706 3707 3708
		INIT_LIST_HEAD(&discard);
		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
			INIT_LIST_HEAD(promote + i);
3709 3710 3711 3712

		spin_lock_irqsave(&n->list_lock, flags);

		/*
3713
		 * Build lists of slabs to discard or promote.
3714
		 *
C
Christoph Lameter 已提交
3715 3716
		 * Note that concurrent frees may occur while we hold the
		 * list_lock. page->inuse here is the upper limit.
3717 3718
		 */
		list_for_each_entry_safe(page, t, &n->partial, lru) {
3719 3720 3721 3722 3723 3724 3725 3726 3727 3728
			int free = page->objects - page->inuse;

			/* Do not reread page->inuse */
			barrier();

			/* We do not keep full slabs on the list */
			BUG_ON(free <= 0);

			if (free == page->objects) {
				list_move(&page->lru, &discard);
3729
				n->nr_partial--;
3730 3731
			} else if (free <= SHRINK_PROMOTE_MAX)
				list_move(&page->lru, promote + free - 1);
3732 3733 3734
		}

		/*
3735 3736
		 * Promote the slabs filled up most to the head of the
		 * partial list.
3737
		 */
3738 3739
		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
			list_splice(promote + i, &n->partial);
3740 3741

		spin_unlock_irqrestore(&n->list_lock, flags);
3742 3743

		/* Release empty slabs */
3744
		list_for_each_entry_safe(page, t, &discard, lru)
3745
			discard_slab(s, page);
3746 3747 3748

		if (slabs_node(s, node))
			ret = 1;
3749 3750
	}

3751
	return ret;
3752 3753
}

3754 3755 3756 3757
static int slab_mem_going_offline_callback(void *arg)
{
	struct kmem_cache *s;

3758
	mutex_lock(&slab_mutex);
3759
	list_for_each_entry(s, &slab_caches, list)
3760
		__kmem_cache_shrink(s, false);
3761
	mutex_unlock(&slab_mutex);
3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772

	return 0;
}

static void slab_mem_offline_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
	int offline_node;

3773
	offline_node = marg->status_change_nid_normal;
3774 3775 3776 3777 3778 3779 3780 3781

	/*
	 * If the node still has available memory. we need kmem_cache_node
	 * for it yet.
	 */
	if (offline_node < 0)
		return;

3782
	mutex_lock(&slab_mutex);
3783 3784 3785 3786 3787 3788
	list_for_each_entry(s, &slab_caches, list) {
		n = get_node(s, offline_node);
		if (n) {
			/*
			 * if n->nr_slabs > 0, slabs still exist on the node
			 * that is going down. We were unable to free them,
3789
			 * and offline_pages() function shouldn't call this
3790 3791
			 * callback. So, we must fail.
			 */
3792
			BUG_ON(slabs_node(s, offline_node));
3793 3794

			s->node[offline_node] = NULL;
3795
			kmem_cache_free(kmem_cache_node, n);
3796 3797
		}
	}
3798
	mutex_unlock(&slab_mutex);
3799 3800 3801 3802 3803 3804 3805
}

static int slab_mem_going_online_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
3806
	int nid = marg->status_change_nid_normal;
3807 3808 3809 3810 3811 3812 3813 3814 3815 3816
	int ret = 0;

	/*
	 * If the node's memory is already available, then kmem_cache_node is
	 * already created. Nothing to do.
	 */
	if (nid < 0)
		return 0;

	/*
3817
	 * We are bringing a node online. No memory is available yet. We must
3818 3819 3820
	 * allocate a kmem_cache_node structure in order to bring the node
	 * online.
	 */
3821
	mutex_lock(&slab_mutex);
3822 3823 3824 3825 3826 3827
	list_for_each_entry(s, &slab_caches, list) {
		/*
		 * XXX: kmem_cache_alloc_node will fallback to other nodes
		 *      since memory is not yet available from the node that
		 *      is brought up.
		 */
3828
		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3829 3830 3831 3832
		if (!n) {
			ret = -ENOMEM;
			goto out;
		}
3833
		init_kmem_cache_node(n);
3834 3835 3836
		s->node[nid] = n;
	}
out:
3837
	mutex_unlock(&slab_mutex);
3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860
	return ret;
}

static int slab_memory_callback(struct notifier_block *self,
				unsigned long action, void *arg)
{
	int ret = 0;

	switch (action) {
	case MEM_GOING_ONLINE:
		ret = slab_mem_going_online_callback(arg);
		break;
	case MEM_GOING_OFFLINE:
		ret = slab_mem_going_offline_callback(arg);
		break;
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
		slab_mem_offline_callback(arg);
		break;
	case MEM_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
3861 3862 3863 3864
	if (ret)
		ret = notifier_from_errno(ret);
	else
		ret = NOTIFY_OK;
3865 3866 3867
	return ret;
}

3868 3869 3870 3871
static struct notifier_block slab_memory_callback_nb = {
	.notifier_call = slab_memory_callback,
	.priority = SLAB_CALLBACK_PRI,
};
3872

C
Christoph Lameter 已提交
3873 3874 3875 3876
/********************************************************************
 *			Basic setup of slabs
 *******************************************************************/

3877 3878
/*
 * Used for early kmem_cache structures that were allocated using
3879 3880
 * the page allocator. Allocate them properly then fix up the pointers
 * that may be pointing to the wrong kmem_cache structure.
3881 3882
 */

3883
static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3884 3885
{
	int node;
3886
	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
C
Christoph Lameter 已提交
3887
	struct kmem_cache_node *n;
3888

3889
	memcpy(s, static_cache, kmem_cache->object_size);
3890

3891 3892 3893 3894 3895 3896
	/*
	 * This runs very early, and only the boot processor is supposed to be
	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
	 * IPIs around.
	 */
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
3897
	for_each_kmem_cache_node(s, node, n) {
3898 3899
		struct page *p;

C
Christoph Lameter 已提交
3900 3901
		list_for_each_entry(p, &n->partial, lru)
			p->slab_cache = s;
3902

L
Li Zefan 已提交
3903
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
3904 3905
		list_for_each_entry(p, &n->full, lru)
			p->slab_cache = s;
3906 3907
#endif
	}
3908
	slab_init_memcg_params(s);
3909 3910
	list_add(&s->list, &slab_caches);
	return s;
3911 3912
}

C
Christoph Lameter 已提交
3913 3914
void __init kmem_cache_init(void)
{
3915 3916
	static __initdata struct kmem_cache boot_kmem_cache,
		boot_kmem_cache_node;
3917

3918 3919 3920
	if (debug_guardpage_minorder())
		slub_max_order = 0;

3921 3922
	kmem_cache_node = &boot_kmem_cache_node;
	kmem_cache = &boot_kmem_cache;
3923

3924 3925
	create_boot_cache(kmem_cache_node, "kmem_cache_node",
		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3926

3927
	register_hotmemory_notifier(&slab_memory_callback_nb);
C
Christoph Lameter 已提交
3928 3929 3930 3931

	/* Able to allocate the per node structures */
	slab_state = PARTIAL;

3932 3933 3934 3935
	create_boot_cache(kmem_cache, "kmem_cache",
			offsetof(struct kmem_cache, node) +
				nr_node_ids * sizeof(struct kmem_cache_node *),
		       SLAB_HWCACHE_ALIGN);
3936

3937
	kmem_cache = bootstrap(&boot_kmem_cache);
C
Christoph Lameter 已提交
3938

3939 3940 3941 3942 3943
	/*
	 * Allocate kmem_cache_node properly from the kmem_cache slab.
	 * kmem_cache_node is separately allocated so no need to
	 * update any list pointers.
	 */
3944
	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3945 3946

	/* Now we can use the kmem_cache to allocate kmalloc slabs */
3947
	setup_kmalloc_cache_index_table();
3948
	create_kmalloc_caches(0);
C
Christoph Lameter 已提交
3949 3950 3951

#ifdef CONFIG_SMP
	register_cpu_notifier(&slab_notifier);
3952
#endif
C
Christoph Lameter 已提交
3953

3954
	pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
3955
		cache_line_size(),
C
Christoph Lameter 已提交
3956 3957 3958 3959
		slub_min_order, slub_max_order, slub_min_objects,
		nr_cpu_ids, nr_node_ids);
}

3960 3961 3962 3963
void __init kmem_cache_init_late(void)
{
}

3964
struct kmem_cache *
3965 3966
__kmem_cache_alias(const char *name, size_t size, size_t align,
		   unsigned long flags, void (*ctor)(void *))
C
Christoph Lameter 已提交
3967
{
3968
	struct kmem_cache *s, *c;
C
Christoph Lameter 已提交
3969

3970
	s = find_mergeable(size, align, flags, name, ctor);
C
Christoph Lameter 已提交
3971 3972
	if (s) {
		s->refcount++;
3973

C
Christoph Lameter 已提交
3974 3975 3976 3977
		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
3978
		s->object_size = max(s->object_size, (int)size);
C
Christoph Lameter 已提交
3979
		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
C
Christoph Lameter 已提交
3980

3981
		for_each_memcg_cache(c, s) {
3982 3983 3984 3985 3986
			c->object_size = s->object_size;
			c->inuse = max_t(int, c->inuse,
					 ALIGN(size, sizeof(void *)));
		}

3987 3988
		if (sysfs_slab_alias(s, name)) {
			s->refcount--;
3989
			s = NULL;
3990
		}
3991
	}
C
Christoph Lameter 已提交
3992

3993 3994
	return s;
}
P
Pekka Enberg 已提交
3995

3996
int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3997
{
3998 3999 4000 4001 4002
	int err;

	err = kmem_cache_open(s, flags);
	if (err)
		return err;
4003

4004 4005 4006 4007
	/* Mutex is not taken during early boot */
	if (slab_state <= UP)
		return 0;

4008
	memcg_propagate_slab_attrs(s);
4009 4010
	err = sysfs_slab_add(s);
	if (err)
4011
		__kmem_cache_release(s);
4012

4013
	return err;
C
Christoph Lameter 已提交
4014 4015 4016 4017
}

#ifdef CONFIG_SMP
/*
C
Christoph Lameter 已提交
4018 4019
 * Use the cpu notifier to insure that the cpu slabs are flushed when
 * necessary.
C
Christoph Lameter 已提交
4020
 */
4021
static int slab_cpuup_callback(struct notifier_block *nfb,
C
Christoph Lameter 已提交
4022 4023 4024
		unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
4025 4026
	struct kmem_cache *s;
	unsigned long flags;
C
Christoph Lameter 已提交
4027 4028 4029

	switch (action) {
	case CPU_UP_CANCELED:
4030
	case CPU_UP_CANCELED_FROZEN:
C
Christoph Lameter 已提交
4031
	case CPU_DEAD:
4032
	case CPU_DEAD_FROZEN:
4033
		mutex_lock(&slab_mutex);
4034 4035 4036 4037 4038
		list_for_each_entry(s, &slab_caches, list) {
			local_irq_save(flags);
			__flush_cpu_slab(s, cpu);
			local_irq_restore(flags);
		}
4039
		mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
4040 4041 4042 4043 4044 4045 4046
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

4047
static struct notifier_block slab_notifier = {
I
Ingo Molnar 已提交
4048
	.notifier_call = slab_cpuup_callback
P
Pekka Enberg 已提交
4049
};
C
Christoph Lameter 已提交
4050 4051 4052

#endif

4053
void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
C
Christoph Lameter 已提交
4054
{
4055
	struct kmem_cache *s;
4056
	void *ret;
4057

4058
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4059 4060
		return kmalloc_large(size, gfpflags);

4061
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
4062

4063
	if (unlikely(ZERO_OR_NULL_PTR(s)))
4064
		return s;
C
Christoph Lameter 已提交
4065

4066
	ret = slab_alloc(s, gfpflags, caller);
4067

L
Lucas De Marchi 已提交
4068
	/* Honor the call site pointer we received. */
4069
	trace_kmalloc(caller, ret, size, s->size, gfpflags);
4070 4071

	return ret;
C
Christoph Lameter 已提交
4072 4073
}

4074
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
4075
void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4076
					int node, unsigned long caller)
C
Christoph Lameter 已提交
4077
{
4078
	struct kmem_cache *s;
4079
	void *ret;
4080

4081
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4082 4083 4084 4085 4086 4087 4088 4089
		ret = kmalloc_large_node(size, gfpflags, node);

		trace_kmalloc_node(caller, ret,
				   size, PAGE_SIZE << get_order(size),
				   gfpflags, node);

		return ret;
	}
4090

4091
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
4092

4093
	if (unlikely(ZERO_OR_NULL_PTR(s)))
4094
		return s;
C
Christoph Lameter 已提交
4095

4096
	ret = slab_alloc_node(s, gfpflags, node, caller);
4097

L
Lucas De Marchi 已提交
4098
	/* Honor the call site pointer we received. */
4099
	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4100 4101

	return ret;
C
Christoph Lameter 已提交
4102
}
4103
#endif
C
Christoph Lameter 已提交
4104

4105
#ifdef CONFIG_SYSFS
4106 4107 4108 4109 4110 4111 4112 4113 4114
static int count_inuse(struct page *page)
{
	return page->inuse;
}

static int count_total(struct page *page)
{
	return page->objects;
}
4115
#endif
4116

4117
#ifdef CONFIG_SLUB_DEBUG
4118 4119
static int validate_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
4120 4121
{
	void *p;
4122
	void *addr = page_address(page);
4123 4124 4125 4126 4127 4128

	if (!check_slab(s, page) ||
			!on_freelist(s, page, NULL))
		return 0;

	/* Now we know that a valid freelist exists */
4129
	bitmap_zero(map, page->objects);
4130

4131 4132 4133 4134 4135
	get_map(s, page, map);
	for_each_object(p, s, addr, page->objects) {
		if (test_bit(slab_index(p, s, addr), map))
			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
				return 0;
4136 4137
	}

4138
	for_each_object(p, s, addr, page->objects)
4139
		if (!test_bit(slab_index(p, s, addr), map))
4140
			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4141 4142 4143 4144
				return 0;
	return 1;
}

4145 4146
static void validate_slab_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
4147
{
4148 4149 4150
	slab_lock(page);
	validate_slab(s, page, map);
	slab_unlock(page);
4151 4152
}

4153 4154
static int validate_slab_node(struct kmem_cache *s,
		struct kmem_cache_node *n, unsigned long *map)
4155 4156 4157 4158 4159 4160 4161 4162
{
	unsigned long count = 0;
	struct page *page;
	unsigned long flags;

	spin_lock_irqsave(&n->list_lock, flags);

	list_for_each_entry(page, &n->partial, lru) {
4163
		validate_slab_slab(s, page, map);
4164 4165 4166
		count++;
	}
	if (count != n->nr_partial)
4167 4168
		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
		       s->name, count, n->nr_partial);
4169 4170 4171 4172 4173

	if (!(s->flags & SLAB_STORE_USER))
		goto out;

	list_for_each_entry(page, &n->full, lru) {
4174
		validate_slab_slab(s, page, map);
4175 4176 4177
		count++;
	}
	if (count != atomic_long_read(&n->nr_slabs))
4178 4179
		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
		       s->name, count, atomic_long_read(&n->nr_slabs));
4180 4181 4182 4183 4184 4185

out:
	spin_unlock_irqrestore(&n->list_lock, flags);
	return count;
}

4186
static long validate_slab_cache(struct kmem_cache *s)
4187 4188 4189
{
	int node;
	unsigned long count = 0;
4190
	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4191
				sizeof(unsigned long), GFP_KERNEL);
C
Christoph Lameter 已提交
4192
	struct kmem_cache_node *n;
4193 4194 4195

	if (!map)
		return -ENOMEM;
4196 4197

	flush_all(s);
C
Christoph Lameter 已提交
4198
	for_each_kmem_cache_node(s, node, n)
4199 4200
		count += validate_slab_node(s, n, map);
	kfree(map);
4201 4202
	return count;
}
4203
/*
C
Christoph Lameter 已提交
4204
 * Generate lists of code addresses where slabcache objects are allocated
4205 4206 4207 4208 4209
 * and freed.
 */

struct location {
	unsigned long count;
4210
	unsigned long addr;
4211 4212 4213 4214 4215
	long long sum_time;
	long min_time;
	long max_time;
	long min_pid;
	long max_pid;
R
Rusty Russell 已提交
4216
	DECLARE_BITMAP(cpus, NR_CPUS);
4217
	nodemask_t nodes;
4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232
};

struct loc_track {
	unsigned long max;
	unsigned long count;
	struct location *loc;
};

static void free_loc_track(struct loc_track *t)
{
	if (t->max)
		free_pages((unsigned long)t->loc,
			get_order(sizeof(struct location) * t->max));
}

4233
static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4234 4235 4236 4237 4238 4239
{
	struct location *l;
	int order;

	order = get_order(sizeof(struct location) * max);

4240
	l = (void *)__get_free_pages(flags, order);
4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253
	if (!l)
		return 0;

	if (t->count) {
		memcpy(l, t->loc, sizeof(struct location) * t->count);
		free_loc_track(t);
	}
	t->max = max;
	t->loc = l;
	return 1;
}

static int add_location(struct loc_track *t, struct kmem_cache *s,
4254
				const struct track *track)
4255 4256 4257
{
	long start, end, pos;
	struct location *l;
4258
	unsigned long caddr;
4259
	unsigned long age = jiffies - track->when;
4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274

	start = -1;
	end = t->count;

	for ( ; ; ) {
		pos = start + (end - start + 1) / 2;

		/*
		 * There is nothing at "end". If we end up there
		 * we need to add something to before end.
		 */
		if (pos == end)
			break;

		caddr = t->loc[pos].addr;
4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290
		if (track->addr == caddr) {

			l = &t->loc[pos];
			l->count++;
			if (track->when) {
				l->sum_time += age;
				if (age < l->min_time)
					l->min_time = age;
				if (age > l->max_time)
					l->max_time = age;

				if (track->pid < l->min_pid)
					l->min_pid = track->pid;
				if (track->pid > l->max_pid)
					l->max_pid = track->pid;

R
Rusty Russell 已提交
4291 4292
				cpumask_set_cpu(track->cpu,
						to_cpumask(l->cpus));
4293 4294
			}
			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4295 4296 4297
			return 1;
		}

4298
		if (track->addr < caddr)
4299 4300 4301 4302 4303 4304
			end = pos;
		else
			start = pos;
	}

	/*
C
Christoph Lameter 已提交
4305
	 * Not found. Insert new tracking element.
4306
	 */
4307
	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4308 4309 4310 4311 4312 4313 4314 4315
		return 0;

	l = t->loc + pos;
	if (pos < t->count)
		memmove(l + 1, l,
			(t->count - pos) * sizeof(struct location));
	t->count++;
	l->count = 1;
4316 4317 4318 4319 4320 4321
	l->addr = track->addr;
	l->sum_time = age;
	l->min_time = age;
	l->max_time = age;
	l->min_pid = track->pid;
	l->max_pid = track->pid;
R
Rusty Russell 已提交
4322 4323
	cpumask_clear(to_cpumask(l->cpus));
	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4324 4325
	nodes_clear(l->nodes);
	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4326 4327 4328 4329
	return 1;
}

static void process_slab(struct loc_track *t, struct kmem_cache *s,
E
Eric Dumazet 已提交
4330
		struct page *page, enum track_item alloc,
N
Namhyung Kim 已提交
4331
		unsigned long *map)
4332
{
4333
	void *addr = page_address(page);
4334 4335
	void *p;

4336
	bitmap_zero(map, page->objects);
4337
	get_map(s, page, map);
4338

4339
	for_each_object(p, s, addr, page->objects)
4340 4341
		if (!test_bit(slab_index(p, s, addr), map))
			add_location(t, s, get_track(s, p, alloc));
4342 4343 4344 4345 4346
}

static int list_locations(struct kmem_cache *s, char *buf,
					enum track_item alloc)
{
4347
	int len = 0;
4348
	unsigned long i;
4349
	struct loc_track t = { 0, 0, NULL };
4350
	int node;
E
Eric Dumazet 已提交
4351 4352
	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
				     sizeof(unsigned long), GFP_KERNEL);
C
Christoph Lameter 已提交
4353
	struct kmem_cache_node *n;
4354

E
Eric Dumazet 已提交
4355 4356 4357
	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
				     GFP_TEMPORARY)) {
		kfree(map);
4358
		return sprintf(buf, "Out of memory\n");
E
Eric Dumazet 已提交
4359
	}
4360 4361 4362
	/* Push back cpu slabs */
	flush_all(s);

C
Christoph Lameter 已提交
4363
	for_each_kmem_cache_node(s, node, n) {
4364 4365 4366
		unsigned long flags;
		struct page *page;

4367
		if (!atomic_long_read(&n->nr_slabs))
4368 4369 4370 4371
			continue;

		spin_lock_irqsave(&n->list_lock, flags);
		list_for_each_entry(page, &n->partial, lru)
E
Eric Dumazet 已提交
4372
			process_slab(&t, s, page, alloc, map);
4373
		list_for_each_entry(page, &n->full, lru)
E
Eric Dumazet 已提交
4374
			process_slab(&t, s, page, alloc, map);
4375 4376 4377 4378
		spin_unlock_irqrestore(&n->list_lock, flags);
	}

	for (i = 0; i < t.count; i++) {
4379
		struct location *l = &t.loc[i];
4380

H
Hugh Dickins 已提交
4381
		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4382
			break;
4383
		len += sprintf(buf + len, "%7ld ", l->count);
4384 4385

		if (l->addr)
J
Joe Perches 已提交
4386
			len += sprintf(buf + len, "%pS", (void *)l->addr);
4387
		else
4388
			len += sprintf(buf + len, "<not-available>");
4389 4390

		if (l->sum_time != l->min_time) {
4391
			len += sprintf(buf + len, " age=%ld/%ld/%ld",
R
Roman Zippel 已提交
4392 4393 4394
				l->min_time,
				(long)div_u64(l->sum_time, l->count),
				l->max_time);
4395
		} else
4396
			len += sprintf(buf + len, " age=%ld",
4397 4398 4399
				l->min_time);

		if (l->min_pid != l->max_pid)
4400
			len += sprintf(buf + len, " pid=%ld-%ld",
4401 4402
				l->min_pid, l->max_pid);
		else
4403
			len += sprintf(buf + len, " pid=%ld",
4404 4405
				l->min_pid);

R
Rusty Russell 已提交
4406 4407
		if (num_online_cpus() > 1 &&
				!cpumask_empty(to_cpumask(l->cpus)) &&
4408 4409 4410 4411
				len < PAGE_SIZE - 60)
			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
					 " cpus=%*pbl",
					 cpumask_pr_args(to_cpumask(l->cpus)));
4412

4413
		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4414 4415 4416 4417
				len < PAGE_SIZE - 60)
			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
					 " nodes=%*pbl",
					 nodemask_pr_args(&l->nodes));
4418

4419
		len += sprintf(buf + len, "\n");
4420 4421 4422
	}

	free_loc_track(&t);
E
Eric Dumazet 已提交
4423
	kfree(map);
4424
	if (!t.count)
4425 4426
		len += sprintf(buf, "No data\n");
	return len;
4427
}
4428
#endif
4429

4430
#ifdef SLUB_RESILIENCY_TEST
4431
static void __init resiliency_test(void)
4432 4433 4434
{
	u8 *p;

4435
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4436

4437 4438 4439
	pr_err("SLUB resiliency testing\n");
	pr_err("-----------------------\n");
	pr_err("A. Corruption after allocation\n");
4440 4441 4442

	p = kzalloc(16, GFP_KERNEL);
	p[16] = 0x12;
4443 4444
	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
	       p + 16);
4445 4446 4447 4448 4449 4450

	validate_slab_cache(kmalloc_caches[4]);

	/* Hmmm... The next two are dangerous */
	p = kzalloc(32, GFP_KERNEL);
	p[32 + sizeof(void *)] = 0x34;
4451 4452 4453
	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
	       p);
	pr_err("If allocated object is overwritten then not detectable\n\n");
4454 4455 4456 4457 4458

	validate_slab_cache(kmalloc_caches[5]);
	p = kzalloc(64, GFP_KERNEL);
	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
	*p = 0x56;
4459 4460 4461
	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
	       p);
	pr_err("If allocated object is overwritten then not detectable\n\n");
4462 4463
	validate_slab_cache(kmalloc_caches[6]);

4464
	pr_err("\nB. Corruption after free\n");
4465 4466 4467
	p = kzalloc(128, GFP_KERNEL);
	kfree(p);
	*p = 0x78;
4468
	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4469 4470 4471 4472 4473
	validate_slab_cache(kmalloc_caches[7]);

	p = kzalloc(256, GFP_KERNEL);
	kfree(p);
	p[50] = 0x9a;
4474
	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4475 4476 4477 4478 4479
	validate_slab_cache(kmalloc_caches[8]);

	p = kzalloc(512, GFP_KERNEL);
	kfree(p);
	p[512] = 0xab;
4480
	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4481 4482 4483 4484 4485 4486 4487 4488
	validate_slab_cache(kmalloc_caches[9]);
}
#else
#ifdef CONFIG_SYSFS
static void resiliency_test(void) {};
#endif
#endif

4489
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
4490
enum slab_stat_type {
4491 4492 4493 4494 4495
	SL_ALL,			/* All slabs */
	SL_PARTIAL,		/* Only partially allocated slabs */
	SL_CPU,			/* Only slabs used for cpu caches */
	SL_OBJECTS,		/* Determine allocated objects not slabs */
	SL_TOTAL		/* Determine object capacity not slabs */
C
Christoph Lameter 已提交
4496 4497
};

4498
#define SO_ALL		(1 << SL_ALL)
C
Christoph Lameter 已提交
4499 4500 4501
#define SO_PARTIAL	(1 << SL_PARTIAL)
#define SO_CPU		(1 << SL_CPU)
#define SO_OBJECTS	(1 << SL_OBJECTS)
4502
#define SO_TOTAL	(1 << SL_TOTAL)
C
Christoph Lameter 已提交
4503

4504 4505
static ssize_t show_slab_objects(struct kmem_cache *s,
			    char *buf, unsigned long flags)
C
Christoph Lameter 已提交
4506 4507 4508 4509 4510 4511
{
	unsigned long total = 0;
	int node;
	int x;
	unsigned long *nodes;

4512
	nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4513 4514
	if (!nodes)
		return -ENOMEM;
C
Christoph Lameter 已提交
4515

4516 4517
	if (flags & SO_CPU) {
		int cpu;
C
Christoph Lameter 已提交
4518

4519
		for_each_possible_cpu(cpu) {
4520 4521
			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
							       cpu);
4522
			int node;
4523
			struct page *page;
4524

4525
			page = READ_ONCE(c->page);
4526 4527
			if (!page)
				continue;
4528

4529 4530 4531 4532 4533 4534 4535
			node = page_to_nid(page);
			if (flags & SO_TOTAL)
				x = page->objects;
			else if (flags & SO_OBJECTS)
				x = page->inuse;
			else
				x = 1;
4536

4537 4538 4539
			total += x;
			nodes[node] += x;

4540
			page = READ_ONCE(c->partial);
4541
			if (page) {
L
Li Zefan 已提交
4542 4543 4544 4545 4546 4547 4548
				node = page_to_nid(page);
				if (flags & SO_TOTAL)
					WARN_ON_ONCE(1);
				else if (flags & SO_OBJECTS)
					WARN_ON_ONCE(1);
				else
					x = page->pages;
4549 4550
				total += x;
				nodes[node] += x;
4551
			}
C
Christoph Lameter 已提交
4552 4553 4554
		}
	}

4555
	get_online_mems();
4556
#ifdef CONFIG_SLUB_DEBUG
4557
	if (flags & SO_ALL) {
C
Christoph Lameter 已提交
4558 4559 4560
		struct kmem_cache_node *n;

		for_each_kmem_cache_node(s, node, n) {
4561

4562 4563 4564 4565 4566
			if (flags & SO_TOTAL)
				x = atomic_long_read(&n->total_objects);
			else if (flags & SO_OBJECTS)
				x = atomic_long_read(&n->total_objects) -
					count_partial(n, count_free);
C
Christoph Lameter 已提交
4567
			else
4568
				x = atomic_long_read(&n->nr_slabs);
C
Christoph Lameter 已提交
4569 4570 4571 4572
			total += x;
			nodes[node] += x;
		}

4573 4574 4575
	} else
#endif
	if (flags & SO_PARTIAL) {
C
Christoph Lameter 已提交
4576
		struct kmem_cache_node *n;
C
Christoph Lameter 已提交
4577

C
Christoph Lameter 已提交
4578
		for_each_kmem_cache_node(s, node, n) {
4579 4580 4581 4582
			if (flags & SO_TOTAL)
				x = count_partial(n, count_total);
			else if (flags & SO_OBJECTS)
				x = count_partial(n, count_inuse);
C
Christoph Lameter 已提交
4583
			else
4584
				x = n->nr_partial;
C
Christoph Lameter 已提交
4585 4586 4587 4588 4589 4590
			total += x;
			nodes[node] += x;
		}
	}
	x = sprintf(buf, "%lu", total);
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
4591
	for (node = 0; node < nr_node_ids; node++)
C
Christoph Lameter 已提交
4592 4593 4594 4595
		if (nodes[node])
			x += sprintf(buf + x, " N%d=%lu",
					node, nodes[node]);
#endif
4596
	put_online_mems();
C
Christoph Lameter 已提交
4597 4598 4599 4600
	kfree(nodes);
	return x + sprintf(buf + x, "\n");
}

4601
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
4602 4603 4604
static int any_slab_objects(struct kmem_cache *s)
{
	int node;
C
Christoph Lameter 已提交
4605
	struct kmem_cache_node *n;
C
Christoph Lameter 已提交
4606

C
Christoph Lameter 已提交
4607
	for_each_kmem_cache_node(s, node, n)
4608
		if (atomic_long_read(&n->total_objects))
C
Christoph Lameter 已提交
4609
			return 1;
C
Christoph Lameter 已提交
4610

C
Christoph Lameter 已提交
4611 4612
	return 0;
}
4613
#endif
C
Christoph Lameter 已提交
4614 4615

#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4616
#define to_slab(n) container_of(n, struct kmem_cache, kobj)
C
Christoph Lameter 已提交
4617 4618 4619 4620 4621 4622 4623 4624

struct slab_attribute {
	struct attribute attr;
	ssize_t (*show)(struct kmem_cache *s, char *buf);
	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
};

#define SLAB_ATTR_RO(_name) \
4625 4626
	static struct slab_attribute _name##_attr = \
	__ATTR(_name, 0400, _name##_show, NULL)
C
Christoph Lameter 已提交
4627 4628 4629

#define SLAB_ATTR(_name) \
	static struct slab_attribute _name##_attr =  \
4630
	__ATTR(_name, 0600, _name##_show, _name##_store)
C
Christoph Lameter 已提交
4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645

static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->size);
}
SLAB_ATTR_RO(slab_size);

static ssize_t align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->align);
}
SLAB_ATTR_RO(align);

static ssize_t object_size_show(struct kmem_cache *s, char *buf)
{
4646
	return sprintf(buf, "%d\n", s->object_size);
C
Christoph Lameter 已提交
4647 4648 4649 4650 4651
}
SLAB_ATTR_RO(object_size);

static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
{
4652
	return sprintf(buf, "%d\n", oo_objects(s->oo));
C
Christoph Lameter 已提交
4653 4654 4655
}
SLAB_ATTR_RO(objs_per_slab);

4656 4657 4658
static ssize_t order_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
4659 4660 4661
	unsigned long order;
	int err;

4662
	err = kstrtoul(buf, 10, &order);
4663 4664
	if (err)
		return err;
4665 4666 4667 4668 4669 4670 4671 4672

	if (order > slub_max_order || order < slub_min_order)
		return -EINVAL;

	calculate_sizes(s, order);
	return length;
}

C
Christoph Lameter 已提交
4673 4674
static ssize_t order_show(struct kmem_cache *s, char *buf)
{
4675
	return sprintf(buf, "%d\n", oo_order(s->oo));
C
Christoph Lameter 已提交
4676
}
4677
SLAB_ATTR(order);
C
Christoph Lameter 已提交
4678

4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689
static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%lu\n", s->min_partial);
}

static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long min;
	int err;

4690
	err = kstrtoul(buf, 10, &min);
4691 4692 4693
	if (err)
		return err;

4694
	set_min_partial(s, min);
4695 4696 4697 4698
	return length;
}
SLAB_ATTR(min_partial);

4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709
static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%u\n", s->cpu_partial);
}

static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long objects;
	int err;

4710
	err = kstrtoul(buf, 10, &objects);
4711 4712
	if (err)
		return err;
4713
	if (objects && !kmem_cache_has_cpu_partial(s))
4714
		return -EINVAL;
4715 4716 4717 4718 4719 4720 4721

	s->cpu_partial = objects;
	flush_all(s);
	return length;
}
SLAB_ATTR(cpu_partial);

C
Christoph Lameter 已提交
4722 4723
static ssize_t ctor_show(struct kmem_cache *s, char *buf)
{
J
Joe Perches 已提交
4724 4725 4726
	if (!s->ctor)
		return 0;
	return sprintf(buf, "%pS\n", s->ctor);
C
Christoph Lameter 已提交
4727 4728 4729 4730 4731
}
SLAB_ATTR_RO(ctor);

static ssize_t aliases_show(struct kmem_cache *s, char *buf)
{
4732
	return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
C
Christoph Lameter 已提交
4733 4734 4735 4736 4737
}
SLAB_ATTR_RO(aliases);

static ssize_t partial_show(struct kmem_cache *s, char *buf)
{
4738
	return show_slab_objects(s, buf, SO_PARTIAL);
C
Christoph Lameter 已提交
4739 4740 4741 4742 4743
}
SLAB_ATTR_RO(partial);

static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
{
4744
	return show_slab_objects(s, buf, SO_CPU);
C
Christoph Lameter 已提交
4745 4746 4747 4748 4749
}
SLAB_ATTR_RO(cpu_slabs);

static ssize_t objects_show(struct kmem_cache *s, char *buf)
{
4750
	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
C
Christoph Lameter 已提交
4751 4752 4753
}
SLAB_ATTR_RO(objects);

4754 4755 4756 4757 4758 4759
static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
}
SLAB_ATTR_RO(objects_partial);

4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790
static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
{
	int objects = 0;
	int pages = 0;
	int cpu;
	int len;

	for_each_online_cpu(cpu) {
		struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;

		if (page) {
			pages += page->pages;
			objects += page->pobjects;
		}
	}

	len = sprintf(buf, "%d(%d)", objects, pages);

#ifdef CONFIG_SMP
	for_each_online_cpu(cpu) {
		struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;

		if (page && len < PAGE_SIZE - 20)
			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
				page->pobjects, page->pages);
	}
#endif
	return len + sprintf(buf + len, "\n");
}
SLAB_ATTR_RO(slabs_cpu_partial);

4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825
static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
}

static ssize_t reclaim_account_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
	if (buf[0] == '1')
		s->flags |= SLAB_RECLAIM_ACCOUNT;
	return length;
}
SLAB_ATTR(reclaim_account);

static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
}
SLAB_ATTR_RO(hwcache_align);

#ifdef CONFIG_ZONE_DMA
static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
}
SLAB_ATTR_RO(cache_dma);
#endif

static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
}
SLAB_ATTR_RO(destroy_by_rcu);

4826 4827 4828 4829 4830 4831
static ssize_t reserved_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->reserved);
}
SLAB_ATTR_RO(reserved);

4832
#ifdef CONFIG_SLUB_DEBUG
4833 4834 4835 4836 4837 4838
static ssize_t slabs_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL);
}
SLAB_ATTR_RO(slabs);

4839 4840 4841 4842 4843 4844
static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
}
SLAB_ATTR_RO(total_objects);

C
Christoph Lameter 已提交
4845 4846
static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
{
4847
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
C
Christoph Lameter 已提交
4848 4849 4850 4851 4852
}

static ssize_t sanity_checks_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
4853
	s->flags &= ~SLAB_CONSISTENCY_CHECKS;
4854 4855
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
4856
		s->flags |= SLAB_CONSISTENCY_CHECKS;
4857
	}
C
Christoph Lameter 已提交
4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869
	return length;
}
SLAB_ATTR(sanity_checks);

static ssize_t trace_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
}

static ssize_t trace_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
4870 4871 4872 4873 4874 4875 4876 4877
	/*
	 * Tracing a merged cache is going to give confusing results
	 * as well as cause other issues like converting a mergeable
	 * cache into an umergeable one.
	 */
	if (s->refcount > 1)
		return -EINVAL;

C
Christoph Lameter 已提交
4878
	s->flags &= ~SLAB_TRACE;
4879 4880
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4881
		s->flags |= SLAB_TRACE;
4882
	}
C
Christoph Lameter 已提交
4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898
	return length;
}
SLAB_ATTR(trace);

static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
}

static ssize_t red_zone_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_RED_ZONE;
4899
	if (buf[0] == '1') {
C
Christoph Lameter 已提交
4900
		s->flags |= SLAB_RED_ZONE;
4901
	}
4902
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918
	return length;
}
SLAB_ATTR(red_zone);

static ssize_t poison_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
}

static ssize_t poison_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_POISON;
4919
	if (buf[0] == '1') {
C
Christoph Lameter 已提交
4920
		s->flags |= SLAB_POISON;
4921
	}
4922
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938
	return length;
}
SLAB_ATTR(poison);

static ssize_t store_user_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
}

static ssize_t store_user_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_STORE_USER;
4939 4940
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4941
		s->flags |= SLAB_STORE_USER;
4942
	}
4943
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4944 4945 4946 4947
	return length;
}
SLAB_ATTR(store_user);

4948 4949 4950 4951 4952 4953 4954 4955
static ssize_t validate_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t validate_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
4956 4957 4958 4959 4960 4961 4962 4963
	int ret = -EINVAL;

	if (buf[0] == '1') {
		ret = validate_slab_cache(s);
		if (ret >= 0)
			ret = length;
	}
	return ret;
4964 4965
}
SLAB_ATTR(validate);
4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992

static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_ALLOC);
}
SLAB_ATTR_RO(alloc_calls);

static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_FREE);
}
SLAB_ATTR_RO(free_calls);
#endif /* CONFIG_SLUB_DEBUG */

#ifdef CONFIG_FAILSLAB
static ssize_t failslab_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
}

static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
4993 4994 4995
	if (s->refcount > 1)
		return -EINVAL;

4996 4997 4998 4999 5000 5001
	s->flags &= ~SLAB_FAILSLAB;
	if (buf[0] == '1')
		s->flags |= SLAB_FAILSLAB;
	return length;
}
SLAB_ATTR(failslab);
5002
#endif
5003

5004 5005 5006 5007 5008 5009 5010 5011
static ssize_t shrink_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t shrink_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
5012 5013 5014
	if (buf[0] == '1')
		kmem_cache_shrink(s);
	else
5015 5016 5017 5018 5019
		return -EINVAL;
	return length;
}
SLAB_ATTR(shrink);

C
Christoph Lameter 已提交
5020
#ifdef CONFIG_NUMA
5021
static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
C
Christoph Lameter 已提交
5022
{
5023
	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
C
Christoph Lameter 已提交
5024 5025
}

5026
static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
C
Christoph Lameter 已提交
5027 5028
				const char *buf, size_t length)
{
5029 5030 5031
	unsigned long ratio;
	int err;

5032
	err = kstrtoul(buf, 10, &ratio);
5033 5034 5035
	if (err)
		return err;

5036
	if (ratio <= 100)
5037
		s->remote_node_defrag_ratio = ratio * 10;
C
Christoph Lameter 已提交
5038 5039 5040

	return length;
}
5041
SLAB_ATTR(remote_node_defrag_ratio);
C
Christoph Lameter 已提交
5042 5043
#endif

5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055
#ifdef CONFIG_SLUB_STATS
static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
{
	unsigned long sum  = 0;
	int cpu;
	int len;
	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);

	if (!data)
		return -ENOMEM;

	for_each_online_cpu(cpu) {
5056
		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5057 5058 5059 5060 5061 5062 5063

		data[cpu] = x;
		sum += x;
	}

	len = sprintf(buf, "%lu", sum);

5064
#ifdef CONFIG_SMP
5065 5066
	for_each_online_cpu(cpu) {
		if (data[cpu] && len < PAGE_SIZE - 20)
5067
			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5068
	}
5069
#endif
5070 5071 5072 5073
	kfree(data);
	return len + sprintf(buf + len, "\n");
}

D
David Rientjes 已提交
5074 5075 5076 5077 5078
static void clear_stat(struct kmem_cache *s, enum stat_item si)
{
	int cpu;

	for_each_online_cpu(cpu)
5079
		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
D
David Rientjes 已提交
5080 5081
}

5082 5083 5084 5085 5086
#define STAT_ATTR(si, text) 					\
static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
{								\
	return show_stat(s, buf, si);				\
}								\
D
David Rientjes 已提交
5087 5088 5089 5090 5091 5092 5093 5094 5095
static ssize_t text##_store(struct kmem_cache *s,		\
				const char *buf, size_t length)	\
{								\
	if (buf[0] != '0')					\
		return -EINVAL;					\
	clear_stat(s, si);					\
	return length;						\
}								\
SLAB_ATTR(text);						\
5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106

STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
STAT_ATTR(FREE_FASTPATH, free_fastpath);
STAT_ATTR(FREE_SLOWPATH, free_slowpath);
STAT_ATTR(FREE_FROZEN, free_frozen);
STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
STAT_ATTR(ALLOC_SLAB, alloc_slab);
STAT_ATTR(ALLOC_REFILL, alloc_refill);
5107
STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5108 5109 5110 5111 5112 5113 5114
STAT_ATTR(FREE_SLAB, free_slab);
STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5115
STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5116
STAT_ATTR(ORDER_FALLBACK, order_fallback);
5117 5118
STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5119 5120
STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5121 5122
STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5123 5124
#endif

P
Pekka Enberg 已提交
5125
static struct attribute *slab_attrs[] = {
C
Christoph Lameter 已提交
5126 5127 5128 5129
	&slab_size_attr.attr,
	&object_size_attr.attr,
	&objs_per_slab_attr.attr,
	&order_attr.attr,
5130
	&min_partial_attr.attr,
5131
	&cpu_partial_attr.attr,
C
Christoph Lameter 已提交
5132
	&objects_attr.attr,
5133
	&objects_partial_attr.attr,
C
Christoph Lameter 已提交
5134 5135 5136 5137 5138 5139 5140 5141
	&partial_attr.attr,
	&cpu_slabs_attr.attr,
	&ctor_attr.attr,
	&aliases_attr.attr,
	&align_attr.attr,
	&hwcache_align_attr.attr,
	&reclaim_account_attr.attr,
	&destroy_by_rcu_attr.attr,
5142
	&shrink_attr.attr,
5143
	&reserved_attr.attr,
5144
	&slabs_cpu_partial_attr.attr,
5145
#ifdef CONFIG_SLUB_DEBUG
5146 5147 5148 5149
	&total_objects_attr.attr,
	&slabs_attr.attr,
	&sanity_checks_attr.attr,
	&trace_attr.attr,
C
Christoph Lameter 已提交
5150 5151 5152
	&red_zone_attr.attr,
	&poison_attr.attr,
	&store_user_attr.attr,
5153
	&validate_attr.attr,
5154 5155
	&alloc_calls_attr.attr,
	&free_calls_attr.attr,
5156
#endif
C
Christoph Lameter 已提交
5157 5158 5159 5160
#ifdef CONFIG_ZONE_DMA
	&cache_dma_attr.attr,
#endif
#ifdef CONFIG_NUMA
5161
	&remote_node_defrag_ratio_attr.attr,
5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173
#endif
#ifdef CONFIG_SLUB_STATS
	&alloc_fastpath_attr.attr,
	&alloc_slowpath_attr.attr,
	&free_fastpath_attr.attr,
	&free_slowpath_attr.attr,
	&free_frozen_attr.attr,
	&free_add_partial_attr.attr,
	&free_remove_partial_attr.attr,
	&alloc_from_partial_attr.attr,
	&alloc_slab_attr.attr,
	&alloc_refill_attr.attr,
5174
	&alloc_node_mismatch_attr.attr,
5175 5176 5177 5178 5179 5180 5181
	&free_slab_attr.attr,
	&cpuslab_flush_attr.attr,
	&deactivate_full_attr.attr,
	&deactivate_empty_attr.attr,
	&deactivate_to_head_attr.attr,
	&deactivate_to_tail_attr.attr,
	&deactivate_remote_frees_attr.attr,
5182
	&deactivate_bypass_attr.attr,
5183
	&order_fallback_attr.attr,
5184 5185
	&cmpxchg_double_fail_attr.attr,
	&cmpxchg_double_cpu_fail_attr.attr,
5186 5187
	&cpu_partial_alloc_attr.attr,
	&cpu_partial_free_attr.attr,
5188 5189
	&cpu_partial_node_attr.attr,
	&cpu_partial_drain_attr.attr,
C
Christoph Lameter 已提交
5190
#endif
5191 5192 5193 5194
#ifdef CONFIG_FAILSLAB
	&failslab_attr.attr,
#endif

C
Christoph Lameter 已提交
5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235
	NULL
};

static struct attribute_group slab_attr_group = {
	.attrs = slab_attrs,
};

static ssize_t slab_attr_show(struct kobject *kobj,
				struct attribute *attr,
				char *buf)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->show)
		return -EIO;

	err = attribute->show(s, buf);

	return err;
}

static ssize_t slab_attr_store(struct kobject *kobj,
				struct attribute *attr,
				const char *buf, size_t len)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->store)
		return -EIO;

	err = attribute->store(s, buf, len);
5236
#ifdef CONFIG_MEMCG
5237
	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5238
		struct kmem_cache *c;
C
Christoph Lameter 已提交
5239

5240 5241 5242 5243
		mutex_lock(&slab_mutex);
		if (s->max_attr_size < len)
			s->max_attr_size = len;

5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260
		/*
		 * This is a best effort propagation, so this function's return
		 * value will be determined by the parent cache only. This is
		 * basically because not all attributes will have a well
		 * defined semantics for rollbacks - most of the actions will
		 * have permanent effects.
		 *
		 * Returning the error value of any of the children that fail
		 * is not 100 % defined, in the sense that users seeing the
		 * error code won't be able to know anything about the state of
		 * the cache.
		 *
		 * Only returning the error code for the parent cache at least
		 * has well defined semantics. The cache being written to
		 * directly either failed or succeeded, in which case we loop
		 * through the descendants with best-effort propagation.
		 */
5261 5262
		for_each_memcg_cache(c, s)
			attribute->store(c, buf, len);
5263 5264 5265
		mutex_unlock(&slab_mutex);
	}
#endif
C
Christoph Lameter 已提交
5266 5267 5268
	return err;
}

5269 5270
static void memcg_propagate_slab_attrs(struct kmem_cache *s)
{
5271
#ifdef CONFIG_MEMCG
5272 5273
	int i;
	char *buffer = NULL;
5274
	struct kmem_cache *root_cache;
5275

5276
	if (is_root_cache(s))
5277 5278
		return;

5279
	root_cache = s->memcg_params.root_cache;
5280

5281 5282 5283 5284
	/*
	 * This mean this cache had no attribute written. Therefore, no point
	 * in copying default values around
	 */
5285
	if (!root_cache->max_attr_size)
5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306
		return;

	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
		char mbuf[64];
		char *buf;
		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);

		if (!attr || !attr->store || !attr->show)
			continue;

		/*
		 * It is really bad that we have to allocate here, so we will
		 * do it only as a fallback. If we actually allocate, though,
		 * we can just use the allocated buffer until the end.
		 *
		 * Most of the slub attributes will tend to be very small in
		 * size, but sysfs allows buffers up to a page, so they can
		 * theoretically happen.
		 */
		if (buffer)
			buf = buffer;
5307
		else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5308 5309 5310 5311 5312 5313 5314 5315
			buf = mbuf;
		else {
			buffer = (char *) get_zeroed_page(GFP_KERNEL);
			if (WARN_ON(!buffer))
				continue;
			buf = buffer;
		}

5316
		attr->show(root_cache, buf);
5317 5318 5319 5320 5321 5322 5323 5324
		attr->store(s, buf, strlen(buf));
	}

	if (buffer)
		free_page((unsigned long)buffer);
#endif
}

5325 5326 5327 5328 5329
static void kmem_cache_release(struct kobject *k)
{
	slab_kmem_cache_release(to_slab(k));
}

5330
static const struct sysfs_ops slab_sysfs_ops = {
C
Christoph Lameter 已提交
5331 5332 5333 5334 5335 5336
	.show = slab_attr_show,
	.store = slab_attr_store,
};

static struct kobj_type slab_ktype = {
	.sysfs_ops = &slab_sysfs_ops,
5337
	.release = kmem_cache_release,
C
Christoph Lameter 已提交
5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348
};

static int uevent_filter(struct kset *kset, struct kobject *kobj)
{
	struct kobj_type *ktype = get_ktype(kobj);

	if (ktype == &slab_ktype)
		return 1;
	return 0;
}

5349
static const struct kset_uevent_ops slab_uevent_ops = {
C
Christoph Lameter 已提交
5350 5351 5352
	.filter = uevent_filter,
};

5353
static struct kset *slab_kset;
C
Christoph Lameter 已提交
5354

5355 5356
static inline struct kset *cache_kset(struct kmem_cache *s)
{
5357
#ifdef CONFIG_MEMCG
5358
	if (!is_root_cache(s))
5359
		return s->memcg_params.root_cache->memcg_kset;
5360 5361 5362 5363
#endif
	return slab_kset;
}

C
Christoph Lameter 已提交
5364 5365 5366
#define ID_STR_LENGTH 64

/* Create a unique string id for a slab cache:
C
Christoph Lameter 已提交
5367 5368
 *
 * Format	:[flags-]size
C
Christoph Lameter 已提交
5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388
 */
static char *create_unique_id(struct kmem_cache *s)
{
	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
	char *p = name;

	BUG_ON(!name);

	*p++ = ':';
	/*
	 * First flags affecting slabcache operations. We will only
	 * get here for aliasable slabs so we do not need to support
	 * too many flags. The flags here must cover all flags that
	 * are matched during merging to guarantee that the id is
	 * unique.
	 */
	if (s->flags & SLAB_CACHE_DMA)
		*p++ = 'd';
	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		*p++ = 'a';
5389
	if (s->flags & SLAB_CONSISTENCY_CHECKS)
C
Christoph Lameter 已提交
5390
		*p++ = 'F';
V
Vegard Nossum 已提交
5391 5392
	if (!(s->flags & SLAB_NOTRACK))
		*p++ = 't';
V
Vladimir Davydov 已提交
5393 5394
	if (s->flags & SLAB_ACCOUNT)
		*p++ = 'A';
C
Christoph Lameter 已提交
5395 5396 5397
	if (p != name + 1)
		*p++ = '-';
	p += sprintf(p, "%07d", s->size);
5398

C
Christoph Lameter 已提交
5399 5400 5401 5402 5403 5404 5405 5406
	BUG_ON(p > name + ID_STR_LENGTH - 1);
	return name;
}

static int sysfs_slab_add(struct kmem_cache *s)
{
	int err;
	const char *name;
5407
	int unmergeable = slab_unmergeable(s);
C
Christoph Lameter 已提交
5408 5409 5410 5411 5412 5413 5414

	if (unmergeable) {
		/*
		 * Slabcache can never be merged so we can use the name proper.
		 * This is typically the case for debug situations. In that
		 * case we can catch duplicate names easily.
		 */
5415
		sysfs_remove_link(&slab_kset->kobj, s->name);
C
Christoph Lameter 已提交
5416 5417 5418 5419 5420 5421 5422 5423 5424
		name = s->name;
	} else {
		/*
		 * Create a unique name for the slab as a target
		 * for the symlinks.
		 */
		name = create_unique_id(s);
	}

5425
	s->kobj.kset = cache_kset(s);
5426
	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5427
	if (err)
5428
		goto out;
C
Christoph Lameter 已提交
5429 5430

	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5431 5432
	if (err)
		goto out_del_kobj;
5433

5434
#ifdef CONFIG_MEMCG
5435 5436 5437
	if (is_root_cache(s)) {
		s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
		if (!s->memcg_kset) {
5438 5439
			err = -ENOMEM;
			goto out_del_kobj;
5440 5441 5442 5443
		}
	}
#endif

C
Christoph Lameter 已提交
5444 5445 5446 5447 5448
	kobject_uevent(&s->kobj, KOBJ_ADD);
	if (!unmergeable) {
		/* Setup first alias */
		sysfs_slab_alias(s, s->name);
	}
5449 5450 5451 5452 5453 5454 5455
out:
	if (!unmergeable)
		kfree(name);
	return err;
out_del_kobj:
	kobject_del(&s->kobj);
	goto out;
C
Christoph Lameter 已提交
5456 5457
}

5458
void sysfs_slab_remove(struct kmem_cache *s)
C
Christoph Lameter 已提交
5459
{
5460
	if (slab_state < FULL)
5461 5462 5463 5464 5465 5466
		/*
		 * Sysfs has not been setup yet so no need to remove the
		 * cache from sysfs.
		 */
		return;

5467
#ifdef CONFIG_MEMCG
5468 5469
	kset_unregister(s->memcg_kset);
#endif
C
Christoph Lameter 已提交
5470 5471
	kobject_uevent(&s->kobj, KOBJ_REMOVE);
	kobject_del(&s->kobj);
C
Christoph Lameter 已提交
5472
	kobject_put(&s->kobj);
C
Christoph Lameter 已提交
5473 5474 5475 5476
}

/*
 * Need to buffer aliases during bootup until sysfs becomes
N
Nick Andrew 已提交
5477
 * available lest we lose that information.
C
Christoph Lameter 已提交
5478 5479 5480 5481 5482 5483 5484
 */
struct saved_alias {
	struct kmem_cache *s;
	const char *name;
	struct saved_alias *next;
};

A
Adrian Bunk 已提交
5485
static struct saved_alias *alias_list;
C
Christoph Lameter 已提交
5486 5487 5488 5489 5490

static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
{
	struct saved_alias *al;

5491
	if (slab_state == FULL) {
C
Christoph Lameter 已提交
5492 5493 5494
		/*
		 * If we have a leftover link then remove it.
		 */
5495 5496
		sysfs_remove_link(&slab_kset->kobj, name);
		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
C
Christoph Lameter 已提交
5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511
	}

	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
	if (!al)
		return -ENOMEM;

	al->s = s;
	al->name = name;
	al->next = alias_list;
	alias_list = al;
	return 0;
}

static int __init slab_sysfs_init(void)
{
5512
	struct kmem_cache *s;
C
Christoph Lameter 已提交
5513 5514
	int err;

5515
	mutex_lock(&slab_mutex);
5516

5517
	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5518
	if (!slab_kset) {
5519
		mutex_unlock(&slab_mutex);
5520
		pr_err("Cannot register slab subsystem.\n");
C
Christoph Lameter 已提交
5521 5522 5523
		return -ENOSYS;
	}

5524
	slab_state = FULL;
5525

5526
	list_for_each_entry(s, &slab_caches, list) {
5527
		err = sysfs_slab_add(s);
5528
		if (err)
5529 5530
			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
			       s->name);
5531
	}
C
Christoph Lameter 已提交
5532 5533 5534 5535 5536 5537

	while (alias_list) {
		struct saved_alias *al = alias_list;

		alias_list = alias_list->next;
		err = sysfs_slab_alias(al->s, al->name);
5538
		if (err)
5539 5540
			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
			       al->name);
C
Christoph Lameter 已提交
5541 5542 5543
		kfree(al);
	}

5544
	mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
5545 5546 5547 5548 5549
	resiliency_test();
	return 0;
}

__initcall(slab_sysfs_init);
5550
#endif /* CONFIG_SYSFS */
P
Pekka J Enberg 已提交
5551 5552 5553 5554

/*
 * The /proc/slabinfo ABI
 */
5555
#ifdef CONFIG_SLABINFO
5556
void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
P
Pekka J Enberg 已提交
5557 5558
{
	unsigned long nr_slabs = 0;
5559 5560
	unsigned long nr_objs = 0;
	unsigned long nr_free = 0;
P
Pekka J Enberg 已提交
5561
	int node;
C
Christoph Lameter 已提交
5562
	struct kmem_cache_node *n;
P
Pekka J Enberg 已提交
5563

C
Christoph Lameter 已提交
5564
	for_each_kmem_cache_node(s, node, n) {
5565 5566
		nr_slabs += node_nr_slabs(n);
		nr_objs += node_nr_objs(n);
5567
		nr_free += count_partial(n, count_free);
P
Pekka J Enberg 已提交
5568 5569
	}

5570 5571 5572 5573 5574 5575
	sinfo->active_objs = nr_objs - nr_free;
	sinfo->num_objs = nr_objs;
	sinfo->active_slabs = nr_slabs;
	sinfo->num_slabs = nr_slabs;
	sinfo->objects_per_slab = oo_objects(s->oo);
	sinfo->cache_order = oo_order(s->oo);
P
Pekka J Enberg 已提交
5576 5577
}

5578
void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5579 5580 5581
{
}

5582 5583
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
		       size_t count, loff_t *ppos)
5584
{
5585
	return -EIO;
5586
}
5587
#endif /* CONFIG_SLABINFO */