slub.c 126.8 KB
Newer Older
C
Christoph Lameter 已提交
1 2 3 4
/*
 * SLUB: A slab allocator that limits cache line use instead of queuing
 * objects in per cpu and per node lists.
 *
5 6
 * The allocator synchronizes using per slab locks or atomic operatios
 * and only uses a centralized lock to manage a pool of partial slabs.
C
Christoph Lameter 已提交
7
 *
C
Christoph Lameter 已提交
8
 * (C) 2007 SGI, Christoph Lameter
9
 * (C) 2011 Linux Foundation, Christoph Lameter
C
Christoph Lameter 已提交
10 11 12
 */

#include <linux/mm.h>
N
Nick Piggin 已提交
13
#include <linux/swap.h> /* struct reclaim_state */
C
Christoph Lameter 已提交
14 15 16 17 18
#include <linux/module.h>
#include <linux/bit_spinlock.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/slab.h>
19
#include "slab.h"
20
#include <linux/proc_fs.h>
21
#include <linux/notifier.h>
C
Christoph Lameter 已提交
22
#include <linux/seq_file.h>
V
Vegard Nossum 已提交
23
#include <linux/kmemcheck.h>
C
Christoph Lameter 已提交
24 25 26 27
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/mempolicy.h>
#include <linux/ctype.h>
28
#include <linux/debugobjects.h>
C
Christoph Lameter 已提交
29
#include <linux/kallsyms.h>
30
#include <linux/memory.h>
R
Roman Zippel 已提交
31
#include <linux/math64.h>
A
Akinobu Mita 已提交
32
#include <linux/fault-inject.h>
33
#include <linux/stacktrace.h>
34
#include <linux/prefetch.h>
35
#include <linux/memcontrol.h>
C
Christoph Lameter 已提交
36

37 38
#include <trace/events/kmem.h>

39 40
#include "internal.h"

C
Christoph Lameter 已提交
41 42
/*
 * Lock order:
43
 *   1. slab_mutex (Global Mutex)
44 45
 *   2. node->list_lock
 *   3. slab_lock(page) (Only on some arches and for debugging)
C
Christoph Lameter 已提交
46
 *
47
 *   slab_mutex
48
 *
49
 *   The role of the slab_mutex is to protect the list of all the slabs
50 51 52 53 54 55 56 57 58 59 60 61 62 63
 *   and to synchronize major metadata changes to slab cache structures.
 *
 *   The slab_lock is only used for debugging and on arches that do not
 *   have the ability to do a cmpxchg_double. It only protects the second
 *   double word in the page struct. Meaning
 *	A. page->freelist	-> List of object free in a page
 *	B. page->counters	-> Counters of objects
 *	C. page->frozen		-> frozen state
 *
 *   If a slab is frozen then it is exempt from list management. It is not
 *   on any list. The processor that froze the slab is the one who can
 *   perform list operations on the page. Other processors may put objects
 *   onto the freelist but the processor that froze the slab is the only
 *   one that can retrieve the objects from the page's freelist.
C
Christoph Lameter 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
 *
 *   The list_lock protects the partial and full list on each node and
 *   the partial slab counter. If taken then no new slabs may be added or
 *   removed from the lists nor make the number of partial slabs be modified.
 *   (Note that the total number of slabs is an atomic value that may be
 *   modified without taking the list lock).
 *
 *   The list_lock is a centralized lock and thus we avoid taking it as
 *   much as possible. As long as SLUB does not have to handle partial
 *   slabs, operations can continue without any centralized lock. F.e.
 *   allocating a long series of objects that fill up slabs does not require
 *   the list lock.
 *   Interrupts are disabled during allocation and deallocation in order to
 *   make the slab allocator safe to use in the context of an irq. In addition
 *   interrupts are disabled to ensure that the processor does not change
 *   while handling per_cpu slabs, due to kernel preemption.
 *
 * SLUB assigns one slab for allocation to each processor.
 * Allocations only occur from these slabs called cpu slabs.
 *
C
Christoph Lameter 已提交
84 85
 * Slabs with free elements are kept on a partial list and during regular
 * operations no list for full slabs is used. If an object in a full slab is
C
Christoph Lameter 已提交
86
 * freed then the slab will show up again on the partial lists.
C
Christoph Lameter 已提交
87 88
 * We track full slabs for debugging purposes though because otherwise we
 * cannot scan all objects.
C
Christoph Lameter 已提交
89 90 91 92 93 94 95
 *
 * Slabs are freed when they become empty. Teardown and setup is
 * minimal so we rely on the page allocators per cpu caches for
 * fast frees and allocs.
 *
 * Overloading of page flags that are otherwise used for LRU management.
 *
96 97 98 99 100 101 102 103 104 105 106 107
 * PageActive 		The slab is frozen and exempt from list processing.
 * 			This means that the slab is dedicated to a purpose
 * 			such as satisfying allocations for a specific
 * 			processor. Objects may be freed in the slab while
 * 			it is frozen but slab_free will then skip the usual
 * 			list operations. It is up to the processor holding
 * 			the slab to integrate the slab into the slab lists
 * 			when the slab is no longer needed.
 *
 * 			One use of this flag is to mark slabs that are
 * 			used for allocations. Then such a slab becomes a cpu
 * 			slab. The cpu slab may be equipped with an additional
108
 * 			freelist that allows lockless access to
109 110
 * 			free objects in addition to the regular freelist
 * 			that requires the slab lock.
C
Christoph Lameter 已提交
111 112 113
 *
 * PageError		Slab requires special handling due to debug
 * 			options set. This moves	slab handling out of
114
 * 			the fast path and disables lockless freelists.
C
Christoph Lameter 已提交
115 116
 */

117 118
static inline int kmem_cache_debug(struct kmem_cache *s)
{
119
#ifdef CONFIG_SLUB_DEBUG
120
	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
121
#else
122
	return 0;
123
#endif
124
}
125

126 127 128 129 130 131 132 133 134
static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_CPU_PARTIAL
	return !kmem_cache_debug(s);
#else
	return false;
#endif
}

C
Christoph Lameter 已提交
135 136 137 138 139 140 141 142 143 144 145
/*
 * Issues still to be resolved:
 *
 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 *
 * - Variable sizing of the per node arrays
 */

/* Enable to test recovery from slab corruption on boot */
#undef SLUB_RESILIENCY_TEST

146 147 148
/* Enable to log cmpxchg failures */
#undef SLUB_DEBUG_CMPXCHG

149 150 151 152
/*
 * Mininum number of partial slabs. These will be left on the partial
 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 */
C
Christoph Lameter 已提交
153
#define MIN_PARTIAL 5
C
Christoph Lameter 已提交
154

155 156 157
/*
 * Maximum number of desirable partial slabs.
 * The existence of more partial slabs makes kmem_cache_shrink
Z
Zhi Yong Wu 已提交
158
 * sort the partial list by the number of objects in use.
159 160 161
 */
#define MAX_PARTIAL 10

C
Christoph Lameter 已提交
162 163
#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
				SLAB_POISON | SLAB_STORE_USER)
C
Christoph Lameter 已提交
164

165
/*
166 167 168
 * Debugging flags that require metadata to be stored in the slab.  These get
 * disabled when slub_debug=O is used and a cache's min order increases with
 * metadata.
169
 */
170
#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
171

C
Christoph Lameter 已提交
172 173 174 175
/*
 * Set of flags that will prevent slab merging
 */
#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
176 177
		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
		SLAB_FAILSLAB)
C
Christoph Lameter 已提交
178 179

#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
V
Vegard Nossum 已提交
180
		SLAB_CACHE_DMA | SLAB_NOTRACK)
C
Christoph Lameter 已提交
181

182 183
#define OO_SHIFT	16
#define OO_MASK		((1 << OO_SHIFT) - 1)
184
#define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
185

C
Christoph Lameter 已提交
186
/* Internal SLUB flags */
C
Christoph Lameter 已提交
187
#define __OBJECT_POISON		0x80000000UL /* Poison object */
188
#define __CMPXCHG_DOUBLE	0x40000000UL /* Use cmpxchg_double */
C
Christoph Lameter 已提交
189 190 191 192 193

#ifdef CONFIG_SMP
static struct notifier_block slab_notifier;
#endif

194 195 196
/*
 * Tracking user of a slab.
 */
197
#define TRACK_ADDRS_COUNT 16
198
struct track {
199
	unsigned long addr;	/* Called from address */
200 201 202
#ifdef CONFIG_STACKTRACE
	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
#endif
203 204 205 206 207 208 209
	int cpu;		/* Was running on cpu */
	int pid;		/* Pid context */
	unsigned long when;	/* When did the operation occur */
};

enum track_item { TRACK_ALLOC, TRACK_FREE };

210
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
211 212 213
static int sysfs_slab_add(struct kmem_cache *);
static int sysfs_slab_alias(struct kmem_cache *, const char *);
static void sysfs_slab_remove(struct kmem_cache *);
214
static void memcg_propagate_slab_attrs(struct kmem_cache *s);
C
Christoph Lameter 已提交
215
#else
216 217 218
static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
							{ return 0; }
219
static inline void sysfs_slab_remove(struct kmem_cache *s) { }
220

221
static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
C
Christoph Lameter 已提交
222 223
#endif

224
static inline void stat(const struct kmem_cache *s, enum stat_item si)
225 226
{
#ifdef CONFIG_SLUB_STATS
227
	__this_cpu_inc(s->cpu_slab->stat[si]);
228 229 230
#endif
}

C
Christoph Lameter 已提交
231 232 233 234 235 236 237 238 239
/********************************************************************
 * 			Core slab cache functions
 *******************************************************************/

static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
{
	return s->node[node];
}

C
Christoph Lameter 已提交
240
/* Verify that a pointer has an address that is valid within a slab page */
241 242 243 244 245
static inline int check_valid_pointer(struct kmem_cache *s,
				struct page *page, const void *object)
{
	void *base;

246
	if (!object)
247 248
		return 1;

249
	base = page_address(page);
250
	if (object < base || object >= base + page->objects * s->size ||
251 252 253 254 255 256 257
		(object - base) % s->size) {
		return 0;
	}

	return 1;
}

258 259 260 261 262
static inline void *get_freepointer(struct kmem_cache *s, void *object)
{
	return *(void **)(object + s->offset);
}

263 264 265 266 267
static void prefetch_freepointer(const struct kmem_cache *s, void *object)
{
	prefetch(object + s->offset);
}

268 269 270 271 272 273 274 275 276 277 278 279
static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
{
	void *p;

#ifdef CONFIG_DEBUG_PAGEALLOC
	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
#else
	p = get_freepointer(s, object);
#endif
	return p;
}

280 281 282 283 284 285
static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
{
	*(void **)(object + s->offset) = fp;
}

/* Loop over all objects in a slab */
286 287
#define for_each_object(__p, __s, __addr, __objects) \
	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
288 289 290 291 292 293 294 295
			__p += (__s)->size)

/* Determine object index from a given position */
static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
{
	return (p - addr) / s->size;
}

296 297 298 299 300 301 302 303
static inline size_t slab_ksize(const struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_DEBUG
	/*
	 * Debugging requires use of the padding between object
	 * and whatever may come after it.
	 */
	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
304
		return s->object_size;
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319

#endif
	/*
	 * If we have the need to store the freelist pointer
	 * back there or track user information then we can
	 * only use the space before that information.
	 */
	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
		return s->inuse;
	/*
	 * Else we can use all the padding etc for the allocation
	 */
	return s->size;
}

320 321 322 323 324
static inline int order_objects(int order, unsigned long size, int reserved)
{
	return ((PAGE_SIZE << order) - reserved) / size;
}

325
static inline struct kmem_cache_order_objects oo_make(int order,
326
		unsigned long size, int reserved)
327 328
{
	struct kmem_cache_order_objects x = {
329
		(order << OO_SHIFT) + order_objects(order, size, reserved)
330 331 332 333 334 335 336
	};

	return x;
}

static inline int oo_order(struct kmem_cache_order_objects x)
{
337
	return x.x >> OO_SHIFT;
338 339 340 341
}

static inline int oo_objects(struct kmem_cache_order_objects x)
{
342
	return x.x & OO_MASK;
343 344
}

345 346 347 348 349 350 351 352 353 354 355 356 357
/*
 * Per slab locking using the pagelock
 */
static __always_inline void slab_lock(struct page *page)
{
	bit_spin_lock(PG_locked, &page->flags);
}

static __always_inline void slab_unlock(struct page *page)
{
	__bit_spin_unlock(PG_locked, &page->flags);
}

358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
{
	struct page tmp;
	tmp.counters = counters_new;
	/*
	 * page->counters can cover frozen/inuse/objects as well
	 * as page->_count.  If we assign to ->counters directly
	 * we run the risk of losing updates to page->_count, so
	 * be careful and only assign to the fields we need.
	 */
	page->frozen  = tmp.frozen;
	page->inuse   = tmp.inuse;
	page->objects = tmp.objects;
}

373 374 375 376 377 378 379
/* Interrupts must be disabled (for the fallback code to work right) */
static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
	VM_BUG_ON(!irqs_disabled());
380 381
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
382
	if (s->flags & __CMPXCHG_DOUBLE) {
383
		if (cmpxchg_double(&page->freelist, &page->counters,
384 385 386 387 388 389 390
			freelist_old, counters_old,
			freelist_new, counters_new))
		return 1;
	} else
#endif
	{
		slab_lock(page);
391 392
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
393
			page->freelist = freelist_new;
394
			set_page_slub_counters(page, counters_new);
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
			slab_unlock(page);
			return 1;
		}
		slab_unlock(page);
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
	printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
#endif

	return 0;
}

411 412 413 414 415
static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
416 417
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
418
	if (s->flags & __CMPXCHG_DOUBLE) {
419
		if (cmpxchg_double(&page->freelist, &page->counters,
420 421 422 423 424 425
			freelist_old, counters_old,
			freelist_new, counters_new))
		return 1;
	} else
#endif
	{
426 427 428
		unsigned long flags;

		local_irq_save(flags);
429
		slab_lock(page);
430 431
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
432
			page->freelist = freelist_new;
433
			set_page_slub_counters(page, counters_new);
434
			slab_unlock(page);
435
			local_irq_restore(flags);
436 437
			return 1;
		}
438
		slab_unlock(page);
439
		local_irq_restore(flags);
440 441 442 443 444 445 446 447 448 449 450 451
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
	printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
#endif

	return 0;
}

C
Christoph Lameter 已提交
452
#ifdef CONFIG_SLUB_DEBUG
453 454 455
/*
 * Determine a map of object in use on a page.
 *
456
 * Node listlock must be held to guarantee that the page does
457 458 459 460 461 462 463 464 465 466 467
 * not vanish from under us.
 */
static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
{
	void *p;
	void *addr = page_address(page);

	for (p = page->freelist; p; p = get_freepointer(s, p))
		set_bit(slab_index(p, s, addr), map);
}

C
Christoph Lameter 已提交
468 469 470
/*
 * Debug settings:
 */
471 472 473
#ifdef CONFIG_SLUB_DEBUG_ON
static int slub_debug = DEBUG_DEFAULT_FLAGS;
#else
C
Christoph Lameter 已提交
474
static int slub_debug;
475
#endif
C
Christoph Lameter 已提交
476 477

static char *slub_debug_slabs;
478
static int disable_higher_order_debug;
C
Christoph Lameter 已提交
479

C
Christoph Lameter 已提交
480 481 482 483 484
/*
 * Object debugging
 */
static void print_section(char *text, u8 *addr, unsigned int length)
{
485 486
	print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
			length, 1);
C
Christoph Lameter 已提交
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
}

static struct track *get_track(struct kmem_cache *s, void *object,
	enum track_item alloc)
{
	struct track *p;

	if (s->offset)
		p = object + s->offset + sizeof(void *);
	else
		p = object + s->inuse;

	return p + alloc;
}

static void set_track(struct kmem_cache *s, void *object,
503
			enum track_item alloc, unsigned long addr)
C
Christoph Lameter 已提交
504
{
A
Akinobu Mita 已提交
505
	struct track *p = get_track(s, object, alloc);
C
Christoph Lameter 已提交
506 507

	if (addr) {
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
#ifdef CONFIG_STACKTRACE
		struct stack_trace trace;
		int i;

		trace.nr_entries = 0;
		trace.max_entries = TRACK_ADDRS_COUNT;
		trace.entries = p->addrs;
		trace.skip = 3;
		save_stack_trace(&trace);

		/* See rant in lockdep.c */
		if (trace.nr_entries != 0 &&
		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
			trace.nr_entries--;

		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
			p->addrs[i] = 0;
#endif
C
Christoph Lameter 已提交
526 527
		p->addr = addr;
		p->cpu = smp_processor_id();
A
Alexey Dobriyan 已提交
528
		p->pid = current->pid;
C
Christoph Lameter 已提交
529 530 531 532 533 534 535
		p->when = jiffies;
	} else
		memset(p, 0, sizeof(struct track));
}

static void init_tracking(struct kmem_cache *s, void *object)
{
536 537 538
	if (!(s->flags & SLAB_STORE_USER))
		return;

539 540
	set_track(s, object, TRACK_FREE, 0UL);
	set_track(s, object, TRACK_ALLOC, 0UL);
C
Christoph Lameter 已提交
541 542 543 544 545 546 547
}

static void print_track(const char *s, struct track *t)
{
	if (!t->addr)
		return;

548
	printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
549
		s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
550 551 552 553 554 555 556 557 558 559
#ifdef CONFIG_STACKTRACE
	{
		int i;
		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
			if (t->addrs[i])
				printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
			else
				break;
	}
#endif
560 561 562 563 564 565 566 567 568 569 570 571 572
}

static void print_tracking(struct kmem_cache *s, void *object)
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
	print_track("Freed", get_track(s, object, TRACK_FREE));
}

static void print_page_info(struct page *page)
{
573 574 575
	printk(KERN_ERR
	       "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
	       page, page->objects, page->inuse, page->freelist, page->flags);
576 577 578 579 580 581 582 583 584 585 586 587 588

}

static void slab_bug(struct kmem_cache *s, char *fmt, ...)
{
	va_list args;
	char buf[100];

	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
	va_end(args);
	printk(KERN_ERR "========================================"
			"=====================================\n");
589
	printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
590 591
	printk(KERN_ERR "----------------------------------------"
			"-------------------------------------\n\n");
592

593
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
C
Christoph Lameter 已提交
594 595
}

596 597 598 599 600 601 602 603 604 605 606 607
static void slab_fix(struct kmem_cache *s, char *fmt, ...)
{
	va_list args;
	char buf[100];

	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
	va_end(args);
	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
}

static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
C
Christoph Lameter 已提交
608 609
{
	unsigned int off;	/* Offset of last byte */
610
	u8 *addr = page_address(page);
611 612 613 614 615 616 617 618 619

	print_tracking(s, p);

	print_page_info(page);

	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
			p, p - addr, get_freepointer(s, p));

	if (p > addr + 16)
620
		print_section("Bytes b4 ", p - 16, 16);
C
Christoph Lameter 已提交
621

622
	print_section("Object ", p, min_t(unsigned long, s->object_size,
623
				PAGE_SIZE));
C
Christoph Lameter 已提交
624
	if (s->flags & SLAB_RED_ZONE)
625 626
		print_section("Redzone ", p + s->object_size,
			s->inuse - s->object_size);
C
Christoph Lameter 已提交
627 628 629 630 631 632

	if (s->offset)
		off = s->offset + sizeof(void *);
	else
		off = s->inuse;

633
	if (s->flags & SLAB_STORE_USER)
C
Christoph Lameter 已提交
634 635 636 637
		off += 2 * sizeof(struct track);

	if (off != s->size)
		/* Beginning of the filler is the free pointer */
638
		print_section("Padding ", p + off, s->size - off);
639 640

	dump_stack();
C
Christoph Lameter 已提交
641 642 643 644 645
}

static void object_err(struct kmem_cache *s, struct page *page,
			u8 *object, char *reason)
{
646
	slab_bug(s, "%s", reason);
647
	print_trailer(s, page, object);
C
Christoph Lameter 已提交
648 649
}

650 651
static void slab_err(struct kmem_cache *s, struct page *page,
			const char *fmt, ...)
C
Christoph Lameter 已提交
652 653 654 655
{
	va_list args;
	char buf[100];

656 657
	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
C
Christoph Lameter 已提交
658
	va_end(args);
659
	slab_bug(s, "%s", buf);
660
	print_page_info(page);
C
Christoph Lameter 已提交
661 662 663
	dump_stack();
}

664
static void init_object(struct kmem_cache *s, void *object, u8 val)
C
Christoph Lameter 已提交
665 666 667 668
{
	u8 *p = object;

	if (s->flags & __OBJECT_POISON) {
669 670
		memset(p, POISON_FREE, s->object_size - 1);
		p[s->object_size - 1] = POISON_END;
C
Christoph Lameter 已提交
671 672 673
	}

	if (s->flags & SLAB_RED_ZONE)
674
		memset(p + s->object_size, val, s->inuse - s->object_size);
C
Christoph Lameter 已提交
675 676
}

677 678 679 680 681 682 683 684 685
static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
						void *from, void *to)
{
	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
	memset(from, data, to - from);
}

static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
			u8 *object, char *what,
P
Pekka Enberg 已提交
686
			u8 *start, unsigned int value, unsigned int bytes)
687 688 689 690
{
	u8 *fault;
	u8 *end;

691
	fault = memchr_inv(start, value, bytes);
692 693 694 695 696 697 698 699 700 701 702 703 704 705
	if (!fault)
		return 1;

	end = start + bytes;
	while (end > fault && end[-1] == value)
		end--;

	slab_bug(s, "%s overwritten", what);
	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
					fault, end - 1, fault[0], value);
	print_trailer(s, page, object);

	restore_bytes(s, what, value, fault, end);
	return 0;
C
Christoph Lameter 已提交
706 707 708 709 710 711 712 713 714
}

/*
 * Object layout:
 *
 * object address
 * 	Bytes of the object to be managed.
 * 	If the freepointer may overlay the object then the free
 * 	pointer is the first word of the object.
C
Christoph Lameter 已提交
715
 *
C
Christoph Lameter 已提交
716 717 718
 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
 * 	0xa5 (POISON_END)
 *
719
 * object + s->object_size
C
Christoph Lameter 已提交
720
 * 	Padding to reach word boundary. This is also used for Redzoning.
C
Christoph Lameter 已提交
721
 * 	Padding is extended by another word if Redzoning is enabled and
722
 * 	object_size == inuse.
C
Christoph Lameter 已提交
723
 *
C
Christoph Lameter 已提交
724 725 726 727
 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 * 	0xcc (RED_ACTIVE) for objects in use.
 *
 * object + s->inuse
C
Christoph Lameter 已提交
728 729
 * 	Meta data starts here.
 *
C
Christoph Lameter 已提交
730 731
 * 	A. Free pointer (if we cannot overwrite object on free)
 * 	B. Tracking data for SLAB_STORE_USER
C
Christoph Lameter 已提交
732
 * 	C. Padding to reach required alignment boundary or at mininum
C
Christoph Lameter 已提交
733
 * 		one word if debugging is on to be able to detect writes
C
Christoph Lameter 已提交
734 735 736
 * 		before the word boundary.
 *
 *	Padding is done using 0x5a (POISON_INUSE)
C
Christoph Lameter 已提交
737 738
 *
 * object + s->size
C
Christoph Lameter 已提交
739
 * 	Nothing is used beyond s->size.
C
Christoph Lameter 已提交
740
 *
741
 * If slabcaches are merged then the object_size and inuse boundaries are mostly
C
Christoph Lameter 已提交
742
 * ignored. And therefore no slab options that rely on these boundaries
C
Christoph Lameter 已提交
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
 * may be used with merged slabcaches.
 */

static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
{
	unsigned long off = s->inuse;	/* The end of info */

	if (s->offset)
		/* Freepointer is placed after the object. */
		off += sizeof(void *);

	if (s->flags & SLAB_STORE_USER)
		/* We also have user information there */
		off += 2 * sizeof(struct track);

	if (s->size == off)
		return 1;

761 762
	return check_bytes_and_report(s, page, p, "Object padding",
				p + off, POISON_INUSE, s->size - off);
C
Christoph Lameter 已提交
763 764
}

765
/* Check the pad bytes at the end of a slab page */
C
Christoph Lameter 已提交
766 767
static int slab_pad_check(struct kmem_cache *s, struct page *page)
{
768 769 770 771 772
	u8 *start;
	u8 *fault;
	u8 *end;
	int length;
	int remainder;
C
Christoph Lameter 已提交
773 774 775 776

	if (!(s->flags & SLAB_POISON))
		return 1;

777
	start = page_address(page);
778
	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
779 780
	end = start + length;
	remainder = length % s->size;
C
Christoph Lameter 已提交
781 782 783
	if (!remainder)
		return 1;

784
	fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
785 786 787 788 789 790
	if (!fault)
		return 1;
	while (end > fault && end[-1] == POISON_INUSE)
		end--;

	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
791
	print_section("Padding ", end - remainder, remainder);
792

E
Eric Dumazet 已提交
793
	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
794
	return 0;
C
Christoph Lameter 已提交
795 796 797
}

static int check_object(struct kmem_cache *s, struct page *page,
798
					void *object, u8 val)
C
Christoph Lameter 已提交
799 800
{
	u8 *p = object;
801
	u8 *endobject = object + s->object_size;
C
Christoph Lameter 已提交
802 803

	if (s->flags & SLAB_RED_ZONE) {
804
		if (!check_bytes_and_report(s, page, object, "Redzone",
805
			endobject, val, s->inuse - s->object_size))
C
Christoph Lameter 已提交
806 807
			return 0;
	} else {
808
		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
I
Ingo Molnar 已提交
809
			check_bytes_and_report(s, page, p, "Alignment padding",
810 811
				endobject, POISON_INUSE,
				s->inuse - s->object_size);
I
Ingo Molnar 已提交
812
		}
C
Christoph Lameter 已提交
813 814 815
	}

	if (s->flags & SLAB_POISON) {
816
		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
817
			(!check_bytes_and_report(s, page, p, "Poison", p,
818
					POISON_FREE, s->object_size - 1) ||
819
			 !check_bytes_and_report(s, page, p, "Poison",
820
				p + s->object_size - 1, POISON_END, 1)))
C
Christoph Lameter 已提交
821 822 823 824 825 826 827
			return 0;
		/*
		 * check_pad_bytes cleans up on its own.
		 */
		check_pad_bytes(s, page, p);
	}

828
	if (!s->offset && val == SLUB_RED_ACTIVE)
C
Christoph Lameter 已提交
829 830 831 832 833 834 835 836 837 838
		/*
		 * Object and freepointer overlap. Cannot check
		 * freepointer while object is allocated.
		 */
		return 1;

	/* Check free pointer validity */
	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
		object_err(s, page, p, "Freepointer corrupt");
		/*
N
Nick Andrew 已提交
839
		 * No choice but to zap it and thus lose the remainder
C
Christoph Lameter 已提交
840
		 * of the free objects in this slab. May cause
C
Christoph Lameter 已提交
841
		 * another error because the object count is now wrong.
C
Christoph Lameter 已提交
842
		 */
843
		set_freepointer(s, p, NULL);
C
Christoph Lameter 已提交
844 845 846 847 848 849 850
		return 0;
	}
	return 1;
}

static int check_slab(struct kmem_cache *s, struct page *page)
{
851 852
	int maxobj;

C
Christoph Lameter 已提交
853 854 855
	VM_BUG_ON(!irqs_disabled());

	if (!PageSlab(page)) {
856
		slab_err(s, page, "Not a valid slab page");
C
Christoph Lameter 已提交
857 858
		return 0;
	}
859

860
	maxobj = order_objects(compound_order(page), s->size, s->reserved);
861 862 863 864 865 866
	if (page->objects > maxobj) {
		slab_err(s, page, "objects %u > max %u",
			s->name, page->objects, maxobj);
		return 0;
	}
	if (page->inuse > page->objects) {
867
		slab_err(s, page, "inuse %u > max %u",
868
			s->name, page->inuse, page->objects);
C
Christoph Lameter 已提交
869 870 871 872 873 874 875 876
		return 0;
	}
	/* Slab_pad_check fixes things up after itself */
	slab_pad_check(s, page);
	return 1;
}

/*
C
Christoph Lameter 已提交
877 878
 * Determine if a certain object on a page is on the freelist. Must hold the
 * slab lock to guarantee that the chains are in a consistent state.
C
Christoph Lameter 已提交
879 880 881 882
 */
static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
{
	int nr = 0;
883
	void *fp;
C
Christoph Lameter 已提交
884
	void *object = NULL;
885
	unsigned long max_objects;
C
Christoph Lameter 已提交
886

887
	fp = page->freelist;
888
	while (fp && nr <= page->objects) {
C
Christoph Lameter 已提交
889 890 891 892 893 894
		if (fp == search)
			return 1;
		if (!check_valid_pointer(s, page, fp)) {
			if (object) {
				object_err(s, page, object,
					"Freechain corrupt");
895
				set_freepointer(s, object, NULL);
C
Christoph Lameter 已提交
896
			} else {
897
				slab_err(s, page, "Freepointer corrupt");
898
				page->freelist = NULL;
899
				page->inuse = page->objects;
900
				slab_fix(s, "Freelist cleared");
C
Christoph Lameter 已提交
901 902 903 904 905 906 907 908 909
				return 0;
			}
			break;
		}
		object = fp;
		fp = get_freepointer(s, object);
		nr++;
	}

910
	max_objects = order_objects(compound_order(page), s->size, s->reserved);
911 912
	if (max_objects > MAX_OBJS_PER_PAGE)
		max_objects = MAX_OBJS_PER_PAGE;
913 914 915 916 917 918 919

	if (page->objects != max_objects) {
		slab_err(s, page, "Wrong number of objects. Found %d but "
			"should be %d", page->objects, max_objects);
		page->objects = max_objects;
		slab_fix(s, "Number of objects adjusted.");
	}
920
	if (page->inuse != page->objects - nr) {
921
		slab_err(s, page, "Wrong object count. Counter is %d but "
922 923
			"counted were %d", page->inuse, page->objects - nr);
		page->inuse = page->objects - nr;
924
		slab_fix(s, "Object count adjusted.");
C
Christoph Lameter 已提交
925 926 927 928
	}
	return search == NULL;
}

929 930
static void trace(struct kmem_cache *s, struct page *page, void *object,
								int alloc)
C
Christoph Lameter 已提交
931 932 933 934 935 936 937 938 939
{
	if (s->flags & SLAB_TRACE) {
		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
			s->name,
			alloc ? "alloc" : "free",
			object, page->inuse,
			page->freelist);

		if (!alloc)
940 941
			print_section("Object ", (void *)object,
					s->object_size);
C
Christoph Lameter 已提交
942 943 944 945 946

		dump_stack();
	}
}

947 948 949 950
/*
 * Hooks for other subsystems that check memory allocations. In a typical
 * production configuration these hooks all should produce no code at all.
 */
951 952 953 954 955 956 957 958 959 960
static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
{
	kmemleak_alloc(ptr, size, 1, flags);
}

static inline void kfree_hook(const void *x)
{
	kmemleak_free(x);
}

961 962
static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
{
963
	flags &= gfp_allowed_mask;
964 965 966
	lockdep_trace_alloc(flags);
	might_sleep_if(flags & __GFP_WAIT);

967
	return should_failslab(s->object_size, flags, s->flags);
968 969
}

970 971
static inline void slab_post_alloc_hook(struct kmem_cache *s,
					gfp_t flags, void *object)
972
{
973
	flags &= gfp_allowed_mask;
974
	kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
975
	kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
976 977 978 979 980 981
}

static inline void slab_free_hook(struct kmem_cache *s, void *x)
{
	kmemleak_free_recursive(x, s->flags);

982
	/*
X
Xie XiuQi 已提交
983
	 * Trouble is that we may no longer disable interrupts in the fast path
984 985 986 987 988 989 990 991
	 * So in order to make the debug calls that expect irqs to be
	 * disabled we need to disable interrupts temporarily.
	 */
#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
	{
		unsigned long flags;

		local_irq_save(flags);
992 993
		kmemcheck_slab_free(s, x, s->object_size);
		debug_check_no_locks_freed(x, s->object_size);
994 995 996
		local_irq_restore(flags);
	}
#endif
997
	if (!(s->flags & SLAB_DEBUG_OBJECTS))
998
		debug_check_no_obj_freed(x, s->object_size);
999 1000
}

1001
/*
C
Christoph Lameter 已提交
1002
 * Tracking of fully allocated slabs for debugging purposes.
1003
 */
1004 1005
static void add_full(struct kmem_cache *s,
	struct kmem_cache_node *n, struct page *page)
1006
{
1007 1008 1009
	if (!(s->flags & SLAB_STORE_USER))
		return;

1010
	lockdep_assert_held(&n->list_lock);
1011 1012 1013
	list_add(&page->lru, &n->full);
}

P
Peter Zijlstra 已提交
1014
static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1015 1016 1017 1018
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

1019
	lockdep_assert_held(&n->list_lock);
1020 1021 1022
	list_del(&page->lru);
}

1023 1024 1025 1026 1027 1028 1029 1030
/* Tracking of the number of slabs for debugging purposes */
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
{
	struct kmem_cache_node *n = get_node(s, node);

	return atomic_long_read(&n->nr_slabs);
}

1031 1032 1033 1034 1035
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
{
	return atomic_long_read(&n->nr_slabs);
}

1036
static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1037 1038 1039 1040 1041 1042 1043 1044 1045
{
	struct kmem_cache_node *n = get_node(s, node);

	/*
	 * May be called early in order to allocate a slab for the
	 * kmem_cache_node structure. Solve the chicken-egg
	 * dilemma by deferring the increment of the count during
	 * bootstrap (see early_kmem_cache_node_alloc).
	 */
1046
	if (likely(n)) {
1047
		atomic_long_inc(&n->nr_slabs);
1048 1049
		atomic_long_add(objects, &n->total_objects);
	}
1050
}
1051
static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1052 1053 1054 1055
{
	struct kmem_cache_node *n = get_node(s, node);

	atomic_long_dec(&n->nr_slabs);
1056
	atomic_long_sub(objects, &n->total_objects);
1057 1058 1059
}

/* Object debug checks for alloc/free paths */
C
Christoph Lameter 已提交
1060 1061 1062 1063 1064 1065
static void setup_object_debug(struct kmem_cache *s, struct page *page,
								void *object)
{
	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
		return;

1066
	init_object(s, object, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1067 1068 1069
	init_tracking(s, object);
}

1070 1071
static noinline int alloc_debug_processing(struct kmem_cache *s,
					struct page *page,
1072
					void *object, unsigned long addr)
C
Christoph Lameter 已提交
1073 1074 1075 1076 1077 1078
{
	if (!check_slab(s, page))
		goto bad;

	if (!check_valid_pointer(s, page, object)) {
		object_err(s, page, object, "Freelist Pointer check fails");
1079
		goto bad;
C
Christoph Lameter 已提交
1080 1081
	}

1082
	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
C
Christoph Lameter 已提交
1083 1084
		goto bad;

C
Christoph Lameter 已提交
1085 1086 1087 1088
	/* Success perform special debug activities for allocs */
	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_ALLOC, addr);
	trace(s, page, object, 1);
1089
	init_object(s, object, SLUB_RED_ACTIVE);
C
Christoph Lameter 已提交
1090
	return 1;
C
Christoph Lameter 已提交
1091

C
Christoph Lameter 已提交
1092 1093 1094 1095 1096
bad:
	if (PageSlab(page)) {
		/*
		 * If this is a slab page then lets do the best we can
		 * to avoid issues in the future. Marking all objects
C
Christoph Lameter 已提交
1097
		 * as used avoids touching the remaining objects.
C
Christoph Lameter 已提交
1098
		 */
1099
		slab_fix(s, "Marking all objects used");
1100
		page->inuse = page->objects;
1101
		page->freelist = NULL;
C
Christoph Lameter 已提交
1102 1103 1104 1105
	}
	return 0;
}

1106 1107 1108
static noinline struct kmem_cache_node *free_debug_processing(
	struct kmem_cache *s, struct page *page, void *object,
	unsigned long addr, unsigned long *flags)
C
Christoph Lameter 已提交
1109
{
1110
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1111

1112
	spin_lock_irqsave(&n->list_lock, *flags);
1113 1114
	slab_lock(page);

C
Christoph Lameter 已提交
1115 1116 1117 1118
	if (!check_slab(s, page))
		goto fail;

	if (!check_valid_pointer(s, page, object)) {
1119
		slab_err(s, page, "Invalid object pointer 0x%p", object);
C
Christoph Lameter 已提交
1120 1121 1122 1123
		goto fail;
	}

	if (on_freelist(s, page, object)) {
1124
		object_err(s, page, object, "Object already free");
C
Christoph Lameter 已提交
1125 1126 1127
		goto fail;
	}

1128
	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1129
		goto out;
C
Christoph Lameter 已提交
1130

1131
	if (unlikely(s != page->slab_cache)) {
I
Ingo Molnar 已提交
1132
		if (!PageSlab(page)) {
1133 1134
			slab_err(s, page, "Attempt to free object(0x%p) "
				"outside of slab", object);
1135
		} else if (!page->slab_cache) {
C
Christoph Lameter 已提交
1136
			printk(KERN_ERR
1137
				"SLUB <none>: no slab for object 0x%p.\n",
C
Christoph Lameter 已提交
1138
						object);
1139
			dump_stack();
P
Pekka Enberg 已提交
1140
		} else
1141 1142
			object_err(s, page, object,
					"page slab pointer corrupt.");
C
Christoph Lameter 已提交
1143 1144
		goto fail;
	}
C
Christoph Lameter 已提交
1145 1146 1147 1148

	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_FREE, addr);
	trace(s, page, object, 0);
1149
	init_object(s, object, SLUB_RED_INACTIVE);
1150
out:
1151
	slab_unlock(page);
1152 1153 1154 1155 1156
	/*
	 * Keep node_lock to preserve integrity
	 * until the object is actually freed
	 */
	return n;
C
Christoph Lameter 已提交
1157

C
Christoph Lameter 已提交
1158
fail:
1159 1160
	slab_unlock(page);
	spin_unlock_irqrestore(&n->list_lock, *flags);
1161
	slab_fix(s, "Object at 0x%p not freed", object);
1162
	return NULL;
C
Christoph Lameter 已提交
1163 1164
}

C
Christoph Lameter 已提交
1165 1166
static int __init setup_slub_debug(char *str)
{
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
	slub_debug = DEBUG_DEFAULT_FLAGS;
	if (*str++ != '=' || !*str)
		/*
		 * No options specified. Switch on full debugging.
		 */
		goto out;

	if (*str == ',')
		/*
		 * No options but restriction on slabs. This means full
		 * debugging for slabs matching a pattern.
		 */
		goto check_slabs;

1181 1182 1183 1184 1185 1186 1187 1188 1189
	if (tolower(*str) == 'o') {
		/*
		 * Avoid enabling debugging on caches if its minimum order
		 * would increase as a result.
		 */
		disable_higher_order_debug = 1;
		goto out;
	}

1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
	slub_debug = 0;
	if (*str == '-')
		/*
		 * Switch off all debugging measures.
		 */
		goto out;

	/*
	 * Determine which debug features should be switched on
	 */
P
Pekka Enberg 已提交
1200
	for (; *str && *str != ','; str++) {
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
		switch (tolower(*str)) {
		case 'f':
			slub_debug |= SLAB_DEBUG_FREE;
			break;
		case 'z':
			slub_debug |= SLAB_RED_ZONE;
			break;
		case 'p':
			slub_debug |= SLAB_POISON;
			break;
		case 'u':
			slub_debug |= SLAB_STORE_USER;
			break;
		case 't':
			slub_debug |= SLAB_TRACE;
			break;
1217 1218 1219
		case 'a':
			slub_debug |= SLAB_FAILSLAB;
			break;
1220 1221
		default:
			printk(KERN_ERR "slub_debug option '%c' "
P
Pekka Enberg 已提交
1222
				"unknown. skipped\n", *str);
1223
		}
C
Christoph Lameter 已提交
1224 1225
	}

1226
check_slabs:
C
Christoph Lameter 已提交
1227 1228
	if (*str == ',')
		slub_debug_slabs = str + 1;
1229
out:
C
Christoph Lameter 已提交
1230 1231 1232 1233 1234
	return 1;
}

__setup("slub_debug", setup_slub_debug);

1235
static unsigned long kmem_cache_flags(unsigned long object_size,
1236
	unsigned long flags, const char *name,
1237
	void (*ctor)(void *))
C
Christoph Lameter 已提交
1238 1239
{
	/*
1240
	 * Enable debugging if selected on the kernel commandline.
C
Christoph Lameter 已提交
1241
	 */
1242 1243
	if (slub_debug && (!slub_debug_slabs || (name &&
		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1244
		flags |= slub_debug;
1245 1246

	return flags;
C
Christoph Lameter 已提交
1247 1248
}
#else
C
Christoph Lameter 已提交
1249 1250
static inline void setup_object_debug(struct kmem_cache *s,
			struct page *page, void *object) {}
C
Christoph Lameter 已提交
1251

C
Christoph Lameter 已提交
1252
static inline int alloc_debug_processing(struct kmem_cache *s,
1253
	struct page *page, void *object, unsigned long addr) { return 0; }
C
Christoph Lameter 已提交
1254

1255 1256 1257
static inline struct kmem_cache_node *free_debug_processing(
	struct kmem_cache *s, struct page *page, void *object,
	unsigned long addr, unsigned long *flags) { return NULL; }
C
Christoph Lameter 已提交
1258 1259 1260 1261

static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
			{ return 1; }
static inline int check_object(struct kmem_cache *s, struct page *page,
1262
			void *object, u8 val) { return 1; }
1263 1264
static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
P
Peter Zijlstra 已提交
1265 1266
static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
1267
static inline unsigned long kmem_cache_flags(unsigned long object_size,
1268
	unsigned long flags, const char *name,
1269
	void (*ctor)(void *))
1270 1271 1272
{
	return flags;
}
C
Christoph Lameter 已提交
1273
#define slub_debug 0
1274

1275 1276
#define disable_higher_order_debug 0

1277 1278
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
							{ return 0; }
1279 1280
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
							{ return 0; }
1281 1282 1283 1284
static inline void inc_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
static inline void dec_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
1285

1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
{
	kmemleak_alloc(ptr, size, 1, flags);
}

static inline void kfree_hook(const void *x)
{
	kmemleak_free(x);
}

1296 1297 1298 1299
static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
							{ return 0; }

static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1300 1301 1302 1303 1304
		void *object)
{
	kmemleak_alloc_recursive(object, s->object_size, 1, s->flags,
		flags & gfp_allowed_mask);
}
1305

1306 1307 1308 1309
static inline void slab_free_hook(struct kmem_cache *s, void *x)
{
	kmemleak_free_recursive(x, s->flags);
}
1310

1311
#endif /* CONFIG_SLUB_DEBUG */
1312

C
Christoph Lameter 已提交
1313 1314 1315
/*
 * Slab allocation and freeing
 */
1316 1317 1318 1319 1320
static inline struct page *alloc_slab_page(gfp_t flags, int node,
					struct kmem_cache_order_objects oo)
{
	int order = oo_order(oo);

1321 1322
	flags |= __GFP_NOTRACK;

1323
	if (node == NUMA_NO_NODE)
1324 1325
		return alloc_pages(flags, order);
	else
1326
		return alloc_pages_exact_node(node, flags, order);
1327 1328
}

C
Christoph Lameter 已提交
1329 1330
static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
{
P
Pekka Enberg 已提交
1331
	struct page *page;
1332
	struct kmem_cache_order_objects oo = s->oo;
1333
	gfp_t alloc_gfp;
C
Christoph Lameter 已提交
1334

1335 1336 1337 1338 1339
	flags &= gfp_allowed_mask;

	if (flags & __GFP_WAIT)
		local_irq_enable();

1340
	flags |= s->allocflags;
1341

1342 1343 1344 1345 1346 1347 1348
	/*
	 * Let the initial higher-order allocation fail under memory pressure
	 * so we fall-back to the minimum order allocation.
	 */
	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;

	page = alloc_slab_page(alloc_gfp, node, oo);
1349 1350 1351 1352 1353 1354 1355
	if (unlikely(!page)) {
		oo = s->min;
		/*
		 * Allocation may have failed due to fragmentation.
		 * Try a lower order alloc if possible
		 */
		page = alloc_slab_page(flags, node, oo);
C
Christoph Lameter 已提交
1356

1357 1358
		if (page)
			stat(s, ORDER_FALLBACK);
1359
	}
V
Vegard Nossum 已提交
1360

1361
	if (kmemcheck_enabled && page
1362
		&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
		int pages = 1 << oo_order(oo);

		kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);

		/*
		 * Objects from caches that have a constructor don't get
		 * cleared when they're allocated, so we need to do it here.
		 */
		if (s->ctor)
			kmemcheck_mark_uninitialized_pages(page, pages);
		else
			kmemcheck_mark_unallocated_pages(page, pages);
V
Vegard Nossum 已提交
1375 1376
	}

1377 1378 1379 1380 1381
	if (flags & __GFP_WAIT)
		local_irq_disable();
	if (!page)
		return NULL;

1382
	page->objects = oo_objects(oo);
C
Christoph Lameter 已提交
1383 1384 1385
	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1386
		1 << oo_order(oo));
C
Christoph Lameter 已提交
1387 1388 1389 1390 1391 1392 1393

	return page;
}

static void setup_object(struct kmem_cache *s, struct page *page,
				void *object)
{
C
Christoph Lameter 已提交
1394
	setup_object_debug(s, page, object);
1395
	if (unlikely(s->ctor))
1396
		s->ctor(object);
C
Christoph Lameter 已提交
1397 1398 1399 1400 1401 1402 1403 1404
}

static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
{
	struct page *page;
	void *start;
	void *last;
	void *p;
G
Glauber Costa 已提交
1405
	int order;
C
Christoph Lameter 已提交
1406

C
Christoph Lameter 已提交
1407
	BUG_ON(flags & GFP_SLAB_BUG_MASK);
C
Christoph Lameter 已提交
1408

C
Christoph Lameter 已提交
1409 1410
	page = allocate_slab(s,
		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
C
Christoph Lameter 已提交
1411 1412 1413
	if (!page)
		goto out;

G
Glauber Costa 已提交
1414
	order = compound_order(page);
1415
	inc_slabs_node(s, page_to_nid(page), page->objects);
G
Glauber Costa 已提交
1416
	memcg_bind_pages(s, order);
1417
	page->slab_cache = s;
1418
	__SetPageSlab(page);
1419 1420
	if (page->pfmemalloc)
		SetPageSlabPfmemalloc(page);
C
Christoph Lameter 已提交
1421 1422 1423 1424

	start = page_address(page);

	if (unlikely(s->flags & SLAB_POISON))
G
Glauber Costa 已提交
1425
		memset(start, POISON_INUSE, PAGE_SIZE << order);
C
Christoph Lameter 已提交
1426 1427

	last = start;
1428
	for_each_object(p, s, start, page->objects) {
C
Christoph Lameter 已提交
1429 1430 1431 1432 1433
		setup_object(s, page, last);
		set_freepointer(s, last, p);
		last = p;
	}
	setup_object(s, page, last);
1434
	set_freepointer(s, last, NULL);
C
Christoph Lameter 已提交
1435 1436

	page->freelist = start;
1437
	page->inuse = page->objects;
1438
	page->frozen = 1;
C
Christoph Lameter 已提交
1439 1440 1441 1442 1443 1444
out:
	return page;
}

static void __free_slab(struct kmem_cache *s, struct page *page)
{
1445 1446
	int order = compound_order(page);
	int pages = 1 << order;
C
Christoph Lameter 已提交
1447

1448
	if (kmem_cache_debug(s)) {
C
Christoph Lameter 已提交
1449 1450 1451
		void *p;

		slab_pad_check(s, page);
1452 1453
		for_each_object(p, s, page_address(page),
						page->objects)
1454
			check_object(s, page, p, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1455 1456
	}

1457
	kmemcheck_free_shadow(page, compound_order(page));
V
Vegard Nossum 已提交
1458

C
Christoph Lameter 已提交
1459 1460 1461
	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
P
Pekka Enberg 已提交
1462
		-pages);
C
Christoph Lameter 已提交
1463

1464
	__ClearPageSlabPfmemalloc(page);
1465
	__ClearPageSlab(page);
G
Glauber Costa 已提交
1466 1467

	memcg_release_pages(s, order);
1468
	page_mapcount_reset(page);
N
Nick Piggin 已提交
1469 1470
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += pages;
1471
	__free_memcg_kmem_pages(page, order);
C
Christoph Lameter 已提交
1472 1473
}

1474 1475 1476
#define need_reserve_slab_rcu						\
	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))

C
Christoph Lameter 已提交
1477 1478 1479 1480
static void rcu_free_slab(struct rcu_head *h)
{
	struct page *page;

1481 1482 1483 1484 1485
	if (need_reserve_slab_rcu)
		page = virt_to_head_page(h);
	else
		page = container_of((struct list_head *)h, struct page, lru);

1486
	__free_slab(page->slab_cache, page);
C
Christoph Lameter 已提交
1487 1488 1489 1490 1491
}

static void free_slab(struct kmem_cache *s, struct page *page)
{
	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
		struct rcu_head *head;

		if (need_reserve_slab_rcu) {
			int order = compound_order(page);
			int offset = (PAGE_SIZE << order) - s->reserved;

			VM_BUG_ON(s->reserved != sizeof(*head));
			head = page_address(page) + offset;
		} else {
			/*
			 * RCU free overloads the RCU head over the LRU
			 */
			head = (void *)&page->lru;
		}
C
Christoph Lameter 已提交
1506 1507 1508 1509 1510 1511 1512 1513

		call_rcu(head, rcu_free_slab);
	} else
		__free_slab(s, page);
}

static void discard_slab(struct kmem_cache *s, struct page *page)
{
1514
	dec_slabs_node(s, page_to_nid(page), page->objects);
C
Christoph Lameter 已提交
1515 1516 1517 1518
	free_slab(s, page);
}

/*
1519
 * Management of partially allocated slabs.
C
Christoph Lameter 已提交
1520
 */
1521
static inline void add_partial(struct kmem_cache_node *n,
1522
				struct page *page, int tail)
C
Christoph Lameter 已提交
1523
{
P
Peter Zijlstra 已提交
1524 1525
	lockdep_assert_held(&n->list_lock);

C
Christoph Lameter 已提交
1526
	n->nr_partial++;
1527
	if (tail == DEACTIVATE_TO_TAIL)
1528 1529 1530
		list_add_tail(&page->lru, &n->partial);
	else
		list_add(&page->lru, &n->partial);
C
Christoph Lameter 已提交
1531 1532
}

1533
static inline void remove_partial(struct kmem_cache_node *n,
1534 1535
					struct page *page)
{
P
Peter Zijlstra 已提交
1536 1537
	lockdep_assert_held(&n->list_lock);

1538 1539 1540 1541
	list_del(&page->lru);
	n->nr_partial--;
}

C
Christoph Lameter 已提交
1542
/*
1543 1544
 * Remove slab from the partial list, freeze it and
 * return the pointer to the freelist.
C
Christoph Lameter 已提交
1545
 *
1546
 * Returns a list of objects or NULL if it fails.
C
Christoph Lameter 已提交
1547
 */
1548
static inline void *acquire_slab(struct kmem_cache *s,
1549
		struct kmem_cache_node *n, struct page *page,
1550
		int mode, int *objects)
C
Christoph Lameter 已提交
1551
{
1552 1553 1554 1555
	void *freelist;
	unsigned long counters;
	struct page new;

P
Peter Zijlstra 已提交
1556 1557
	lockdep_assert_held(&n->list_lock);

1558 1559 1560 1561 1562
	/*
	 * Zap the freelist and set the frozen bit.
	 * The old freelist is the list of objects for the
	 * per cpu allocation list.
	 */
1563 1564 1565
	freelist = page->freelist;
	counters = page->counters;
	new.counters = counters;
1566
	*objects = new.objects - new.inuse;
1567
	if (mode) {
1568
		new.inuse = page->objects;
1569 1570 1571 1572
		new.freelist = NULL;
	} else {
		new.freelist = freelist;
	}
1573

1574
	VM_BUG_ON(new.frozen);
1575
	new.frozen = 1;
1576

1577
	if (!__cmpxchg_double_slab(s, page,
1578
			freelist, counters,
1579
			new.freelist, new.counters,
1580 1581
			"acquire_slab"))
		return NULL;
1582 1583

	remove_partial(n, page);
1584
	WARN_ON(!freelist);
1585
	return freelist;
C
Christoph Lameter 已提交
1586 1587
}

1588
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1589
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1590

C
Christoph Lameter 已提交
1591
/*
C
Christoph Lameter 已提交
1592
 * Try to allocate a partial slab from a specific node.
C
Christoph Lameter 已提交
1593
 */
1594 1595
static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
				struct kmem_cache_cpu *c, gfp_t flags)
C
Christoph Lameter 已提交
1596
{
1597 1598
	struct page *page, *page2;
	void *object = NULL;
1599 1600
	int available = 0;
	int objects;
C
Christoph Lameter 已提交
1601 1602 1603 1604

	/*
	 * Racy check. If we mistakenly see no partial slabs then we
	 * just allocate an empty slab. If we mistakenly try to get a
C
Christoph Lameter 已提交
1605 1606
	 * partial slab and there is none available then get_partials()
	 * will return NULL.
C
Christoph Lameter 已提交
1607 1608 1609 1610 1611
	 */
	if (!n || !n->nr_partial)
		return NULL;

	spin_lock(&n->list_lock);
1612
	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1613
		void *t;
1614

1615 1616 1617
		if (!pfmemalloc_match(page, flags))
			continue;

1618
		t = acquire_slab(s, n, page, object == NULL, &objects);
1619 1620 1621
		if (!t)
			break;

1622
		available += objects;
1623
		if (!object) {
1624 1625 1626 1627
			c->page = page;
			stat(s, ALLOC_FROM_PARTIAL);
			object = t;
		} else {
1628
			put_cpu_partial(s, page, 0);
1629
			stat(s, CPU_PARTIAL_NODE);
1630
		}
1631 1632
		if (!kmem_cache_has_cpu_partial(s)
			|| available > s->cpu_partial / 2)
1633 1634
			break;

1635
	}
C
Christoph Lameter 已提交
1636
	spin_unlock(&n->list_lock);
1637
	return object;
C
Christoph Lameter 已提交
1638 1639 1640
}

/*
C
Christoph Lameter 已提交
1641
 * Get a page from somewhere. Search in increasing NUMA distances.
C
Christoph Lameter 已提交
1642
 */
1643
static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1644
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1645 1646 1647
{
#ifdef CONFIG_NUMA
	struct zonelist *zonelist;
1648
	struct zoneref *z;
1649 1650
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
1651
	void *object;
1652
	unsigned int cpuset_mems_cookie;
C
Christoph Lameter 已提交
1653 1654

	/*
C
Christoph Lameter 已提交
1655 1656 1657 1658
	 * The defrag ratio allows a configuration of the tradeoffs between
	 * inter node defragmentation and node local allocations. A lower
	 * defrag_ratio increases the tendency to do local allocations
	 * instead of attempting to obtain partial slabs from other nodes.
C
Christoph Lameter 已提交
1659
	 *
C
Christoph Lameter 已提交
1660 1661 1662 1663
	 * If the defrag_ratio is set to 0 then kmalloc() always
	 * returns node local objects. If the ratio is higher then kmalloc()
	 * may return off node objects because partial slabs are obtained
	 * from other nodes and filled up.
C
Christoph Lameter 已提交
1664
	 *
C
Christoph Lameter 已提交
1665
	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
C
Christoph Lameter 已提交
1666 1667 1668 1669 1670
	 * defrag_ratio = 1000) then every (well almost) allocation will
	 * first attempt to defrag slab caches on other nodes. This means
	 * scanning over all nodes to look for partial slabs which may be
	 * expensive if we do it every time we are trying to find a slab
	 * with available objects.
C
Christoph Lameter 已提交
1671
	 */
1672 1673
	if (!s->remote_node_defrag_ratio ||
			get_cycles() % 1024 > s->remote_node_defrag_ratio)
C
Christoph Lameter 已提交
1674 1675
		return NULL;

1676 1677
	do {
		cpuset_mems_cookie = get_mems_allowed();
1678
		zonelist = node_zonelist(slab_node(), flags);
1679 1680 1681 1682 1683 1684 1685
		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
			struct kmem_cache_node *n;

			n = get_node(s, zone_to_nid(zone));

			if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
					n->nr_partial > s->min_partial) {
1686
				object = get_partial_node(s, n, c, flags);
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
				if (object) {
					/*
					 * Return the object even if
					 * put_mems_allowed indicated that
					 * the cpuset mems_allowed was
					 * updated in parallel. It's a
					 * harmless race between the alloc
					 * and the cpuset update.
					 */
					put_mems_allowed(cpuset_mems_cookie);
					return object;
				}
1699
			}
C
Christoph Lameter 已提交
1700
		}
1701
	} while (!put_mems_allowed(cpuset_mems_cookie));
C
Christoph Lameter 已提交
1702 1703 1704 1705 1706 1707 1708
#endif
	return NULL;
}

/*
 * Get a partial page, lock it and return it.
 */
1709
static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1710
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1711
{
1712
	void *object;
1713
	int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
C
Christoph Lameter 已提交
1714

1715
	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1716 1717
	if (object || node != NUMA_NO_NODE)
		return object;
C
Christoph Lameter 已提交
1718

1719
	return get_any_partial(s, flags, c);
C
Christoph Lameter 已提交
1720 1721
}

1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
#ifdef CONFIG_PREEMPT
/*
 * Calculate the next globally unique transaction for disambiguiation
 * during cmpxchg. The transactions start with the cpu number and are then
 * incremented by CONFIG_NR_CPUS.
 */
#define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
#else
/*
 * No preemption supported therefore also no need to check for
 * different cpus.
 */
#define TID_STEP 1
#endif

static inline unsigned long next_tid(unsigned long tid)
{
	return tid + TID_STEP;
}

static inline unsigned int tid_to_cpu(unsigned long tid)
{
	return tid % TID_STEP;
}

static inline unsigned long tid_to_event(unsigned long tid)
{
	return tid / TID_STEP;
}

static inline unsigned int init_tid(int cpu)
{
	return cpu;
}

static inline void note_cmpxchg_failure(const char *n,
		const struct kmem_cache *s, unsigned long tid)
{
#ifdef SLUB_DEBUG_CMPXCHG
	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);

	printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);

#ifdef CONFIG_PREEMPT
	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
		printk("due to cpu change %d -> %d\n",
			tid_to_cpu(tid), tid_to_cpu(actual_tid));
	else
#endif
	if (tid_to_event(tid) != tid_to_event(actual_tid))
		printk("due to cpu running other code. Event %ld->%ld\n",
			tid_to_event(tid), tid_to_event(actual_tid));
	else
		printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
			actual_tid, tid, next_tid(tid));
#endif
1778
	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1779 1780
}

1781
static void init_kmem_cache_cpus(struct kmem_cache *s)
1782 1783 1784 1785 1786 1787
{
	int cpu;

	for_each_possible_cpu(cpu)
		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
}
1788

C
Christoph Lameter 已提交
1789 1790 1791
/*
 * Remove the cpu slab
 */
1792 1793
static void deactivate_slab(struct kmem_cache *s, struct page *page,
				void *freelist)
C
Christoph Lameter 已提交
1794
{
1795 1796 1797 1798 1799
	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
	int lock = 0;
	enum slab_modes l = M_NONE, m = M_NONE;
	void *nextfree;
1800
	int tail = DEACTIVATE_TO_HEAD;
1801 1802 1803 1804
	struct page new;
	struct page old;

	if (page->freelist) {
1805
		stat(s, DEACTIVATE_REMOTE_FREES);
1806
		tail = DEACTIVATE_TO_TAIL;
1807 1808
	}

1809
	/*
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
	 * Stage one: Free all available per cpu objects back
	 * to the page freelist while it is still frozen. Leave the
	 * last one.
	 *
	 * There is no need to take the list->lock because the page
	 * is still frozen.
	 */
	while (freelist && (nextfree = get_freepointer(s, freelist))) {
		void *prior;
		unsigned long counters;

		do {
			prior = page->freelist;
			counters = page->counters;
			set_freepointer(s, freelist, prior);
			new.counters = counters;
			new.inuse--;
1827
			VM_BUG_ON(!new.frozen);
1828

1829
		} while (!__cmpxchg_double_slab(s, page,
1830 1831 1832 1833 1834 1835 1836
			prior, counters,
			freelist, new.counters,
			"drain percpu freelist"));

		freelist = nextfree;
	}

1837
	/*
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
	 * Stage two: Ensure that the page is unfrozen while the
	 * list presence reflects the actual number of objects
	 * during unfreeze.
	 *
	 * We setup the list membership and then perform a cmpxchg
	 * with the count. If there is a mismatch then the page
	 * is not unfrozen but the page is on the wrong list.
	 *
	 * Then we restart the process which may have to remove
	 * the page from the list that we just put it on again
	 * because the number of objects in the slab may have
	 * changed.
1850
	 */
1851
redo:
1852

1853 1854
	old.freelist = page->freelist;
	old.counters = page->counters;
1855
	VM_BUG_ON(!old.frozen);
1856

1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
	/* Determine target state of the slab */
	new.counters = old.counters;
	if (freelist) {
		new.inuse--;
		set_freepointer(s, freelist, old.freelist);
		new.freelist = freelist;
	} else
		new.freelist = old.freelist;

	new.frozen = 0;

1868
	if (!new.inuse && n->nr_partial > s->min_partial)
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
		m = M_FREE;
	else if (new.freelist) {
		m = M_PARTIAL;
		if (!lock) {
			lock = 1;
			/*
			 * Taking the spinlock removes the possiblity
			 * that acquire_slab() will see a slab page that
			 * is frozen
			 */
			spin_lock(&n->list_lock);
		}
	} else {
		m = M_FULL;
		if (kmem_cache_debug(s) && !lock) {
			lock = 1;
			/*
			 * This also ensures that the scanning of full
			 * slabs from diagnostic functions will not see
			 * any frozen slabs.
			 */
			spin_lock(&n->list_lock);
		}
	}

	if (l != m) {

		if (l == M_PARTIAL)

			remove_partial(n, page);

		else if (l == M_FULL)
1901

P
Peter Zijlstra 已提交
1902
			remove_full(s, n, page);
1903 1904 1905 1906

		if (m == M_PARTIAL) {

			add_partial(n, page, tail);
1907
			stat(s, tail);
1908 1909

		} else if (m == M_FULL) {
1910

1911 1912 1913 1914 1915 1916 1917
			stat(s, DEACTIVATE_FULL);
			add_full(s, n, page);

		}
	}

	l = m;
1918
	if (!__cmpxchg_double_slab(s, page,
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"))
		goto redo;

	if (lock)
		spin_unlock(&n->list_lock);

	if (m == M_FREE) {
		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
1931
	}
C
Christoph Lameter 已提交
1932 1933
}

1934 1935 1936
/*
 * Unfreeze all the cpu partial slabs.
 *
1937 1938 1939
 * This function must be called with interrupts disabled
 * for the cpu using c (or some other guarantee must be there
 * to guarantee no concurrent accesses).
1940
 */
1941 1942
static void unfreeze_partials(struct kmem_cache *s,
		struct kmem_cache_cpu *c)
1943
{
1944
#ifdef CONFIG_SLUB_CPU_PARTIAL
1945
	struct kmem_cache_node *n = NULL, *n2 = NULL;
1946
	struct page *page, *discard_page = NULL;
1947 1948 1949 1950 1951 1952

	while ((page = c->partial)) {
		struct page new;
		struct page old;

		c->partial = page->next;
1953 1954 1955 1956 1957 1958 1959 1960 1961

		n2 = get_node(s, page_to_nid(page));
		if (n != n2) {
			if (n)
				spin_unlock(&n->list_lock);

			n = n2;
			spin_lock(&n->list_lock);
		}
1962 1963 1964 1965 1966

		do {

			old.freelist = page->freelist;
			old.counters = page->counters;
1967
			VM_BUG_ON(!old.frozen);
1968 1969 1970 1971 1972 1973

			new.counters = old.counters;
			new.freelist = old.freelist;

			new.frozen = 0;

1974
		} while (!__cmpxchg_double_slab(s, page,
1975 1976 1977 1978
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"));

1979
		if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
1980 1981
			page->next = discard_page;
			discard_page = page;
1982 1983 1984
		} else {
			add_partial(n, page, DEACTIVATE_TO_TAIL);
			stat(s, FREE_ADD_PARTIAL);
1985 1986 1987 1988 1989
		}
	}

	if (n)
		spin_unlock(&n->list_lock);
1990 1991 1992 1993 1994 1995 1996 1997 1998

	while (discard_page) {
		page = discard_page;
		discard_page = discard_page->next;

		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
	}
1999
#endif
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
}

/*
 * Put a page that was just frozen (in __slab_free) into a partial page
 * slot if available. This is done without interrupts disabled and without
 * preemption disabled. The cmpxchg is racy and may put the partial page
 * onto a random cpus partial slot.
 *
 * If we did not find a slot then simply move all the partials to the
 * per node partial list.
 */
2011
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2012
{
2013
#ifdef CONFIG_SLUB_CPU_PARTIAL
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
	struct page *oldpage;
	int pages;
	int pobjects;

	do {
		pages = 0;
		pobjects = 0;
		oldpage = this_cpu_read(s->cpu_slab->partial);

		if (oldpage) {
			pobjects = oldpage->pobjects;
			pages = oldpage->pages;
			if (drain && pobjects > s->cpu_partial) {
				unsigned long flags;
				/*
				 * partial array is full. Move the existing
				 * set to the per node partial list.
				 */
				local_irq_save(flags);
2033
				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2034
				local_irq_restore(flags);
2035
				oldpage = NULL;
2036 2037
				pobjects = 0;
				pages = 0;
2038
				stat(s, CPU_PARTIAL_DRAIN);
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
			}
		}

		pages++;
		pobjects += page->objects - page->inuse;

		page->pages = pages;
		page->pobjects = pobjects;
		page->next = oldpage;

2049 2050
	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
								!= oldpage);
2051
#endif
2052 2053
}

2054
static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2055
{
2056
	stat(s, CPUSLAB_FLUSH);
2057 2058 2059 2060 2061
	deactivate_slab(s, c->page, c->freelist);

	c->tid = next_tid(c->tid);
	c->page = NULL;
	c->freelist = NULL;
C
Christoph Lameter 已提交
2062 2063 2064 2065
}

/*
 * Flush cpu slab.
C
Christoph Lameter 已提交
2066
 *
C
Christoph Lameter 已提交
2067 2068
 * Called from IPI handler with interrupts disabled.
 */
2069
static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
C
Christoph Lameter 已提交
2070
{
2071
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
C
Christoph Lameter 已提交
2072

2073 2074 2075 2076
	if (likely(c)) {
		if (c->page)
			flush_slab(s, c);

2077
		unfreeze_partials(s, c);
2078
	}
C
Christoph Lameter 已提交
2079 2080 2081 2082 2083 2084
}

static void flush_cpu_slab(void *d)
{
	struct kmem_cache *s = d;

2085
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
2086 2087
}

2088 2089 2090 2091 2092
static bool has_cpu_slab(int cpu, void *info)
{
	struct kmem_cache *s = info;
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);

2093
	return c->page || c->partial;
2094 2095
}

C
Christoph Lameter 已提交
2096 2097
static void flush_all(struct kmem_cache *s)
{
2098
	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
C
Christoph Lameter 已提交
2099 2100
}

2101 2102 2103 2104
/*
 * Check if the objects in a per cpu structure fit numa
 * locality expectations.
 */
2105
static inline int node_match(struct page *page, int node)
2106 2107
{
#ifdef CONFIG_NUMA
2108
	if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2109 2110 2111 2112 2113
		return 0;
#endif
	return 1;
}

P
Pekka Enberg 已提交
2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
static int count_free(struct page *page)
{
	return page->objects - page->inuse;
}

static unsigned long count_partial(struct kmem_cache_node *n,
					int (*get_count)(struct page *))
{
	unsigned long flags;
	unsigned long x = 0;
	struct page *page;

	spin_lock_irqsave(&n->list_lock, flags);
	list_for_each_entry(page, &n->partial, lru)
		x += get_count(page);
	spin_unlock_irqrestore(&n->list_lock, flags);
	return x;
}

2133 2134 2135 2136 2137 2138 2139 2140 2141
static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
{
#ifdef CONFIG_SLUB_DEBUG
	return atomic_long_read(&n->total_objects);
#else
	return 0;
#endif
}

P
Pekka Enberg 已提交
2142 2143 2144 2145 2146 2147 2148 2149 2150
static noinline void
slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
{
	int node;

	printk(KERN_WARNING
		"SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
		nid, gfpflags);
	printk(KERN_WARNING "  cache: %s, object size: %d, buffer size: %d, "
2151
		"default order: %d, min order: %d\n", s->name, s->object_size,
P
Pekka Enberg 已提交
2152 2153
		s->size, oo_order(s->oo), oo_order(s->min));

2154
	if (oo_order(s->min) > get_order(s->object_size))
2155 2156 2157
		printk(KERN_WARNING "  %s debugging increased min order, use "
		       "slub_debug=O to disable.\n", s->name);

P
Pekka Enberg 已提交
2158 2159 2160 2161 2162 2163 2164 2165 2166
	for_each_online_node(node) {
		struct kmem_cache_node *n = get_node(s, node);
		unsigned long nr_slabs;
		unsigned long nr_objs;
		unsigned long nr_free;

		if (!n)
			continue;

2167 2168 2169
		nr_free  = count_partial(n, count_free);
		nr_slabs = node_nr_slabs(n);
		nr_objs  = node_nr_objs(n);
P
Pekka Enberg 已提交
2170 2171 2172 2173 2174 2175 2176

		printk(KERN_WARNING
			"  node %d: slabs: %ld, objs: %ld, free: %ld\n",
			node, nr_slabs, nr_objs, nr_free);
	}
}

2177 2178 2179
static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
			int node, struct kmem_cache_cpu **pc)
{
2180
	void *freelist;
2181 2182
	struct kmem_cache_cpu *c = *pc;
	struct page *page;
2183

2184
	freelist = get_partial(s, flags, node, c);
2185

2186 2187 2188 2189
	if (freelist)
		return freelist;

	page = new_slab(s, flags, node);
2190 2191 2192 2193 2194 2195 2196 2197 2198
	if (page) {
		c = __this_cpu_ptr(s->cpu_slab);
		if (c->page)
			flush_slab(s, c);

		/*
		 * No other reference to the page yet so we can
		 * muck around with it freely without cmpxchg
		 */
2199
		freelist = page->freelist;
2200 2201 2202 2203 2204 2205
		page->freelist = NULL;

		stat(s, ALLOC_SLAB);
		c->page = page;
		*pc = c;
	} else
2206
		freelist = NULL;
2207

2208
	return freelist;
2209 2210
}

2211 2212 2213 2214 2215 2216 2217 2218
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
{
	if (unlikely(PageSlabPfmemalloc(page)))
		return gfp_pfmemalloc_allowed(gfpflags);

	return true;
}

2219
/*
2220 2221
 * Check the page->freelist of a page and either transfer the freelist to the
 * per cpu freelist or deactivate the page.
2222 2223 2224 2225
 *
 * The page is still frozen if the return value is not NULL.
 *
 * If this function returns NULL then the page has been unfrozen.
2226 2227
 *
 * This function must be called with interrupt disabled.
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237
 */
static inline void *get_freelist(struct kmem_cache *s, struct page *page)
{
	struct page new;
	unsigned long counters;
	void *freelist;

	do {
		freelist = page->freelist;
		counters = page->counters;
2238

2239
		new.counters = counters;
2240
		VM_BUG_ON(!new.frozen);
2241 2242 2243 2244

		new.inuse = page->objects;
		new.frozen = freelist != NULL;

2245
	} while (!__cmpxchg_double_slab(s, page,
2246 2247 2248 2249 2250 2251 2252
		freelist, counters,
		NULL, new.counters,
		"get_freelist"));

	return freelist;
}

C
Christoph Lameter 已提交
2253
/*
2254 2255 2256 2257 2258 2259
 * Slow path. The lockless freelist is empty or we need to perform
 * debugging duties.
 *
 * Processing is still very fast if new objects have been freed to the
 * regular freelist. In that case we simply take over the regular freelist
 * as the lockless freelist and zap the regular freelist.
C
Christoph Lameter 已提交
2260
 *
2261 2262 2263
 * If that is not working then we fall back to the partial lists. We take the
 * first element of the freelist as the object to allocate now and move the
 * rest of the freelist to the lockless freelist.
C
Christoph Lameter 已提交
2264
 *
2265
 * And if we were unable to get a new slab from the partial slab lists then
C
Christoph Lameter 已提交
2266 2267
 * we need to allocate a new slab. This is the slowest path since it involves
 * a call to the page allocator and the setup of a new slab.
C
Christoph Lameter 已提交
2268
 */
2269 2270
static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
			  unsigned long addr, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2271
{
2272
	void *freelist;
2273
	struct page *page;
2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
	unsigned long flags;

	local_irq_save(flags);
#ifdef CONFIG_PREEMPT
	/*
	 * We may have been preempted and rescheduled on a different
	 * cpu before disabling interrupts. Need to reload cpu area
	 * pointer.
	 */
	c = this_cpu_ptr(s->cpu_slab);
#endif
C
Christoph Lameter 已提交
2285

2286 2287
	page = c->page;
	if (!page)
C
Christoph Lameter 已提交
2288
		goto new_slab;
2289
redo:
2290

2291
	if (unlikely(!node_match(page, node))) {
2292
		stat(s, ALLOC_NODE_MISMATCH);
2293
		deactivate_slab(s, page, c->freelist);
2294 2295
		c->page = NULL;
		c->freelist = NULL;
2296 2297
		goto new_slab;
	}
C
Christoph Lameter 已提交
2298

2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310
	/*
	 * By rights, we should be searching for a slab page that was
	 * PFMEMALLOC but right now, we are losing the pfmemalloc
	 * information when the page leaves the per-cpu allocator
	 */
	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
		deactivate_slab(s, page, c->freelist);
		c->page = NULL;
		c->freelist = NULL;
		goto new_slab;
	}

2311
	/* must check again c->freelist in case of cpu migration or IRQ */
2312 2313
	freelist = c->freelist;
	if (freelist)
2314
		goto load_freelist;
2315

2316
	stat(s, ALLOC_SLOWPATH);
2317

2318
	freelist = get_freelist(s, page);
C
Christoph Lameter 已提交
2319

2320
	if (!freelist) {
2321 2322
		c->page = NULL;
		stat(s, DEACTIVATE_BYPASS);
2323
		goto new_slab;
2324
	}
C
Christoph Lameter 已提交
2325

2326
	stat(s, ALLOC_REFILL);
C
Christoph Lameter 已提交
2327

2328
load_freelist:
2329 2330 2331 2332 2333
	/*
	 * freelist is pointing to the list of objects to be used.
	 * page is pointing to the page from which the objects are obtained.
	 * That page must be frozen for per cpu allocations to work.
	 */
2334
	VM_BUG_ON(!c->page->frozen);
2335
	c->freelist = get_freepointer(s, freelist);
2336 2337
	c->tid = next_tid(c->tid);
	local_irq_restore(flags);
2338
	return freelist;
C
Christoph Lameter 已提交
2339 2340

new_slab:
2341

2342
	if (c->partial) {
2343 2344
		page = c->page = c->partial;
		c->partial = page->next;
2345 2346 2347
		stat(s, CPU_PARTIAL_ALLOC);
		c->freelist = NULL;
		goto redo;
C
Christoph Lameter 已提交
2348 2349
	}

2350
	freelist = new_slab_objects(s, gfpflags, node, &c);
2351

2352 2353 2354
	if (unlikely(!freelist)) {
		if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
			slab_out_of_memory(s, gfpflags, node);
2355

2356 2357
		local_irq_restore(flags);
		return NULL;
C
Christoph Lameter 已提交
2358
	}
2359

2360
	page = c->page;
2361
	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2362
		goto load_freelist;
2363

2364
	/* Only entered in the debug case */
2365 2366
	if (kmem_cache_debug(s) &&
			!alloc_debug_processing(s, page, freelist, addr))
2367
		goto new_slab;	/* Slab failed checks. Next slab needed */
2368

2369
	deactivate_slab(s, page, get_freepointer(s, freelist));
2370 2371
	c->page = NULL;
	c->freelist = NULL;
2372
	local_irq_restore(flags);
2373
	return freelist;
2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385
}

/*
 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
 * have the fastpath folded into their functions. So no function call
 * overhead for requests that can be satisfied on the fastpath.
 *
 * The fastpath works by first checking if the lockless freelist can be used.
 * If not then __slab_alloc is called for slow processing.
 *
 * Otherwise we can simply pick the next object from the lockless free list.
 */
2386
static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2387
		gfp_t gfpflags, int node, unsigned long addr)
2388 2389
{
	void **object;
2390
	struct kmem_cache_cpu *c;
2391
	struct page *page;
2392
	unsigned long tid;
2393

2394
	if (slab_pre_alloc_hook(s, gfpflags))
A
Akinobu Mita 已提交
2395
		return NULL;
2396

2397
	s = memcg_kmem_get_cache(s, gfpflags);
2398 2399 2400 2401 2402 2403
redo:
	/*
	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
	 * enabled. We may switch back and forth between cpus while
	 * reading from one cpu area. That does not matter as long
	 * as we end up on the original cpu again when doing the cmpxchg.
2404 2405 2406 2407 2408
	 *
	 * Preemption is disabled for the retrieval of the tid because that
	 * must occur from the current processor. We cannot allow rescheduling
	 * on a different processor between the determination of the pointer
	 * and the retrieval of the tid.
2409
	 */
2410
	preempt_disable();
2411
	c = __this_cpu_ptr(s->cpu_slab);
2412 2413 2414 2415 2416 2417 2418 2419

	/*
	 * The transaction ids are globally unique per cpu and per operation on
	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
	 * occurs on the right processor and that there was no operation on the
	 * linked list in between.
	 */
	tid = c->tid;
2420
	preempt_enable();
2421

2422
	object = c->freelist;
2423
	page = c->page;
L
Libin 已提交
2424
	if (unlikely(!object || !node_match(page, node)))
2425
		object = __slab_alloc(s, gfpflags, node, addr, c);
2426 2427

	else {
2428 2429
		void *next_object = get_freepointer_safe(s, object);

2430
		/*
L
Lucas De Marchi 已提交
2431
		 * The cmpxchg will only match if there was no additional
2432 2433
		 * operation and if we are on the right processor.
		 *
2434 2435
		 * The cmpxchg does the following atomically (without lock
		 * semantics!)
2436 2437 2438 2439
		 * 1. Relocate first pointer to the current per cpu area.
		 * 2. Verify that tid and freelist have not been changed
		 * 3. If they were not changed replace tid and freelist
		 *
2440 2441 2442
		 * Since this is without lock semantics the protection is only
		 * against code executing on this cpu *not* from access by
		 * other cpus.
2443
		 */
2444
		if (unlikely(!this_cpu_cmpxchg_double(
2445 2446
				s->cpu_slab->freelist, s->cpu_slab->tid,
				object, tid,
2447
				next_object, next_tid(tid)))) {
2448 2449 2450 2451

			note_cmpxchg_failure("slab_alloc", s, tid);
			goto redo;
		}
2452
		prefetch_freepointer(s, next_object);
2453
		stat(s, ALLOC_FASTPATH);
2454
	}
2455

2456
	if (unlikely(gfpflags & __GFP_ZERO) && object)
2457
		memset(object, 0, s->object_size);
2458

2459
	slab_post_alloc_hook(s, gfpflags, object);
V
Vegard Nossum 已提交
2460

2461
	return object;
C
Christoph Lameter 已提交
2462 2463
}

2464 2465 2466 2467 2468 2469
static __always_inline void *slab_alloc(struct kmem_cache *s,
		gfp_t gfpflags, unsigned long addr)
{
	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
}

C
Christoph Lameter 已提交
2470 2471
void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
{
2472
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2473

2474 2475
	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
				s->size, gfpflags);
E
Eduard - Gabriel Munteanu 已提交
2476 2477

	return ret;
C
Christoph Lameter 已提交
2478 2479 2480
}
EXPORT_SYMBOL(kmem_cache_alloc);

2481
#ifdef CONFIG_TRACING
2482 2483
void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
{
2484
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2485 2486 2487 2488
	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
	return ret;
}
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
2489 2490
#endif

C
Christoph Lameter 已提交
2491 2492 2493
#ifdef CONFIG_NUMA
void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
{
2494
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2495

2496
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2497
				    s->object_size, s->size, gfpflags, node);
E
Eduard - Gabriel Munteanu 已提交
2498 2499

	return ret;
C
Christoph Lameter 已提交
2500 2501 2502
}
EXPORT_SYMBOL(kmem_cache_alloc_node);

2503
#ifdef CONFIG_TRACING
2504
void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
E
Eduard - Gabriel Munteanu 已提交
2505
				    gfp_t gfpflags,
2506
				    int node, size_t size)
E
Eduard - Gabriel Munteanu 已提交
2507
{
2508
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2509 2510 2511 2512

	trace_kmalloc_node(_RET_IP_, ret,
			   size, s->size, gfpflags, node);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
2513
}
2514
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
2515
#endif
2516
#endif
E
Eduard - Gabriel Munteanu 已提交
2517

C
Christoph Lameter 已提交
2518
/*
2519 2520
 * Slow patch handling. This may still be called frequently since objects
 * have a longer lifetime than the cpu slabs in most processing loads.
C
Christoph Lameter 已提交
2521
 *
2522 2523 2524
 * So we still attempt to reduce cache line usage. Just take the slab
 * lock and free the item. If there is no additional partial page
 * handling required then we can return immediately.
C
Christoph Lameter 已提交
2525
 */
2526
static void __slab_free(struct kmem_cache *s, struct page *page,
2527
			void *x, unsigned long addr)
C
Christoph Lameter 已提交
2528 2529 2530
{
	void *prior;
	void **object = (void *)x;
2531 2532 2533 2534
	int was_frozen;
	struct page new;
	unsigned long counters;
	struct kmem_cache_node *n = NULL;
2535
	unsigned long uninitialized_var(flags);
C
Christoph Lameter 已提交
2536

2537
	stat(s, FREE_SLOWPATH);
C
Christoph Lameter 已提交
2538

2539 2540
	if (kmem_cache_debug(s) &&
		!(n = free_debug_processing(s, page, x, addr, &flags)))
2541
		return;
C
Christoph Lameter 已提交
2542

2543
	do {
2544 2545 2546 2547
		if (unlikely(n)) {
			spin_unlock_irqrestore(&n->list_lock, flags);
			n = NULL;
		}
2548 2549 2550 2551 2552 2553
		prior = page->freelist;
		counters = page->counters;
		set_freepointer(s, object, prior);
		new.counters = counters;
		was_frozen = new.frozen;
		new.inuse--;
2554
		if ((!new.inuse || !prior) && !was_frozen) {
2555

P
Peter Zijlstra 已提交
2556
			if (kmem_cache_has_cpu_partial(s) && !prior) {
2557 2558

				/*
2559 2560 2561 2562
				 * Slab was on no list before and will be
				 * partially empty
				 * We can defer the list move and instead
				 * freeze it.
2563 2564 2565
				 */
				new.frozen = 1;

P
Peter Zijlstra 已提交
2566
			} else { /* Needs to be taken off a list */
2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579

	                        n = get_node(s, page_to_nid(page));
				/*
				 * Speculatively acquire the list_lock.
				 * If the cmpxchg does not succeed then we may
				 * drop the list_lock without any processing.
				 *
				 * Otherwise the list_lock will synchronize with
				 * other processors updating the list of slabs.
				 */
				spin_lock_irqsave(&n->list_lock, flags);

			}
2580
		}
C
Christoph Lameter 已提交
2581

2582 2583 2584 2585
	} while (!cmpxchg_double_slab(s, page,
		prior, counters,
		object, new.counters,
		"__slab_free"));
C
Christoph Lameter 已提交
2586

2587
	if (likely(!n)) {
2588 2589 2590 2591 2592

		/*
		 * If we just froze the page then put it onto the
		 * per cpu partial list.
		 */
2593
		if (new.frozen && !was_frozen) {
2594
			put_cpu_partial(s, page, 1);
2595 2596
			stat(s, CPU_PARTIAL_FREE);
		}
2597
		/*
2598 2599 2600 2601 2602
		 * The list lock was not taken therefore no list
		 * activity can be necessary.
		 */
                if (was_frozen)
                        stat(s, FREE_FROZEN);
2603
                return;
2604
        }
C
Christoph Lameter 已提交
2605

2606 2607 2608
	if (unlikely(!new.inuse && n->nr_partial > s->min_partial))
		goto slab_empty;

C
Christoph Lameter 已提交
2609
	/*
2610 2611
	 * Objects left in the slab. If it was not on the partial list before
	 * then add it.
C
Christoph Lameter 已提交
2612
	 */
2613 2614
	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
		if (kmem_cache_debug(s))
P
Peter Zijlstra 已提交
2615
			remove_full(s, n, page);
2616 2617
		add_partial(n, page, DEACTIVATE_TO_TAIL);
		stat(s, FREE_ADD_PARTIAL);
2618
	}
2619
	spin_unlock_irqrestore(&n->list_lock, flags);
C
Christoph Lameter 已提交
2620 2621 2622
	return;

slab_empty:
2623
	if (prior) {
C
Christoph Lameter 已提交
2624
		/*
2625
		 * Slab on the partial list.
C
Christoph Lameter 已提交
2626
		 */
2627
		remove_partial(n, page);
2628
		stat(s, FREE_REMOVE_PARTIAL);
P
Peter Zijlstra 已提交
2629
	} else {
2630
		/* Slab must be on the full list */
P
Peter Zijlstra 已提交
2631 2632
		remove_full(s, n, page);
	}
2633

2634
	spin_unlock_irqrestore(&n->list_lock, flags);
2635
	stat(s, FREE_SLAB);
C
Christoph Lameter 已提交
2636 2637 2638
	discard_slab(s, page);
}

2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649
/*
 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
 * can perform fastpath freeing without additional function calls.
 *
 * The fastpath is only possible if we are freeing to the current cpu slab
 * of this processor. This typically the case if we have just allocated
 * the item before.
 *
 * If fastpath is not possible then fall back to __slab_free where we deal
 * with all sorts of special processing.
 */
P
Pekka Enberg 已提交
2650
static __always_inline void slab_free(struct kmem_cache *s,
2651
			struct page *page, void *x, unsigned long addr)
2652 2653
{
	void **object = (void *)x;
2654
	struct kmem_cache_cpu *c;
2655
	unsigned long tid;
2656

2657 2658
	slab_free_hook(s, x);

2659 2660 2661 2662 2663 2664 2665
redo:
	/*
	 * Determine the currently cpus per cpu slab.
	 * The cpu may change afterward. However that does not matter since
	 * data is retrieved via this pointer. If we are on the same cpu
	 * during the cmpxchg then the free will succedd.
	 */
2666
	preempt_disable();
2667
	c = __this_cpu_ptr(s->cpu_slab);
2668

2669
	tid = c->tid;
2670
	preempt_enable();
2671

2672
	if (likely(page == c->page)) {
2673
		set_freepointer(s, object, c->freelist);
2674

2675
		if (unlikely(!this_cpu_cmpxchg_double(
2676 2677 2678 2679 2680 2681 2682
				s->cpu_slab->freelist, s->cpu_slab->tid,
				c->freelist, tid,
				object, next_tid(tid)))) {

			note_cmpxchg_failure("slab_free", s, tid);
			goto redo;
		}
2683
		stat(s, FREE_FASTPATH);
2684
	} else
2685
		__slab_free(s, page, x, addr);
2686 2687 2688

}

C
Christoph Lameter 已提交
2689 2690
void kmem_cache_free(struct kmem_cache *s, void *x)
{
2691 2692
	s = cache_from_obj(s, x);
	if (!s)
2693
		return;
2694
	slab_free(s, virt_to_head_page(x), x, _RET_IP_);
2695
	trace_kmem_cache_free(_RET_IP_, x);
C
Christoph Lameter 已提交
2696 2697 2698 2699
}
EXPORT_SYMBOL(kmem_cache_free);

/*
C
Christoph Lameter 已提交
2700 2701 2702 2703
 * Object placement in a slab is made very easy because we always start at
 * offset 0. If we tune the size of the object to the alignment then we can
 * get the required alignment by putting one properly sized object after
 * another.
C
Christoph Lameter 已提交
2704 2705 2706 2707
 *
 * Notice that the allocation order determines the sizes of the per cpu
 * caches. Each processor has always one slab available for allocations.
 * Increasing the allocation order reduces the number of times that slabs
C
Christoph Lameter 已提交
2708
 * must be moved on and off the partial lists and is therefore a factor in
C
Christoph Lameter 已提交
2709 2710 2711 2712 2713 2714 2715 2716 2717 2718
 * locking overhead.
 */

/*
 * Mininum / Maximum order of slab pages. This influences locking overhead
 * and slab fragmentation. A higher order reduces the number of partial slabs
 * and increases the number of allocations possible without having to
 * take the list_lock.
 */
static int slub_min_order;
2719
static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2720
static int slub_min_objects;
C
Christoph Lameter 已提交
2721 2722 2723

/*
 * Merge control. If this is set then no merging of slab caches will occur.
C
Christoph Lameter 已提交
2724
 * (Could be removed. This was introduced to pacify the merge skeptics.)
C
Christoph Lameter 已提交
2725 2726 2727 2728 2729 2730
 */
static int slub_nomerge;

/*
 * Calculate the order of allocation given an slab object size.
 *
C
Christoph Lameter 已提交
2731 2732 2733 2734
 * The order of allocation has significant impact on performance and other
 * system components. Generally order 0 allocations should be preferred since
 * order 0 does not cause fragmentation in the page allocator. Larger objects
 * be problematic to put into order 0 slabs because there may be too much
C
Christoph Lameter 已提交
2735
 * unused space left. We go to a higher order if more than 1/16th of the slab
C
Christoph Lameter 已提交
2736 2737 2738 2739 2740 2741
 * would be wasted.
 *
 * In order to reach satisfactory performance we must ensure that a minimum
 * number of objects is in one slab. Otherwise we may generate too much
 * activity on the partial lists which requires taking the list_lock. This is
 * less a concern for large slabs though which are rarely used.
C
Christoph Lameter 已提交
2742
 *
C
Christoph Lameter 已提交
2743 2744 2745 2746
 * slub_max_order specifies the order where we begin to stop considering the
 * number of objects in a slab as critical. If we reach slub_max_order then
 * we try to keep the page order as low as possible. So we accept more waste
 * of space in favor of a small page order.
C
Christoph Lameter 已提交
2747
 *
C
Christoph Lameter 已提交
2748 2749 2750 2751
 * Higher order allocations also allow the placement of more objects in a
 * slab and thereby reduce object handling overhead. If the user has
 * requested a higher mininum order then we start with that one instead of
 * the smallest order which will fit the object.
C
Christoph Lameter 已提交
2752
 */
2753
static inline int slab_order(int size, int min_objects,
2754
				int max_order, int fract_leftover, int reserved)
C
Christoph Lameter 已提交
2755 2756 2757
{
	int order;
	int rem;
2758
	int min_order = slub_min_order;
C
Christoph Lameter 已提交
2759

2760
	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2761
		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2762

2763
	for (order = max(min_order,
2764 2765
				fls(min_objects * size - 1) - PAGE_SHIFT);
			order <= max_order; order++) {
C
Christoph Lameter 已提交
2766

2767
		unsigned long slab_size = PAGE_SIZE << order;
C
Christoph Lameter 已提交
2768

2769
		if (slab_size < min_objects * size + reserved)
C
Christoph Lameter 已提交
2770 2771
			continue;

2772
		rem = (slab_size - reserved) % size;
C
Christoph Lameter 已提交
2773

2774
		if (rem <= slab_size / fract_leftover)
C
Christoph Lameter 已提交
2775 2776 2777
			break;

	}
C
Christoph Lameter 已提交
2778

C
Christoph Lameter 已提交
2779 2780 2781
	return order;
}

2782
static inline int calculate_order(int size, int reserved)
2783 2784 2785 2786
{
	int order;
	int min_objects;
	int fraction;
2787
	int max_objects;
2788 2789 2790 2791 2792 2793 2794 2795 2796 2797

	/*
	 * Attempt to find best configuration for a slab. This
	 * works by first attempting to generate a layout with
	 * the best configuration and backing off gradually.
	 *
	 * First we reduce the acceptable waste in a slab. Then
	 * we reduce the minimum objects required in a slab.
	 */
	min_objects = slub_min_objects;
2798 2799
	if (!min_objects)
		min_objects = 4 * (fls(nr_cpu_ids) + 1);
2800
	max_objects = order_objects(slub_max_order, size, reserved);
2801 2802
	min_objects = min(min_objects, max_objects);

2803
	while (min_objects > 1) {
C
Christoph Lameter 已提交
2804
		fraction = 16;
2805 2806
		while (fraction >= 4) {
			order = slab_order(size, min_objects,
2807
					slub_max_order, fraction, reserved);
2808 2809 2810 2811
			if (order <= slub_max_order)
				return order;
			fraction /= 2;
		}
2812
		min_objects--;
2813 2814 2815 2816 2817 2818
	}

	/*
	 * We were unable to place multiple objects in a slab. Now
	 * lets see if we can place a single object there.
	 */
2819
	order = slab_order(size, 1, slub_max_order, 1, reserved);
2820 2821 2822 2823 2824 2825
	if (order <= slub_max_order)
		return order;

	/*
	 * Doh this slab cannot be placed using slub_max_order.
	 */
2826
	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
D
David Rientjes 已提交
2827
	if (order < MAX_ORDER)
2828 2829 2830 2831
		return order;
	return -ENOSYS;
}

2832
static void
2833
init_kmem_cache_node(struct kmem_cache_node *n)
C
Christoph Lameter 已提交
2834 2835 2836 2837
{
	n->nr_partial = 0;
	spin_lock_init(&n->list_lock);
	INIT_LIST_HEAD(&n->partial);
2838
#ifdef CONFIG_SLUB_DEBUG
2839
	atomic_long_set(&n->nr_slabs, 0);
2840
	atomic_long_set(&n->total_objects, 0);
2841
	INIT_LIST_HEAD(&n->full);
2842
#endif
C
Christoph Lameter 已提交
2843 2844
}

2845
static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2846
{
2847
	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2848
			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
2849

2850
	/*
2851 2852
	 * Must align to double word boundary for the double cmpxchg
	 * instructions to work; see __pcpu_double_call_return_bool().
2853
	 */
2854 2855
	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
				     2 * sizeof(void *));
2856 2857 2858 2859 2860

	if (!s->cpu_slab)
		return 0;

	init_kmem_cache_cpus(s);
2861

2862
	return 1;
2863 2864
}

2865 2866
static struct kmem_cache *kmem_cache_node;

C
Christoph Lameter 已提交
2867 2868 2869 2870 2871
/*
 * No kmalloc_node yet so do it by hand. We know that this is the first
 * slab on the node for this slabcache. There are no concurrent accesses
 * possible.
 *
Z
Zhi Yong Wu 已提交
2872 2873
 * Note that this function only works on the kmem_cache_node
 * when allocating for the kmem_cache_node. This is used for bootstrapping
2874
 * memory on a fresh node that has no slab structures yet.
C
Christoph Lameter 已提交
2875
 */
2876
static void early_kmem_cache_node_alloc(int node)
C
Christoph Lameter 已提交
2877 2878 2879 2880
{
	struct page *page;
	struct kmem_cache_node *n;

2881
	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
C
Christoph Lameter 已提交
2882

2883
	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
C
Christoph Lameter 已提交
2884 2885

	BUG_ON(!page);
2886 2887 2888 2889 2890 2891 2892
	if (page_to_nid(page) != node) {
		printk(KERN_ERR "SLUB: Unable to allocate memory from "
				"node %d\n", node);
		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
				"in order to be able to continue\n");
	}

C
Christoph Lameter 已提交
2893 2894
	n = page->freelist;
	BUG_ON(!n);
2895
	page->freelist = get_freepointer(kmem_cache_node, n);
2896
	page->inuse = 1;
2897
	page->frozen = 0;
2898
	kmem_cache_node->node[node] = n;
2899
#ifdef CONFIG_SLUB_DEBUG
2900
	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2901
	init_tracking(kmem_cache_node, n);
2902
#endif
2903
	init_kmem_cache_node(n);
2904
	inc_slabs_node(kmem_cache_node, node, page->objects);
C
Christoph Lameter 已提交
2905

2906 2907 2908 2909 2910
	/*
	 * the lock is for lockdep's sake, not for any actual
	 * race protection
	 */
	spin_lock(&n->list_lock);
2911
	add_partial(n, page, DEACTIVATE_TO_HEAD);
2912
	spin_unlock(&n->list_lock);
C
Christoph Lameter 已提交
2913 2914 2915 2916 2917 2918
}

static void free_kmem_cache_nodes(struct kmem_cache *s)
{
	int node;

C
Christoph Lameter 已提交
2919
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
2920
		struct kmem_cache_node *n = s->node[node];
2921

2922
		if (n)
2923 2924
			kmem_cache_free(kmem_cache_node, n);

C
Christoph Lameter 已提交
2925 2926 2927 2928
		s->node[node] = NULL;
	}
}

2929
static int init_kmem_cache_nodes(struct kmem_cache *s)
C
Christoph Lameter 已提交
2930 2931 2932
{
	int node;

C
Christoph Lameter 已提交
2933
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
2934 2935
		struct kmem_cache_node *n;

2936
		if (slab_state == DOWN) {
2937
			early_kmem_cache_node_alloc(node);
2938 2939
			continue;
		}
2940
		n = kmem_cache_alloc_node(kmem_cache_node,
2941
						GFP_KERNEL, node);
C
Christoph Lameter 已提交
2942

2943 2944 2945
		if (!n) {
			free_kmem_cache_nodes(s);
			return 0;
C
Christoph Lameter 已提交
2946
		}
2947

C
Christoph Lameter 已提交
2948
		s->node[node] = n;
2949
		init_kmem_cache_node(n);
C
Christoph Lameter 已提交
2950 2951 2952 2953
	}
	return 1;
}

2954
static void set_min_partial(struct kmem_cache *s, unsigned long min)
2955 2956 2957 2958 2959 2960 2961 2962
{
	if (min < MIN_PARTIAL)
		min = MIN_PARTIAL;
	else if (min > MAX_PARTIAL)
		min = MAX_PARTIAL;
	s->min_partial = min;
}

C
Christoph Lameter 已提交
2963 2964 2965 2966
/*
 * calculate_sizes() determines the order and the distribution of data within
 * a slab object.
 */
2967
static int calculate_sizes(struct kmem_cache *s, int forced_order)
C
Christoph Lameter 已提交
2968 2969
{
	unsigned long flags = s->flags;
2970
	unsigned long size = s->object_size;
2971
	int order;
C
Christoph Lameter 已提交
2972

2973 2974 2975 2976 2977 2978 2979 2980
	/*
	 * Round up object size to the next word boundary. We can only
	 * place the free pointer at word boundaries and this determines
	 * the possible location of the free pointer.
	 */
	size = ALIGN(size, sizeof(void *));

#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
2981 2982 2983 2984 2985 2986
	/*
	 * Determine if we can poison the object itself. If the user of
	 * the slab may touch the object after free or before allocation
	 * then we should never poison the object itself.
	 */
	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2987
			!s->ctor)
C
Christoph Lameter 已提交
2988 2989 2990 2991 2992 2993
		s->flags |= __OBJECT_POISON;
	else
		s->flags &= ~__OBJECT_POISON;


	/*
C
Christoph Lameter 已提交
2994
	 * If we are Redzoning then check if there is some space between the
C
Christoph Lameter 已提交
2995
	 * end of the object and the free pointer. If not then add an
C
Christoph Lameter 已提交
2996
	 * additional word to have some bytes to store Redzone information.
C
Christoph Lameter 已提交
2997
	 */
2998
	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
C
Christoph Lameter 已提交
2999
		size += sizeof(void *);
C
Christoph Lameter 已提交
3000
#endif
C
Christoph Lameter 已提交
3001 3002

	/*
C
Christoph Lameter 已提交
3003 3004
	 * With that we have determined the number of bytes in actual use
	 * by the object. This is the potential offset to the free pointer.
C
Christoph Lameter 已提交
3005 3006 3007 3008
	 */
	s->inuse = size;

	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
3009
		s->ctor)) {
C
Christoph Lameter 已提交
3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021
		/*
		 * Relocate free pointer after the object if it is not
		 * permitted to overwrite the first word of the object on
		 * kmem_cache_free.
		 *
		 * This is the case if we do RCU, have a constructor or
		 * destructor or are poisoning the objects.
		 */
		s->offset = size;
		size += sizeof(void *);
	}

3022
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
3023 3024 3025 3026 3027 3028 3029
	if (flags & SLAB_STORE_USER)
		/*
		 * Need to store information about allocs and frees after
		 * the object.
		 */
		size += 2 * sizeof(struct track);

3030
	if (flags & SLAB_RED_ZONE)
C
Christoph Lameter 已提交
3031 3032 3033 3034
		/*
		 * Add some empty padding so that we can catch
		 * overwrites from earlier objects rather than let
		 * tracking information or the free pointer be
3035
		 * corrupted if a user writes before the start
C
Christoph Lameter 已提交
3036 3037 3038
		 * of the object.
		 */
		size += sizeof(void *);
C
Christoph Lameter 已提交
3039
#endif
C
Christoph Lameter 已提交
3040

C
Christoph Lameter 已提交
3041 3042 3043 3044 3045
	/*
	 * SLUB stores one object immediately after another beginning from
	 * offset 0. In order to align the objects we have to simply size
	 * each object to conform to the alignment.
	 */
3046
	size = ALIGN(size, s->align);
C
Christoph Lameter 已提交
3047
	s->size = size;
3048 3049 3050
	if (forced_order >= 0)
		order = forced_order;
	else
3051
		order = calculate_order(size, s->reserved);
C
Christoph Lameter 已提交
3052

3053
	if (order < 0)
C
Christoph Lameter 已提交
3054 3055
		return 0;

3056
	s->allocflags = 0;
3057
	if (order)
3058 3059 3060
		s->allocflags |= __GFP_COMP;

	if (s->flags & SLAB_CACHE_DMA)
3061
		s->allocflags |= GFP_DMA;
3062 3063 3064 3065

	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		s->allocflags |= __GFP_RECLAIMABLE;

C
Christoph Lameter 已提交
3066 3067 3068
	/*
	 * Determine the number of objects per slab
	 */
3069 3070
	s->oo = oo_make(order, size, s->reserved);
	s->min = oo_make(get_order(size), size, s->reserved);
3071 3072
	if (oo_objects(s->oo) > oo_objects(s->max))
		s->max = s->oo;
C
Christoph Lameter 已提交
3073

3074
	return !!oo_objects(s->oo);
C
Christoph Lameter 已提交
3075 3076
}

3077
static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
C
Christoph Lameter 已提交
3078
{
3079
	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3080
	s->reserved = 0;
C
Christoph Lameter 已提交
3081

3082 3083
	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
		s->reserved = sizeof(struct rcu_head);
C
Christoph Lameter 已提交
3084

3085
	if (!calculate_sizes(s, -1))
C
Christoph Lameter 已提交
3086
		goto error;
3087 3088 3089 3090 3091
	if (disable_higher_order_debug) {
		/*
		 * Disable debugging flags that store metadata if the min slab
		 * order increased.
		 */
3092
		if (get_order(s->size) > get_order(s->object_size)) {
3093 3094 3095 3096 3097 3098
			s->flags &= ~DEBUG_METADATA_FLAGS;
			s->offset = 0;
			if (!calculate_sizes(s, -1))
				goto error;
		}
	}
C
Christoph Lameter 已提交
3099

3100 3101
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3102 3103 3104 3105 3106
	if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
		/* Enable fast mode */
		s->flags |= __CMPXCHG_DOUBLE;
#endif

3107 3108 3109 3110
	/*
	 * The larger the object size is, the more pages we want on the partial
	 * list to avoid pounding the page allocator excessively.
	 */
3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125
	set_min_partial(s, ilog2(s->size) / 2);

	/*
	 * cpu_partial determined the maximum number of objects kept in the
	 * per cpu partial lists of a processor.
	 *
	 * Per cpu partial lists mainly contain slabs that just have one
	 * object freed. If they are used for allocation then they can be
	 * filled up again with minimal effort. The slab will never hit the
	 * per node partial lists and therefore no locking will be required.
	 *
	 * This setting also determines
	 *
	 * A) The number of objects from per cpu partial slabs dumped to the
	 *    per node list when we reach the limit.
3126
	 * B) The number of objects in cpu partial slabs to extract from the
3127 3128
	 *    per node list when we run out of per cpu objects. We only fetch
	 *    50% to keep some capacity around for frees.
3129
	 */
3130
	if (!kmem_cache_has_cpu_partial(s))
3131 3132
		s->cpu_partial = 0;
	else if (s->size >= PAGE_SIZE)
3133 3134 3135 3136 3137 3138 3139 3140
		s->cpu_partial = 2;
	else if (s->size >= 1024)
		s->cpu_partial = 6;
	else if (s->size >= 256)
		s->cpu_partial = 13;
	else
		s->cpu_partial = 30;

C
Christoph Lameter 已提交
3141
#ifdef CONFIG_NUMA
3142
	s->remote_node_defrag_ratio = 1000;
C
Christoph Lameter 已提交
3143
#endif
3144
	if (!init_kmem_cache_nodes(s))
3145
		goto error;
C
Christoph Lameter 已提交
3146

3147
	if (alloc_kmem_cache_cpus(s))
3148
		return 0;
3149

3150
	free_kmem_cache_nodes(s);
C
Christoph Lameter 已提交
3151 3152 3153 3154
error:
	if (flags & SLAB_PANIC)
		panic("Cannot create slab %s size=%lu realsize=%u "
			"order=%u offset=%u flags=%lx\n",
3155 3156
			s->name, (unsigned long)s->size, s->size,
			oo_order(s->oo), s->offset, flags);
3157
	return -EINVAL;
C
Christoph Lameter 已提交
3158 3159
}

3160 3161 3162 3163 3164 3165
static void list_slab_objects(struct kmem_cache *s, struct page *page,
							const char *text)
{
#ifdef CONFIG_SLUB_DEBUG
	void *addr = page_address(page);
	void *p;
N
Namhyung Kim 已提交
3166 3167
	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
				     sizeof(long), GFP_ATOMIC);
E
Eric Dumazet 已提交
3168 3169
	if (!map)
		return;
3170
	slab_err(s, page, text, s->name);
3171 3172
	slab_lock(page);

3173
	get_map(s, page, map);
3174 3175 3176 3177 3178 3179 3180 3181 3182
	for_each_object(p, s, addr, page->objects) {

		if (!test_bit(slab_index(p, s, addr), map)) {
			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
							p, p - addr);
			print_tracking(s, p);
		}
	}
	slab_unlock(page);
E
Eric Dumazet 已提交
3183
	kfree(map);
3184 3185 3186
#endif
}

C
Christoph Lameter 已提交
3187
/*
C
Christoph Lameter 已提交
3188
 * Attempt to free all partial slabs on a node.
3189 3190
 * This is called from kmem_cache_close(). We must be the last thread
 * using the cache and therefore we do not need to lock anymore.
C
Christoph Lameter 已提交
3191
 */
C
Christoph Lameter 已提交
3192
static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
C
Christoph Lameter 已提交
3193 3194 3195
{
	struct page *page, *h;

3196
	list_for_each_entry_safe(page, h, &n->partial, lru) {
C
Christoph Lameter 已提交
3197
		if (!page->inuse) {
3198
			remove_partial(n, page);
C
Christoph Lameter 已提交
3199
			discard_slab(s, page);
3200 3201
		} else {
			list_slab_objects(s, page,
3202
			"Objects remaining in %s on kmem_cache_close()");
C
Christoph Lameter 已提交
3203
		}
3204
	}
C
Christoph Lameter 已提交
3205 3206 3207
}

/*
C
Christoph Lameter 已提交
3208
 * Release all resources used by a slab cache.
C
Christoph Lameter 已提交
3209
 */
3210
static inline int kmem_cache_close(struct kmem_cache *s)
C
Christoph Lameter 已提交
3211 3212 3213 3214 3215
{
	int node;

	flush_all(s);
	/* Attempt to free all objects */
C
Christoph Lameter 已提交
3216
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
3217 3218
		struct kmem_cache_node *n = get_node(s, node);

C
Christoph Lameter 已提交
3219 3220
		free_partial(s, n);
		if (n->nr_partial || slabs_node(s, node))
C
Christoph Lameter 已提交
3221 3222
			return 1;
	}
3223
	free_percpu(s->cpu_slab);
C
Christoph Lameter 已提交
3224 3225 3226 3227
	free_kmem_cache_nodes(s);
	return 0;
}

3228
int __kmem_cache_shutdown(struct kmem_cache *s)
C
Christoph Lameter 已提交
3229
{
3230
	int rc = kmem_cache_close(s);
3231

3232 3233 3234 3235 3236 3237 3238 3239 3240 3241
	if (!rc) {
		/*
		 * We do the same lock strategy around sysfs_slab_add, see
		 * __kmem_cache_create. Because this is pretty much the last
		 * operation we do and the lock will be released shortly after
		 * that in slab_common.c, we could just move sysfs_slab_remove
		 * to a later point in common code. We should do that when we
		 * have a common sysfs framework for all allocators.
		 */
		mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
3242
		sysfs_slab_remove(s);
3243 3244
		mutex_lock(&slab_mutex);
	}
3245 3246

	return rc;
C
Christoph Lameter 已提交
3247 3248 3249 3250 3251 3252 3253 3254
}

/********************************************************************
 *		Kmalloc subsystem
 *******************************************************************/

static int __init setup_slub_min_order(char *str)
{
P
Pekka Enberg 已提交
3255
	get_option(&str, &slub_min_order);
C
Christoph Lameter 已提交
3256 3257 3258 3259 3260 3261 3262 3263

	return 1;
}

__setup("slub_min_order=", setup_slub_min_order);

static int __init setup_slub_max_order(char *str)
{
P
Pekka Enberg 已提交
3264
	get_option(&str, &slub_max_order);
D
David Rientjes 已提交
3265
	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
C
Christoph Lameter 已提交
3266 3267 3268 3269 3270 3271 3272 3273

	return 1;
}

__setup("slub_max_order=", setup_slub_max_order);

static int __init setup_slub_min_objects(char *str)
{
P
Pekka Enberg 已提交
3274
	get_option(&str, &slub_min_objects);
C
Christoph Lameter 已提交
3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290

	return 1;
}

__setup("slub_min_objects=", setup_slub_min_objects);

static int __init setup_slub_nomerge(char *str)
{
	slub_nomerge = 1;
	return 1;
}

__setup("slub_nomerge", setup_slub_nomerge);

void *__kmalloc(size_t size, gfp_t flags)
{
3291
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
3292
	void *ret;
C
Christoph Lameter 已提交
3293

3294
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3295
		return kmalloc_large(size, flags);
3296

3297
	s = kmalloc_slab(size, flags);
3298 3299

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3300 3301
		return s;

3302
	ret = slab_alloc(s, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3303

3304
	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3305 3306

	return ret;
C
Christoph Lameter 已提交
3307 3308 3309
}
EXPORT_SYMBOL(__kmalloc);

3310
#ifdef CONFIG_NUMA
3311 3312
static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
{
3313
	struct page *page;
3314
	void *ptr = NULL;
3315

3316
	flags |= __GFP_COMP | __GFP_NOTRACK | __GFP_KMEMCG;
3317
	page = alloc_pages_node(node, flags, get_order(size));
3318
	if (page)
3319 3320
		ptr = page_address(page);

3321
	kmalloc_large_node_hook(ptr, size, flags);
3322
	return ptr;
3323 3324
}

C
Christoph Lameter 已提交
3325 3326
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3327
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
3328
	void *ret;
C
Christoph Lameter 已提交
3329

3330
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
E
Eduard - Gabriel Munteanu 已提交
3331 3332
		ret = kmalloc_large_node(size, flags, node);

3333 3334 3335
		trace_kmalloc_node(_RET_IP_, ret,
				   size, PAGE_SIZE << get_order(size),
				   flags, node);
E
Eduard - Gabriel Munteanu 已提交
3336 3337 3338

		return ret;
	}
3339

3340
	s = kmalloc_slab(size, flags);
3341 3342

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3343 3344
		return s;

3345
	ret = slab_alloc_node(s, flags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3346

3347
	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
E
Eduard - Gabriel Munteanu 已提交
3348 3349

	return ret;
C
Christoph Lameter 已提交
3350 3351 3352 3353 3354 3355
}
EXPORT_SYMBOL(__kmalloc_node);
#endif

size_t ksize(const void *object)
{
3356
	struct page *page;
C
Christoph Lameter 已提交
3357

3358
	if (unlikely(object == ZERO_SIZE_PTR))
3359 3360
		return 0;

3361 3362
	page = virt_to_head_page(object);

P
Pekka Enberg 已提交
3363 3364
	if (unlikely(!PageSlab(page))) {
		WARN_ON(!PageCompound(page));
3365
		return PAGE_SIZE << compound_order(page);
P
Pekka Enberg 已提交
3366
	}
C
Christoph Lameter 已提交
3367

3368
	return slab_ksize(page->slab_cache);
C
Christoph Lameter 已提交
3369
}
K
Kirill A. Shutemov 已提交
3370
EXPORT_SYMBOL(ksize);
C
Christoph Lameter 已提交
3371 3372 3373 3374

void kfree(const void *x)
{
	struct page *page;
3375
	void *object = (void *)x;
C
Christoph Lameter 已提交
3376

3377 3378
	trace_kfree(_RET_IP_, x);

3379
	if (unlikely(ZERO_OR_NULL_PTR(x)))
C
Christoph Lameter 已提交
3380 3381
		return;

3382
	page = virt_to_head_page(x);
3383
	if (unlikely(!PageSlab(page))) {
3384
		BUG_ON(!PageCompound(page));
3385
		kfree_hook(x);
3386
		__free_memcg_kmem_pages(page, compound_order(page));
3387 3388
		return;
	}
3389
	slab_free(page->slab_cache, page, object, _RET_IP_);
C
Christoph Lameter 已提交
3390 3391 3392
}
EXPORT_SYMBOL(kfree);

3393
/*
C
Christoph Lameter 已提交
3394 3395 3396 3397 3398 3399 3400 3401
 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
 * the remaining slabs by the number of items in use. The slabs with the
 * most items in use come first. New allocations will then fill those up
 * and thus they can be removed from the partial lists.
 *
 * The slabs with the least items are placed last. This results in them
 * being allocated from last increasing the chance that the last objects
 * are freed in them.
3402 3403 3404 3405 3406 3407 3408 3409
 */
int kmem_cache_shrink(struct kmem_cache *s)
{
	int node;
	int i;
	struct kmem_cache_node *n;
	struct page *page;
	struct page *t;
3410
	int objects = oo_objects(s->max);
3411
	struct list_head *slabs_by_inuse =
3412
		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3413 3414 3415 3416 3417 3418
	unsigned long flags;

	if (!slabs_by_inuse)
		return -ENOMEM;

	flush_all(s);
C
Christoph Lameter 已提交
3419
	for_each_node_state(node, N_NORMAL_MEMORY) {
3420 3421 3422 3423 3424
		n = get_node(s, node);

		if (!n->nr_partial)
			continue;

3425
		for (i = 0; i < objects; i++)
3426 3427 3428 3429 3430
			INIT_LIST_HEAD(slabs_by_inuse + i);

		spin_lock_irqsave(&n->list_lock, flags);

		/*
C
Christoph Lameter 已提交
3431
		 * Build lists indexed by the items in use in each slab.
3432
		 *
C
Christoph Lameter 已提交
3433 3434
		 * Note that concurrent frees may occur while we hold the
		 * list_lock. page->inuse here is the upper limit.
3435 3436
		 */
		list_for_each_entry_safe(page, t, &n->partial, lru) {
3437 3438 3439
			list_move(&page->lru, slabs_by_inuse + page->inuse);
			if (!page->inuse)
				n->nr_partial--;
3440 3441 3442
		}

		/*
C
Christoph Lameter 已提交
3443 3444
		 * Rebuild the partial list with the slabs filled up most
		 * first and the least used slabs at the end.
3445
		 */
3446
		for (i = objects - 1; i > 0; i--)
3447 3448 3449
			list_splice(slabs_by_inuse + i, n->partial.prev);

		spin_unlock_irqrestore(&n->list_lock, flags);
3450 3451 3452 3453

		/* Release empty slabs */
		list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
			discard_slab(s, page);
3454 3455 3456 3457 3458 3459 3460
	}

	kfree(slabs_by_inuse);
	return 0;
}
EXPORT_SYMBOL(kmem_cache_shrink);

3461 3462 3463 3464
static int slab_mem_going_offline_callback(void *arg)
{
	struct kmem_cache *s;

3465
	mutex_lock(&slab_mutex);
3466 3467
	list_for_each_entry(s, &slab_caches, list)
		kmem_cache_shrink(s);
3468
	mutex_unlock(&slab_mutex);
3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479

	return 0;
}

static void slab_mem_offline_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
	int offline_node;

3480
	offline_node = marg->status_change_nid_normal;
3481 3482 3483 3484 3485 3486 3487 3488

	/*
	 * If the node still has available memory. we need kmem_cache_node
	 * for it yet.
	 */
	if (offline_node < 0)
		return;

3489
	mutex_lock(&slab_mutex);
3490 3491 3492 3493 3494 3495
	list_for_each_entry(s, &slab_caches, list) {
		n = get_node(s, offline_node);
		if (n) {
			/*
			 * if n->nr_slabs > 0, slabs still exist on the node
			 * that is going down. We were unable to free them,
3496
			 * and offline_pages() function shouldn't call this
3497 3498
			 * callback. So, we must fail.
			 */
3499
			BUG_ON(slabs_node(s, offline_node));
3500 3501

			s->node[offline_node] = NULL;
3502
			kmem_cache_free(kmem_cache_node, n);
3503 3504
		}
	}
3505
	mutex_unlock(&slab_mutex);
3506 3507 3508 3509 3510 3511 3512
}

static int slab_mem_going_online_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
3513
	int nid = marg->status_change_nid_normal;
3514 3515 3516 3517 3518 3519 3520 3521 3522 3523
	int ret = 0;

	/*
	 * If the node's memory is already available, then kmem_cache_node is
	 * already created. Nothing to do.
	 */
	if (nid < 0)
		return 0;

	/*
3524
	 * We are bringing a node online. No memory is available yet. We must
3525 3526 3527
	 * allocate a kmem_cache_node structure in order to bring the node
	 * online.
	 */
3528
	mutex_lock(&slab_mutex);
3529 3530 3531 3532 3533 3534
	list_for_each_entry(s, &slab_caches, list) {
		/*
		 * XXX: kmem_cache_alloc_node will fallback to other nodes
		 *      since memory is not yet available from the node that
		 *      is brought up.
		 */
3535
		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3536 3537 3538 3539
		if (!n) {
			ret = -ENOMEM;
			goto out;
		}
3540
		init_kmem_cache_node(n);
3541 3542 3543
		s->node[nid] = n;
	}
out:
3544
	mutex_unlock(&slab_mutex);
3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
	return ret;
}

static int slab_memory_callback(struct notifier_block *self,
				unsigned long action, void *arg)
{
	int ret = 0;

	switch (action) {
	case MEM_GOING_ONLINE:
		ret = slab_mem_going_online_callback(arg);
		break;
	case MEM_GOING_OFFLINE:
		ret = slab_mem_going_offline_callback(arg);
		break;
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
		slab_mem_offline_callback(arg);
		break;
	case MEM_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
3568 3569 3570 3571
	if (ret)
		ret = notifier_from_errno(ret);
	else
		ret = NOTIFY_OK;
3572 3573 3574
	return ret;
}

3575 3576 3577 3578
static struct notifier_block slab_memory_callback_nb = {
	.notifier_call = slab_memory_callback,
	.priority = SLAB_CALLBACK_PRI,
};
3579

C
Christoph Lameter 已提交
3580 3581 3582 3583
/********************************************************************
 *			Basic setup of slabs
 *******************************************************************/

3584 3585
/*
 * Used for early kmem_cache structures that were allocated using
3586 3587
 * the page allocator. Allocate them properly then fix up the pointers
 * that may be pointing to the wrong kmem_cache structure.
3588 3589
 */

3590
static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3591 3592
{
	int node;
3593
	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3594

3595
	memcpy(s, static_cache, kmem_cache->object_size);
3596

3597 3598 3599 3600 3601 3602
	/*
	 * This runs very early, and only the boot processor is supposed to be
	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
	 * IPIs around.
	 */
	__flush_cpu_slab(s, smp_processor_id());
3603 3604 3605 3606 3607 3608
	for_each_node_state(node, N_NORMAL_MEMORY) {
		struct kmem_cache_node *n = get_node(s, node);
		struct page *p;

		if (n) {
			list_for_each_entry(p, &n->partial, lru)
3609
				p->slab_cache = s;
3610

L
Li Zefan 已提交
3611
#ifdef CONFIG_SLUB_DEBUG
3612
			list_for_each_entry(p, &n->full, lru)
3613
				p->slab_cache = s;
3614 3615 3616
#endif
		}
	}
3617 3618
	list_add(&s->list, &slab_caches);
	return s;
3619 3620
}

C
Christoph Lameter 已提交
3621 3622
void __init kmem_cache_init(void)
{
3623 3624
	static __initdata struct kmem_cache boot_kmem_cache,
		boot_kmem_cache_node;
3625

3626 3627 3628
	if (debug_guardpage_minorder())
		slub_max_order = 0;

3629 3630
	kmem_cache_node = &boot_kmem_cache_node;
	kmem_cache = &boot_kmem_cache;
3631

3632 3633
	create_boot_cache(kmem_cache_node, "kmem_cache_node",
		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3634

3635
	register_hotmemory_notifier(&slab_memory_callback_nb);
C
Christoph Lameter 已提交
3636 3637 3638 3639

	/* Able to allocate the per node structures */
	slab_state = PARTIAL;

3640 3641 3642 3643
	create_boot_cache(kmem_cache, "kmem_cache",
			offsetof(struct kmem_cache, node) +
				nr_node_ids * sizeof(struct kmem_cache_node *),
		       SLAB_HWCACHE_ALIGN);
3644

3645
	kmem_cache = bootstrap(&boot_kmem_cache);
C
Christoph Lameter 已提交
3646

3647 3648 3649 3650 3651
	/*
	 * Allocate kmem_cache_node properly from the kmem_cache slab.
	 * kmem_cache_node is separately allocated so no need to
	 * update any list pointers.
	 */
3652
	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3653 3654

	/* Now we can use the kmem_cache to allocate kmalloc slabs */
3655
	create_kmalloc_caches(0);
C
Christoph Lameter 已提交
3656 3657 3658

#ifdef CONFIG_SMP
	register_cpu_notifier(&slab_notifier);
3659
#endif
C
Christoph Lameter 已提交
3660

I
Ingo Molnar 已提交
3661
	printk(KERN_INFO
3662
		"SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d,"
3663
		" CPUs=%d, Nodes=%d\n",
3664
		cache_line_size(),
C
Christoph Lameter 已提交
3665 3666 3667 3668
		slub_min_order, slub_max_order, slub_min_objects,
		nr_cpu_ids, nr_node_ids);
}

3669 3670 3671 3672
void __init kmem_cache_init_late(void)
{
}

C
Christoph Lameter 已提交
3673 3674 3675 3676 3677 3678 3679 3680
/*
 * Find a mergeable slab cache
 */
static int slab_unmergeable(struct kmem_cache *s)
{
	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
		return 1;

3681
	if (s->ctor)
C
Christoph Lameter 已提交
3682 3683
		return 1;

3684 3685 3686 3687 3688 3689
	/*
	 * We may have set a slab to be unmergeable during bootstrap.
	 */
	if (s->refcount < 0)
		return 1;

C
Christoph Lameter 已提交
3690 3691 3692
	return 0;
}

3693
static struct kmem_cache *find_mergeable(struct mem_cgroup *memcg, size_t size,
3694
		size_t align, unsigned long flags, const char *name,
3695
		void (*ctor)(void *))
C
Christoph Lameter 已提交
3696
{
3697
	struct kmem_cache *s;
C
Christoph Lameter 已提交
3698 3699 3700 3701

	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
		return NULL;

3702
	if (ctor)
C
Christoph Lameter 已提交
3703 3704 3705 3706 3707
		return NULL;

	size = ALIGN(size, sizeof(void *));
	align = calculate_alignment(flags, align, size);
	size = ALIGN(size, align);
3708
	flags = kmem_cache_flags(size, flags, name, NULL);
C
Christoph Lameter 已提交
3709

3710
	list_for_each_entry(s, &slab_caches, list) {
C
Christoph Lameter 已提交
3711 3712 3713 3714 3715 3716
		if (slab_unmergeable(s))
			continue;

		if (size > s->size)
			continue;

3717
		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
C
Christoph Lameter 已提交
3718 3719 3720 3721 3722
				continue;
		/*
		 * Check if alignment is compatible.
		 * Courtesy of Adrian Drzewiecki
		 */
P
Pekka Enberg 已提交
3723
		if ((s->size & ~(align - 1)) != s->size)
C
Christoph Lameter 已提交
3724 3725 3726 3727 3728
			continue;

		if (s->size - size >= sizeof(void *))
			continue;

3729 3730 3731
		if (!cache_match_memcg(s, memcg))
			continue;

C
Christoph Lameter 已提交
3732 3733 3734 3735 3736
		return s;
	}
	return NULL;
}

3737 3738 3739
struct kmem_cache *
__kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size,
		   size_t align, unsigned long flags, void (*ctor)(void *))
C
Christoph Lameter 已提交
3740 3741 3742
{
	struct kmem_cache *s;

3743
	s = find_mergeable(memcg, size, align, flags, name, ctor);
C
Christoph Lameter 已提交
3744 3745 3746 3747 3748 3749
	if (s) {
		s->refcount++;
		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
3750
		s->object_size = max(s->object_size, (int)size);
C
Christoph Lameter 已提交
3751
		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
C
Christoph Lameter 已提交
3752

3753 3754
		if (sysfs_slab_alias(s, name)) {
			s->refcount--;
3755
			s = NULL;
3756
		}
3757
	}
C
Christoph Lameter 已提交
3758

3759 3760
	return s;
}
P
Pekka Enberg 已提交
3761

3762
int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3763
{
3764 3765 3766 3767 3768
	int err;

	err = kmem_cache_open(s, flags);
	if (err)
		return err;
3769

3770 3771 3772 3773
	/* Mutex is not taken during early boot */
	if (slab_state <= UP)
		return 0;

3774
	memcg_propagate_slab_attrs(s);
3775 3776 3777
	mutex_unlock(&slab_mutex);
	err = sysfs_slab_add(s);
	mutex_lock(&slab_mutex);
3778

3779 3780
	if (err)
		kmem_cache_close(s);
3781

3782
	return err;
C
Christoph Lameter 已提交
3783 3784 3785 3786
}

#ifdef CONFIG_SMP
/*
C
Christoph Lameter 已提交
3787 3788
 * Use the cpu notifier to insure that the cpu slabs are flushed when
 * necessary.
C
Christoph Lameter 已提交
3789
 */
3790
static int slab_cpuup_callback(struct notifier_block *nfb,
C
Christoph Lameter 已提交
3791 3792 3793
		unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
3794 3795
	struct kmem_cache *s;
	unsigned long flags;
C
Christoph Lameter 已提交
3796 3797 3798

	switch (action) {
	case CPU_UP_CANCELED:
3799
	case CPU_UP_CANCELED_FROZEN:
C
Christoph Lameter 已提交
3800
	case CPU_DEAD:
3801
	case CPU_DEAD_FROZEN:
3802
		mutex_lock(&slab_mutex);
3803 3804 3805 3806 3807
		list_for_each_entry(s, &slab_caches, list) {
			local_irq_save(flags);
			__flush_cpu_slab(s, cpu);
			local_irq_restore(flags);
		}
3808
		mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
3809 3810 3811 3812 3813 3814 3815
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

3816
static struct notifier_block slab_notifier = {
I
Ingo Molnar 已提交
3817
	.notifier_call = slab_cpuup_callback
P
Pekka Enberg 已提交
3818
};
C
Christoph Lameter 已提交
3819 3820 3821

#endif

3822
void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
C
Christoph Lameter 已提交
3823
{
3824
	struct kmem_cache *s;
3825
	void *ret;
3826

3827
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3828 3829
		return kmalloc_large(size, gfpflags);

3830
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
3831

3832
	if (unlikely(ZERO_OR_NULL_PTR(s)))
3833
		return s;
C
Christoph Lameter 已提交
3834

3835
	ret = slab_alloc(s, gfpflags, caller);
3836

L
Lucas De Marchi 已提交
3837
	/* Honor the call site pointer we received. */
3838
	trace_kmalloc(caller, ret, size, s->size, gfpflags);
3839 3840

	return ret;
C
Christoph Lameter 已提交
3841 3842
}

3843
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
3844
void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3845
					int node, unsigned long caller)
C
Christoph Lameter 已提交
3846
{
3847
	struct kmem_cache *s;
3848
	void *ret;
3849

3850
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3851 3852 3853 3854 3855 3856 3857 3858
		ret = kmalloc_large_node(size, gfpflags, node);

		trace_kmalloc_node(caller, ret,
				   size, PAGE_SIZE << get_order(size),
				   gfpflags, node);

		return ret;
	}
3859

3860
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
3861

3862
	if (unlikely(ZERO_OR_NULL_PTR(s)))
3863
		return s;
C
Christoph Lameter 已提交
3864

3865
	ret = slab_alloc_node(s, gfpflags, node, caller);
3866

L
Lucas De Marchi 已提交
3867
	/* Honor the call site pointer we received. */
3868
	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3869 3870

	return ret;
C
Christoph Lameter 已提交
3871
}
3872
#endif
C
Christoph Lameter 已提交
3873

3874
#ifdef CONFIG_SYSFS
3875 3876 3877 3878 3879 3880 3881 3882 3883
static int count_inuse(struct page *page)
{
	return page->inuse;
}

static int count_total(struct page *page)
{
	return page->objects;
}
3884
#endif
3885

3886
#ifdef CONFIG_SLUB_DEBUG
3887 3888
static int validate_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
3889 3890
{
	void *p;
3891
	void *addr = page_address(page);
3892 3893 3894 3895 3896 3897

	if (!check_slab(s, page) ||
			!on_freelist(s, page, NULL))
		return 0;

	/* Now we know that a valid freelist exists */
3898
	bitmap_zero(map, page->objects);
3899

3900 3901 3902 3903 3904
	get_map(s, page, map);
	for_each_object(p, s, addr, page->objects) {
		if (test_bit(slab_index(p, s, addr), map))
			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
				return 0;
3905 3906
	}

3907
	for_each_object(p, s, addr, page->objects)
3908
		if (!test_bit(slab_index(p, s, addr), map))
3909
			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3910 3911 3912 3913
				return 0;
	return 1;
}

3914 3915
static void validate_slab_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
3916
{
3917 3918 3919
	slab_lock(page);
	validate_slab(s, page, map);
	slab_unlock(page);
3920 3921
}

3922 3923
static int validate_slab_node(struct kmem_cache *s,
		struct kmem_cache_node *n, unsigned long *map)
3924 3925 3926 3927 3928 3929 3930 3931
{
	unsigned long count = 0;
	struct page *page;
	unsigned long flags;

	spin_lock_irqsave(&n->list_lock, flags);

	list_for_each_entry(page, &n->partial, lru) {
3932
		validate_slab_slab(s, page, map);
3933 3934 3935 3936 3937 3938 3939 3940 3941 3942
		count++;
	}
	if (count != n->nr_partial)
		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
			"counter=%ld\n", s->name, count, n->nr_partial);

	if (!(s->flags & SLAB_STORE_USER))
		goto out;

	list_for_each_entry(page, &n->full, lru) {
3943
		validate_slab_slab(s, page, map);
3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955
		count++;
	}
	if (count != atomic_long_read(&n->nr_slabs))
		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
			"counter=%ld\n", s->name, count,
			atomic_long_read(&n->nr_slabs));

out:
	spin_unlock_irqrestore(&n->list_lock, flags);
	return count;
}

3956
static long validate_slab_cache(struct kmem_cache *s)
3957 3958 3959
{
	int node;
	unsigned long count = 0;
3960
	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3961 3962 3963 3964
				sizeof(unsigned long), GFP_KERNEL);

	if (!map)
		return -ENOMEM;
3965 3966

	flush_all(s);
C
Christoph Lameter 已提交
3967
	for_each_node_state(node, N_NORMAL_MEMORY) {
3968 3969
		struct kmem_cache_node *n = get_node(s, node);

3970
		count += validate_slab_node(s, n, map);
3971
	}
3972
	kfree(map);
3973 3974
	return count;
}
3975
/*
C
Christoph Lameter 已提交
3976
 * Generate lists of code addresses where slabcache objects are allocated
3977 3978 3979 3980 3981
 * and freed.
 */

struct location {
	unsigned long count;
3982
	unsigned long addr;
3983 3984 3985 3986 3987
	long long sum_time;
	long min_time;
	long max_time;
	long min_pid;
	long max_pid;
R
Rusty Russell 已提交
3988
	DECLARE_BITMAP(cpus, NR_CPUS);
3989
	nodemask_t nodes;
3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004
};

struct loc_track {
	unsigned long max;
	unsigned long count;
	struct location *loc;
};

static void free_loc_track(struct loc_track *t)
{
	if (t->max)
		free_pages((unsigned long)t->loc,
			get_order(sizeof(struct location) * t->max));
}

4005
static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4006 4007 4008 4009 4010 4011
{
	struct location *l;
	int order;

	order = get_order(sizeof(struct location) * max);

4012
	l = (void *)__get_free_pages(flags, order);
4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025
	if (!l)
		return 0;

	if (t->count) {
		memcpy(l, t->loc, sizeof(struct location) * t->count);
		free_loc_track(t);
	}
	t->max = max;
	t->loc = l;
	return 1;
}

static int add_location(struct loc_track *t, struct kmem_cache *s,
4026
				const struct track *track)
4027 4028 4029
{
	long start, end, pos;
	struct location *l;
4030
	unsigned long caddr;
4031
	unsigned long age = jiffies - track->when;
4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046

	start = -1;
	end = t->count;

	for ( ; ; ) {
		pos = start + (end - start + 1) / 2;

		/*
		 * There is nothing at "end". If we end up there
		 * we need to add something to before end.
		 */
		if (pos == end)
			break;

		caddr = t->loc[pos].addr;
4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062
		if (track->addr == caddr) {

			l = &t->loc[pos];
			l->count++;
			if (track->when) {
				l->sum_time += age;
				if (age < l->min_time)
					l->min_time = age;
				if (age > l->max_time)
					l->max_time = age;

				if (track->pid < l->min_pid)
					l->min_pid = track->pid;
				if (track->pid > l->max_pid)
					l->max_pid = track->pid;

R
Rusty Russell 已提交
4063 4064
				cpumask_set_cpu(track->cpu,
						to_cpumask(l->cpus));
4065 4066
			}
			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4067 4068 4069
			return 1;
		}

4070
		if (track->addr < caddr)
4071 4072 4073 4074 4075 4076
			end = pos;
		else
			start = pos;
	}

	/*
C
Christoph Lameter 已提交
4077
	 * Not found. Insert new tracking element.
4078
	 */
4079
	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4080 4081 4082 4083 4084 4085 4086 4087
		return 0;

	l = t->loc + pos;
	if (pos < t->count)
		memmove(l + 1, l,
			(t->count - pos) * sizeof(struct location));
	t->count++;
	l->count = 1;
4088 4089 4090 4091 4092 4093
	l->addr = track->addr;
	l->sum_time = age;
	l->min_time = age;
	l->max_time = age;
	l->min_pid = track->pid;
	l->max_pid = track->pid;
R
Rusty Russell 已提交
4094 4095
	cpumask_clear(to_cpumask(l->cpus));
	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4096 4097
	nodes_clear(l->nodes);
	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4098 4099 4100 4101
	return 1;
}

static void process_slab(struct loc_track *t, struct kmem_cache *s,
E
Eric Dumazet 已提交
4102
		struct page *page, enum track_item alloc,
N
Namhyung Kim 已提交
4103
		unsigned long *map)
4104
{
4105
	void *addr = page_address(page);
4106 4107
	void *p;

4108
	bitmap_zero(map, page->objects);
4109
	get_map(s, page, map);
4110

4111
	for_each_object(p, s, addr, page->objects)
4112 4113
		if (!test_bit(slab_index(p, s, addr), map))
			add_location(t, s, get_track(s, p, alloc));
4114 4115 4116 4117 4118
}

static int list_locations(struct kmem_cache *s, char *buf,
					enum track_item alloc)
{
4119
	int len = 0;
4120
	unsigned long i;
4121
	struct loc_track t = { 0, 0, NULL };
4122
	int node;
E
Eric Dumazet 已提交
4123 4124
	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
				     sizeof(unsigned long), GFP_KERNEL);
4125

E
Eric Dumazet 已提交
4126 4127 4128
	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
				     GFP_TEMPORARY)) {
		kfree(map);
4129
		return sprintf(buf, "Out of memory\n");
E
Eric Dumazet 已提交
4130
	}
4131 4132 4133
	/* Push back cpu slabs */
	flush_all(s);

C
Christoph Lameter 已提交
4134
	for_each_node_state(node, N_NORMAL_MEMORY) {
4135 4136 4137 4138
		struct kmem_cache_node *n = get_node(s, node);
		unsigned long flags;
		struct page *page;

4139
		if (!atomic_long_read(&n->nr_slabs))
4140 4141 4142 4143
			continue;

		spin_lock_irqsave(&n->list_lock, flags);
		list_for_each_entry(page, &n->partial, lru)
E
Eric Dumazet 已提交
4144
			process_slab(&t, s, page, alloc, map);
4145
		list_for_each_entry(page, &n->full, lru)
E
Eric Dumazet 已提交
4146
			process_slab(&t, s, page, alloc, map);
4147 4148 4149 4150
		spin_unlock_irqrestore(&n->list_lock, flags);
	}

	for (i = 0; i < t.count; i++) {
4151
		struct location *l = &t.loc[i];
4152

H
Hugh Dickins 已提交
4153
		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4154
			break;
4155
		len += sprintf(buf + len, "%7ld ", l->count);
4156 4157

		if (l->addr)
J
Joe Perches 已提交
4158
			len += sprintf(buf + len, "%pS", (void *)l->addr);
4159
		else
4160
			len += sprintf(buf + len, "<not-available>");
4161 4162

		if (l->sum_time != l->min_time) {
4163
			len += sprintf(buf + len, " age=%ld/%ld/%ld",
R
Roman Zippel 已提交
4164 4165 4166
				l->min_time,
				(long)div_u64(l->sum_time, l->count),
				l->max_time);
4167
		} else
4168
			len += sprintf(buf + len, " age=%ld",
4169 4170 4171
				l->min_time);

		if (l->min_pid != l->max_pid)
4172
			len += sprintf(buf + len, " pid=%ld-%ld",
4173 4174
				l->min_pid, l->max_pid);
		else
4175
			len += sprintf(buf + len, " pid=%ld",
4176 4177
				l->min_pid);

R
Rusty Russell 已提交
4178 4179
		if (num_online_cpus() > 1 &&
				!cpumask_empty(to_cpumask(l->cpus)) &&
4180 4181
				len < PAGE_SIZE - 60) {
			len += sprintf(buf + len, " cpus=");
4182 4183
			len += cpulist_scnprintf(buf + len,
						 PAGE_SIZE - len - 50,
R
Rusty Russell 已提交
4184
						 to_cpumask(l->cpus));
4185 4186
		}

4187
		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4188 4189
				len < PAGE_SIZE - 60) {
			len += sprintf(buf + len, " nodes=");
4190 4191 4192
			len += nodelist_scnprintf(buf + len,
						  PAGE_SIZE - len - 50,
						  l->nodes);
4193 4194
		}

4195
		len += sprintf(buf + len, "\n");
4196 4197 4198
	}

	free_loc_track(&t);
E
Eric Dumazet 已提交
4199
	kfree(map);
4200
	if (!t.count)
4201 4202
		len += sprintf(buf, "No data\n");
	return len;
4203
}
4204
#endif
4205

4206 4207 4208 4209 4210
#ifdef SLUB_RESILIENCY_TEST
static void resiliency_test(void)
{
	u8 *p;

4211
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267

	printk(KERN_ERR "SLUB resiliency testing\n");
	printk(KERN_ERR "-----------------------\n");
	printk(KERN_ERR "A. Corruption after allocation\n");

	p = kzalloc(16, GFP_KERNEL);
	p[16] = 0x12;
	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
			" 0x12->0x%p\n\n", p + 16);

	validate_slab_cache(kmalloc_caches[4]);

	/* Hmmm... The next two are dangerous */
	p = kzalloc(32, GFP_KERNEL);
	p[32 + sizeof(void *)] = 0x34;
	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
			" 0x34 -> -0x%p\n", p);
	printk(KERN_ERR
		"If allocated object is overwritten then not detectable\n\n");

	validate_slab_cache(kmalloc_caches[5]);
	p = kzalloc(64, GFP_KERNEL);
	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
	*p = 0x56;
	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
									p);
	printk(KERN_ERR
		"If allocated object is overwritten then not detectable\n\n");
	validate_slab_cache(kmalloc_caches[6]);

	printk(KERN_ERR "\nB. Corruption after free\n");
	p = kzalloc(128, GFP_KERNEL);
	kfree(p);
	*p = 0x78;
	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
	validate_slab_cache(kmalloc_caches[7]);

	p = kzalloc(256, GFP_KERNEL);
	kfree(p);
	p[50] = 0x9a;
	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
			p);
	validate_slab_cache(kmalloc_caches[8]);

	p = kzalloc(512, GFP_KERNEL);
	kfree(p);
	p[512] = 0xab;
	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
	validate_slab_cache(kmalloc_caches[9]);
}
#else
#ifdef CONFIG_SYSFS
static void resiliency_test(void) {};
#endif
#endif

4268
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
4269
enum slab_stat_type {
4270 4271 4272 4273 4274
	SL_ALL,			/* All slabs */
	SL_PARTIAL,		/* Only partially allocated slabs */
	SL_CPU,			/* Only slabs used for cpu caches */
	SL_OBJECTS,		/* Determine allocated objects not slabs */
	SL_TOTAL		/* Determine object capacity not slabs */
C
Christoph Lameter 已提交
4275 4276
};

4277
#define SO_ALL		(1 << SL_ALL)
C
Christoph Lameter 已提交
4278 4279 4280
#define SO_PARTIAL	(1 << SL_PARTIAL)
#define SO_CPU		(1 << SL_CPU)
#define SO_OBJECTS	(1 << SL_OBJECTS)
4281
#define SO_TOTAL	(1 << SL_TOTAL)
C
Christoph Lameter 已提交
4282

4283 4284
static ssize_t show_slab_objects(struct kmem_cache *s,
			    char *buf, unsigned long flags)
C
Christoph Lameter 已提交
4285 4286 4287 4288 4289 4290
{
	unsigned long total = 0;
	int node;
	int x;
	unsigned long *nodes;

4291
	nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4292 4293
	if (!nodes)
		return -ENOMEM;
C
Christoph Lameter 已提交
4294

4295 4296
	if (flags & SO_CPU) {
		int cpu;
C
Christoph Lameter 已提交
4297

4298
		for_each_possible_cpu(cpu) {
4299 4300
			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
							       cpu);
4301
			int node;
4302
			struct page *page;
4303

4304
			page = ACCESS_ONCE(c->page);
4305 4306
			if (!page)
				continue;
4307

4308 4309 4310 4311 4312 4313 4314
			node = page_to_nid(page);
			if (flags & SO_TOTAL)
				x = page->objects;
			else if (flags & SO_OBJECTS)
				x = page->inuse;
			else
				x = 1;
4315

4316 4317 4318 4319
			total += x;
			nodes[node] += x;

			page = ACCESS_ONCE(c->partial);
4320
			if (page) {
L
Li Zefan 已提交
4321 4322 4323 4324 4325 4326 4327
				node = page_to_nid(page);
				if (flags & SO_TOTAL)
					WARN_ON_ONCE(1);
				else if (flags & SO_OBJECTS)
					WARN_ON_ONCE(1);
				else
					x = page->pages;
4328 4329
				total += x;
				nodes[node] += x;
4330
			}
C
Christoph Lameter 已提交
4331 4332 4333
		}
	}

4334
	lock_memory_hotplug();
4335
#ifdef CONFIG_SLUB_DEBUG
4336 4337 4338 4339
	if (flags & SO_ALL) {
		for_each_node_state(node, N_NORMAL_MEMORY) {
			struct kmem_cache_node *n = get_node(s, node);

4340 4341 4342 4343 4344
			if (flags & SO_TOTAL)
				x = atomic_long_read(&n->total_objects);
			else if (flags & SO_OBJECTS)
				x = atomic_long_read(&n->total_objects) -
					count_partial(n, count_free);
C
Christoph Lameter 已提交
4345
			else
4346
				x = atomic_long_read(&n->nr_slabs);
C
Christoph Lameter 已提交
4347 4348 4349 4350
			total += x;
			nodes[node] += x;
		}

4351 4352 4353
	} else
#endif
	if (flags & SO_PARTIAL) {
4354 4355
		for_each_node_state(node, N_NORMAL_MEMORY) {
			struct kmem_cache_node *n = get_node(s, node);
C
Christoph Lameter 已提交
4356

4357 4358 4359 4360
			if (flags & SO_TOTAL)
				x = count_partial(n, count_total);
			else if (flags & SO_OBJECTS)
				x = count_partial(n, count_inuse);
C
Christoph Lameter 已提交
4361
			else
4362
				x = n->nr_partial;
C
Christoph Lameter 已提交
4363 4364 4365 4366 4367 4368
			total += x;
			nodes[node] += x;
		}
	}
	x = sprintf(buf, "%lu", total);
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
4369
	for_each_node_state(node, N_NORMAL_MEMORY)
C
Christoph Lameter 已提交
4370 4371 4372 4373
		if (nodes[node])
			x += sprintf(buf + x, " N%d=%lu",
					node, nodes[node]);
#endif
4374
	unlock_memory_hotplug();
C
Christoph Lameter 已提交
4375 4376 4377 4378
	kfree(nodes);
	return x + sprintf(buf + x, "\n");
}

4379
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
4380 4381 4382 4383
static int any_slab_objects(struct kmem_cache *s)
{
	int node;

4384
	for_each_online_node(node) {
C
Christoph Lameter 已提交
4385 4386
		struct kmem_cache_node *n = get_node(s, node);

4387 4388 4389
		if (!n)
			continue;

4390
		if (atomic_long_read(&n->total_objects))
C
Christoph Lameter 已提交
4391 4392 4393 4394
			return 1;
	}
	return 0;
}
4395
#endif
C
Christoph Lameter 已提交
4396 4397

#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4398
#define to_slab(n) container_of(n, struct kmem_cache, kobj)
C
Christoph Lameter 已提交
4399 4400 4401 4402 4403 4404 4405 4406

struct slab_attribute {
	struct attribute attr;
	ssize_t (*show)(struct kmem_cache *s, char *buf);
	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
};

#define SLAB_ATTR_RO(_name) \
4407 4408
	static struct slab_attribute _name##_attr = \
	__ATTR(_name, 0400, _name##_show, NULL)
C
Christoph Lameter 已提交
4409 4410 4411

#define SLAB_ATTR(_name) \
	static struct slab_attribute _name##_attr =  \
4412
	__ATTR(_name, 0600, _name##_show, _name##_store)
C
Christoph Lameter 已提交
4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427

static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->size);
}
SLAB_ATTR_RO(slab_size);

static ssize_t align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->align);
}
SLAB_ATTR_RO(align);

static ssize_t object_size_show(struct kmem_cache *s, char *buf)
{
4428
	return sprintf(buf, "%d\n", s->object_size);
C
Christoph Lameter 已提交
4429 4430 4431 4432 4433
}
SLAB_ATTR_RO(object_size);

static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
{
4434
	return sprintf(buf, "%d\n", oo_objects(s->oo));
C
Christoph Lameter 已提交
4435 4436 4437
}
SLAB_ATTR_RO(objs_per_slab);

4438 4439 4440
static ssize_t order_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
4441 4442 4443
	unsigned long order;
	int err;

4444
	err = kstrtoul(buf, 10, &order);
4445 4446
	if (err)
		return err;
4447 4448 4449 4450 4451 4452 4453 4454

	if (order > slub_max_order || order < slub_min_order)
		return -EINVAL;

	calculate_sizes(s, order);
	return length;
}

C
Christoph Lameter 已提交
4455 4456
static ssize_t order_show(struct kmem_cache *s, char *buf)
{
4457
	return sprintf(buf, "%d\n", oo_order(s->oo));
C
Christoph Lameter 已提交
4458
}
4459
SLAB_ATTR(order);
C
Christoph Lameter 已提交
4460

4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471
static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%lu\n", s->min_partial);
}

static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long min;
	int err;

4472
	err = kstrtoul(buf, 10, &min);
4473 4474 4475
	if (err)
		return err;

4476
	set_min_partial(s, min);
4477 4478 4479 4480
	return length;
}
SLAB_ATTR(min_partial);

4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491
static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%u\n", s->cpu_partial);
}

static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long objects;
	int err;

4492
	err = kstrtoul(buf, 10, &objects);
4493 4494
	if (err)
		return err;
4495
	if (objects && !kmem_cache_has_cpu_partial(s))
4496
		return -EINVAL;
4497 4498 4499 4500 4501 4502 4503

	s->cpu_partial = objects;
	flush_all(s);
	return length;
}
SLAB_ATTR(cpu_partial);

C
Christoph Lameter 已提交
4504 4505
static ssize_t ctor_show(struct kmem_cache *s, char *buf)
{
J
Joe Perches 已提交
4506 4507 4508
	if (!s->ctor)
		return 0;
	return sprintf(buf, "%pS\n", s->ctor);
C
Christoph Lameter 已提交
4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519
}
SLAB_ATTR_RO(ctor);

static ssize_t aliases_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->refcount - 1);
}
SLAB_ATTR_RO(aliases);

static ssize_t partial_show(struct kmem_cache *s, char *buf)
{
4520
	return show_slab_objects(s, buf, SO_PARTIAL);
C
Christoph Lameter 已提交
4521 4522 4523 4524 4525
}
SLAB_ATTR_RO(partial);

static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
{
4526
	return show_slab_objects(s, buf, SO_CPU);
C
Christoph Lameter 已提交
4527 4528 4529 4530 4531
}
SLAB_ATTR_RO(cpu_slabs);

static ssize_t objects_show(struct kmem_cache *s, char *buf)
{
4532
	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
C
Christoph Lameter 已提交
4533 4534 4535
}
SLAB_ATTR_RO(objects);

4536 4537 4538 4539 4540 4541
static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
}
SLAB_ATTR_RO(objects_partial);

4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572
static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
{
	int objects = 0;
	int pages = 0;
	int cpu;
	int len;

	for_each_online_cpu(cpu) {
		struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;

		if (page) {
			pages += page->pages;
			objects += page->pobjects;
		}
	}

	len = sprintf(buf, "%d(%d)", objects, pages);

#ifdef CONFIG_SMP
	for_each_online_cpu(cpu) {
		struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;

		if (page && len < PAGE_SIZE - 20)
			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
				page->pobjects, page->pages);
	}
#endif
	return len + sprintf(buf + len, "\n");
}
SLAB_ATTR_RO(slabs_cpu_partial);

4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607
static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
}

static ssize_t reclaim_account_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
	if (buf[0] == '1')
		s->flags |= SLAB_RECLAIM_ACCOUNT;
	return length;
}
SLAB_ATTR(reclaim_account);

static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
}
SLAB_ATTR_RO(hwcache_align);

#ifdef CONFIG_ZONE_DMA
static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
}
SLAB_ATTR_RO(cache_dma);
#endif

static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
}
SLAB_ATTR_RO(destroy_by_rcu);

4608 4609 4610 4611 4612 4613
static ssize_t reserved_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->reserved);
}
SLAB_ATTR_RO(reserved);

4614
#ifdef CONFIG_SLUB_DEBUG
4615 4616 4617 4618 4619 4620
static ssize_t slabs_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL);
}
SLAB_ATTR_RO(slabs);

4621 4622 4623 4624 4625 4626
static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
}
SLAB_ATTR_RO(total_objects);

C
Christoph Lameter 已提交
4627 4628 4629 4630 4631 4632 4633 4634 4635
static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
}

static ssize_t sanity_checks_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_DEBUG_FREE;
4636 4637
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4638
		s->flags |= SLAB_DEBUG_FREE;
4639
	}
C
Christoph Lameter 已提交
4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652
	return length;
}
SLAB_ATTR(sanity_checks);

static ssize_t trace_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
}

static ssize_t trace_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
	s->flags &= ~SLAB_TRACE;
4653 4654
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4655
		s->flags |= SLAB_TRACE;
4656
	}
C
Christoph Lameter 已提交
4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672
	return length;
}
SLAB_ATTR(trace);

static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
}

static ssize_t red_zone_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_RED_ZONE;
4673 4674
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4675
		s->flags |= SLAB_RED_ZONE;
4676
	}
4677
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693
	return length;
}
SLAB_ATTR(red_zone);

static ssize_t poison_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
}

static ssize_t poison_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_POISON;
4694 4695
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4696
		s->flags |= SLAB_POISON;
4697
	}
4698
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714
	return length;
}
SLAB_ATTR(poison);

static ssize_t store_user_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
}

static ssize_t store_user_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_STORE_USER;
4715 4716
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4717
		s->flags |= SLAB_STORE_USER;
4718
	}
4719
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4720 4721 4722 4723
	return length;
}
SLAB_ATTR(store_user);

4724 4725 4726 4727 4728 4729 4730 4731
static ssize_t validate_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t validate_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
4732 4733 4734 4735 4736 4737 4738 4739
	int ret = -EINVAL;

	if (buf[0] == '1') {
		ret = validate_slab_cache(s);
		if (ret >= 0)
			ret = length;
	}
	return ret;
4740 4741
}
SLAB_ATTR(validate);
4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774

static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_ALLOC);
}
SLAB_ATTR_RO(alloc_calls);

static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_FREE);
}
SLAB_ATTR_RO(free_calls);
#endif /* CONFIG_SLUB_DEBUG */

#ifdef CONFIG_FAILSLAB
static ssize_t failslab_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
}

static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
	s->flags &= ~SLAB_FAILSLAB;
	if (buf[0] == '1')
		s->flags |= SLAB_FAILSLAB;
	return length;
}
SLAB_ATTR(failslab);
4775
#endif
4776

4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795
static ssize_t shrink_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t shrink_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
	if (buf[0] == '1') {
		int rc = kmem_cache_shrink(s);

		if (rc)
			return rc;
	} else
		return -EINVAL;
	return length;
}
SLAB_ATTR(shrink);

C
Christoph Lameter 已提交
4796
#ifdef CONFIG_NUMA
4797
static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
C
Christoph Lameter 已提交
4798
{
4799
	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
C
Christoph Lameter 已提交
4800 4801
}

4802
static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
C
Christoph Lameter 已提交
4803 4804
				const char *buf, size_t length)
{
4805 4806 4807
	unsigned long ratio;
	int err;

4808
	err = kstrtoul(buf, 10, &ratio);
4809 4810 4811
	if (err)
		return err;

4812
	if (ratio <= 100)
4813
		s->remote_node_defrag_ratio = ratio * 10;
C
Christoph Lameter 已提交
4814 4815 4816

	return length;
}
4817
SLAB_ATTR(remote_node_defrag_ratio);
C
Christoph Lameter 已提交
4818 4819
#endif

4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831
#ifdef CONFIG_SLUB_STATS
static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
{
	unsigned long sum  = 0;
	int cpu;
	int len;
	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);

	if (!data)
		return -ENOMEM;

	for_each_online_cpu(cpu) {
4832
		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4833 4834 4835 4836 4837 4838 4839

		data[cpu] = x;
		sum += x;
	}

	len = sprintf(buf, "%lu", sum);

4840
#ifdef CONFIG_SMP
4841 4842
	for_each_online_cpu(cpu) {
		if (data[cpu] && len < PAGE_SIZE - 20)
4843
			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4844
	}
4845
#endif
4846 4847 4848 4849
	kfree(data);
	return len + sprintf(buf + len, "\n");
}

D
David Rientjes 已提交
4850 4851 4852 4853 4854
static void clear_stat(struct kmem_cache *s, enum stat_item si)
{
	int cpu;

	for_each_online_cpu(cpu)
4855
		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
D
David Rientjes 已提交
4856 4857
}

4858 4859 4860 4861 4862
#define STAT_ATTR(si, text) 					\
static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
{								\
	return show_stat(s, buf, si);				\
}								\
D
David Rientjes 已提交
4863 4864 4865 4866 4867 4868 4869 4870 4871
static ssize_t text##_store(struct kmem_cache *s,		\
				const char *buf, size_t length)	\
{								\
	if (buf[0] != '0')					\
		return -EINVAL;					\
	clear_stat(s, si);					\
	return length;						\
}								\
SLAB_ATTR(text);						\
4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882

STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
STAT_ATTR(FREE_FASTPATH, free_fastpath);
STAT_ATTR(FREE_SLOWPATH, free_slowpath);
STAT_ATTR(FREE_FROZEN, free_frozen);
STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
STAT_ATTR(ALLOC_SLAB, alloc_slab);
STAT_ATTR(ALLOC_REFILL, alloc_refill);
4883
STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4884 4885 4886 4887 4888 4889 4890
STAT_ATTR(FREE_SLAB, free_slab);
STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4891
STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4892
STAT_ATTR(ORDER_FALLBACK, order_fallback);
4893 4894
STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4895 4896
STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
4897 4898
STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
4899 4900
#endif

P
Pekka Enberg 已提交
4901
static struct attribute *slab_attrs[] = {
C
Christoph Lameter 已提交
4902 4903 4904 4905
	&slab_size_attr.attr,
	&object_size_attr.attr,
	&objs_per_slab_attr.attr,
	&order_attr.attr,
4906
	&min_partial_attr.attr,
4907
	&cpu_partial_attr.attr,
C
Christoph Lameter 已提交
4908
	&objects_attr.attr,
4909
	&objects_partial_attr.attr,
C
Christoph Lameter 已提交
4910 4911 4912 4913 4914 4915 4916 4917
	&partial_attr.attr,
	&cpu_slabs_attr.attr,
	&ctor_attr.attr,
	&aliases_attr.attr,
	&align_attr.attr,
	&hwcache_align_attr.attr,
	&reclaim_account_attr.attr,
	&destroy_by_rcu_attr.attr,
4918
	&shrink_attr.attr,
4919
	&reserved_attr.attr,
4920
	&slabs_cpu_partial_attr.attr,
4921
#ifdef CONFIG_SLUB_DEBUG
4922 4923 4924 4925
	&total_objects_attr.attr,
	&slabs_attr.attr,
	&sanity_checks_attr.attr,
	&trace_attr.attr,
C
Christoph Lameter 已提交
4926 4927 4928
	&red_zone_attr.attr,
	&poison_attr.attr,
	&store_user_attr.attr,
4929
	&validate_attr.attr,
4930 4931
	&alloc_calls_attr.attr,
	&free_calls_attr.attr,
4932
#endif
C
Christoph Lameter 已提交
4933 4934 4935 4936
#ifdef CONFIG_ZONE_DMA
	&cache_dma_attr.attr,
#endif
#ifdef CONFIG_NUMA
4937
	&remote_node_defrag_ratio_attr.attr,
4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949
#endif
#ifdef CONFIG_SLUB_STATS
	&alloc_fastpath_attr.attr,
	&alloc_slowpath_attr.attr,
	&free_fastpath_attr.attr,
	&free_slowpath_attr.attr,
	&free_frozen_attr.attr,
	&free_add_partial_attr.attr,
	&free_remove_partial_attr.attr,
	&alloc_from_partial_attr.attr,
	&alloc_slab_attr.attr,
	&alloc_refill_attr.attr,
4950
	&alloc_node_mismatch_attr.attr,
4951 4952 4953 4954 4955 4956 4957
	&free_slab_attr.attr,
	&cpuslab_flush_attr.attr,
	&deactivate_full_attr.attr,
	&deactivate_empty_attr.attr,
	&deactivate_to_head_attr.attr,
	&deactivate_to_tail_attr.attr,
	&deactivate_remote_frees_attr.attr,
4958
	&deactivate_bypass_attr.attr,
4959
	&order_fallback_attr.attr,
4960 4961
	&cmpxchg_double_fail_attr.attr,
	&cmpxchg_double_cpu_fail_attr.attr,
4962 4963
	&cpu_partial_alloc_attr.attr,
	&cpu_partial_free_attr.attr,
4964 4965
	&cpu_partial_node_attr.attr,
	&cpu_partial_drain_attr.attr,
C
Christoph Lameter 已提交
4966
#endif
4967 4968 4969 4970
#ifdef CONFIG_FAILSLAB
	&failslab_attr.attr,
#endif

C
Christoph Lameter 已提交
4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011
	NULL
};

static struct attribute_group slab_attr_group = {
	.attrs = slab_attrs,
};

static ssize_t slab_attr_show(struct kobject *kobj,
				struct attribute *attr,
				char *buf)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->show)
		return -EIO;

	err = attribute->show(s, buf);

	return err;
}

static ssize_t slab_attr_store(struct kobject *kobj,
				struct attribute *attr,
				const char *buf, size_t len)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->store)
		return -EIO;

	err = attribute->store(s, buf, len);
5012 5013 5014
#ifdef CONFIG_MEMCG_KMEM
	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
		int i;
C
Christoph Lameter 已提交
5015

5016 5017 5018 5019
		mutex_lock(&slab_mutex);
		if (s->max_attr_size < len)
			s->max_attr_size = len;

5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036
		/*
		 * This is a best effort propagation, so this function's return
		 * value will be determined by the parent cache only. This is
		 * basically because not all attributes will have a well
		 * defined semantics for rollbacks - most of the actions will
		 * have permanent effects.
		 *
		 * Returning the error value of any of the children that fail
		 * is not 100 % defined, in the sense that users seeing the
		 * error code won't be able to know anything about the state of
		 * the cache.
		 *
		 * Only returning the error code for the parent cache at least
		 * has well defined semantics. The cache being written to
		 * directly either failed or succeeded, in which case we loop
		 * through the descendants with best-effort propagation.
		 */
5037
		for_each_memcg_cache_index(i) {
5038
			struct kmem_cache *c = cache_from_memcg_idx(s, i);
5039 5040 5041 5042 5043 5044
			if (c)
				attribute->store(c, buf, len);
		}
		mutex_unlock(&slab_mutex);
	}
#endif
C
Christoph Lameter 已提交
5045 5046 5047
	return err;
}

5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100
static void memcg_propagate_slab_attrs(struct kmem_cache *s)
{
#ifdef CONFIG_MEMCG_KMEM
	int i;
	char *buffer = NULL;

	if (!is_root_cache(s))
		return;

	/*
	 * This mean this cache had no attribute written. Therefore, no point
	 * in copying default values around
	 */
	if (!s->max_attr_size)
		return;

	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
		char mbuf[64];
		char *buf;
		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);

		if (!attr || !attr->store || !attr->show)
			continue;

		/*
		 * It is really bad that we have to allocate here, so we will
		 * do it only as a fallback. If we actually allocate, though,
		 * we can just use the allocated buffer until the end.
		 *
		 * Most of the slub attributes will tend to be very small in
		 * size, but sysfs allows buffers up to a page, so they can
		 * theoretically happen.
		 */
		if (buffer)
			buf = buffer;
		else if (s->max_attr_size < ARRAY_SIZE(mbuf))
			buf = mbuf;
		else {
			buffer = (char *) get_zeroed_page(GFP_KERNEL);
			if (WARN_ON(!buffer))
				continue;
			buf = buffer;
		}

		attr->show(s->memcg_params->root_cache, buf);
		attr->store(s, buf, strlen(buf));
	}

	if (buffer)
		free_page((unsigned long)buffer);
#endif
}

5101
static const struct sysfs_ops slab_sysfs_ops = {
C
Christoph Lameter 已提交
5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118
	.show = slab_attr_show,
	.store = slab_attr_store,
};

static struct kobj_type slab_ktype = {
	.sysfs_ops = &slab_sysfs_ops,
};

static int uevent_filter(struct kset *kset, struct kobject *kobj)
{
	struct kobj_type *ktype = get_ktype(kobj);

	if (ktype == &slab_ktype)
		return 1;
	return 0;
}

5119
static const struct kset_uevent_ops slab_uevent_ops = {
C
Christoph Lameter 已提交
5120 5121 5122
	.filter = uevent_filter,
};

5123
static struct kset *slab_kset;
C
Christoph Lameter 已提交
5124 5125 5126 5127

#define ID_STR_LENGTH 64

/* Create a unique string id for a slab cache:
C
Christoph Lameter 已提交
5128 5129
 *
 * Format	:[flags-]size
C
Christoph Lameter 已提交
5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151
 */
static char *create_unique_id(struct kmem_cache *s)
{
	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
	char *p = name;

	BUG_ON(!name);

	*p++ = ':';
	/*
	 * First flags affecting slabcache operations. We will only
	 * get here for aliasable slabs so we do not need to support
	 * too many flags. The flags here must cover all flags that
	 * are matched during merging to guarantee that the id is
	 * unique.
	 */
	if (s->flags & SLAB_CACHE_DMA)
		*p++ = 'd';
	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		*p++ = 'a';
	if (s->flags & SLAB_DEBUG_FREE)
		*p++ = 'F';
V
Vegard Nossum 已提交
5152 5153
	if (!(s->flags & SLAB_NOTRACK))
		*p++ = 't';
C
Christoph Lameter 已提交
5154 5155 5156
	if (p != name + 1)
		*p++ = '-';
	p += sprintf(p, "%07d", s->size);
5157 5158 5159

#ifdef CONFIG_MEMCG_KMEM
	if (!is_root_cache(s))
5160 5161
		p += sprintf(p, "-%08d",
				memcg_cache_id(s->memcg_params->memcg));
5162 5163
#endif

C
Christoph Lameter 已提交
5164 5165 5166 5167 5168 5169 5170 5171
	BUG_ON(p > name + ID_STR_LENGTH - 1);
	return name;
}

static int sysfs_slab_add(struct kmem_cache *s)
{
	int err;
	const char *name;
5172
	int unmergeable = slab_unmergeable(s);
C
Christoph Lameter 已提交
5173 5174 5175 5176 5177 5178 5179

	if (unmergeable) {
		/*
		 * Slabcache can never be merged so we can use the name proper.
		 * This is typically the case for debug situations. In that
		 * case we can catch duplicate names easily.
		 */
5180
		sysfs_remove_link(&slab_kset->kobj, s->name);
C
Christoph Lameter 已提交
5181 5182 5183 5184 5185 5186 5187 5188 5189
		name = s->name;
	} else {
		/*
		 * Create a unique name for the slab as a target
		 * for the symlinks.
		 */
		name = create_unique_id(s);
	}

5190
	s->kobj.kset = slab_kset;
5191
	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5192 5193
	if (err) {
		kobject_put(&s->kobj);
C
Christoph Lameter 已提交
5194
		return err;
5195
	}
C
Christoph Lameter 已提交
5196 5197

	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5198 5199 5200
	if (err) {
		kobject_del(&s->kobj);
		kobject_put(&s->kobj);
C
Christoph Lameter 已提交
5201
		return err;
5202
	}
C
Christoph Lameter 已提交
5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213
	kobject_uevent(&s->kobj, KOBJ_ADD);
	if (!unmergeable) {
		/* Setup first alias */
		sysfs_slab_alias(s, s->name);
		kfree(name);
	}
	return 0;
}

static void sysfs_slab_remove(struct kmem_cache *s)
{
5214
	if (slab_state < FULL)
5215 5216 5217 5218 5219 5220
		/*
		 * Sysfs has not been setup yet so no need to remove the
		 * cache from sysfs.
		 */
		return;

C
Christoph Lameter 已提交
5221 5222
	kobject_uevent(&s->kobj, KOBJ_REMOVE);
	kobject_del(&s->kobj);
C
Christoph Lameter 已提交
5223
	kobject_put(&s->kobj);
C
Christoph Lameter 已提交
5224 5225 5226 5227
}

/*
 * Need to buffer aliases during bootup until sysfs becomes
N
Nick Andrew 已提交
5228
 * available lest we lose that information.
C
Christoph Lameter 已提交
5229 5230 5231 5232 5233 5234 5235
 */
struct saved_alias {
	struct kmem_cache *s;
	const char *name;
	struct saved_alias *next;
};

A
Adrian Bunk 已提交
5236
static struct saved_alias *alias_list;
C
Christoph Lameter 已提交
5237 5238 5239 5240 5241

static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
{
	struct saved_alias *al;

5242
	if (slab_state == FULL) {
C
Christoph Lameter 已提交
5243 5244 5245
		/*
		 * If we have a leftover link then remove it.
		 */
5246 5247
		sysfs_remove_link(&slab_kset->kobj, name);
		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
C
Christoph Lameter 已提交
5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262
	}

	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
	if (!al)
		return -ENOMEM;

	al->s = s;
	al->name = name;
	al->next = alias_list;
	alias_list = al;
	return 0;
}

static int __init slab_sysfs_init(void)
{
5263
	struct kmem_cache *s;
C
Christoph Lameter 已提交
5264 5265
	int err;

5266
	mutex_lock(&slab_mutex);
5267

5268
	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5269
	if (!slab_kset) {
5270
		mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
5271 5272 5273 5274
		printk(KERN_ERR "Cannot register slab subsystem.\n");
		return -ENOSYS;
	}

5275
	slab_state = FULL;
5276

5277
	list_for_each_entry(s, &slab_caches, list) {
5278
		err = sysfs_slab_add(s);
5279 5280 5281
		if (err)
			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
						" to sysfs\n", s->name);
5282
	}
C
Christoph Lameter 已提交
5283 5284 5285 5286 5287 5288

	while (alias_list) {
		struct saved_alias *al = alias_list;

		alias_list = alias_list->next;
		err = sysfs_slab_alias(al->s, al->name);
5289 5290
		if (err)
			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5291
					" %s to sysfs\n", al->name);
C
Christoph Lameter 已提交
5292 5293 5294
		kfree(al);
	}

5295
	mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
5296 5297 5298 5299 5300
	resiliency_test();
	return 0;
}

__initcall(slab_sysfs_init);
5301
#endif /* CONFIG_SYSFS */
P
Pekka J Enberg 已提交
5302 5303 5304 5305

/*
 * The /proc/slabinfo ABI
 */
5306
#ifdef CONFIG_SLABINFO
5307
void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
P
Pekka J Enberg 已提交
5308 5309
{
	unsigned long nr_slabs = 0;
5310 5311
	unsigned long nr_objs = 0;
	unsigned long nr_free = 0;
P
Pekka J Enberg 已提交
5312 5313 5314 5315 5316 5317 5318 5319
	int node;

	for_each_online_node(node) {
		struct kmem_cache_node *n = get_node(s, node);

		if (!n)
			continue;

5320 5321
		nr_slabs += node_nr_slabs(n);
		nr_objs += node_nr_objs(n);
5322
		nr_free += count_partial(n, count_free);
P
Pekka J Enberg 已提交
5323 5324
	}

5325 5326 5327 5328 5329 5330
	sinfo->active_objs = nr_objs - nr_free;
	sinfo->num_objs = nr_objs;
	sinfo->active_slabs = nr_slabs;
	sinfo->num_slabs = nr_slabs;
	sinfo->objects_per_slab = oo_objects(s->oo);
	sinfo->cache_order = oo_order(s->oo);
P
Pekka J Enberg 已提交
5331 5332
}

5333
void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5334 5335 5336
{
}

5337 5338
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
		       size_t count, loff_t *ppos)
5339
{
5340
	return -EIO;
5341
}
5342
#endif /* CONFIG_SLABINFO */