pgtable.h 8.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3
#ifndef _ASM_GENERIC_PGTABLE_H
#define _ASM_GENERIC_PGTABLE_H

4
#ifndef __ASSEMBLY__
5
#ifdef CONFIG_MMU
6

L
Linus Torvalds 已提交
7 8 9 10 11
#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
/*
 * Largely same as above, but only sets the access flags (dirty,
 * accessed, and writable). Furthermore, we know it always gets set
 * to a "more permissive" setting, which allows most architectures
12 13 14 15
 * to optimize this. We return whether the PTE actually changed, which
 * in turn instructs the caller to do things like update__mmu_cache.
 * This used to be done in the caller, but sparc needs minor faults to
 * force that call on sun4c so we changed this macro slightly
L
Linus Torvalds 已提交
16 17
 */
#define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \
18 19 20 21 22 23 24 25
({									  \
	int __changed = !pte_same(*(__ptep), __entry);			  \
	if (__changed) {						  \
		set_pte_at((__vma)->vm_mm, (__address), __ptep, __entry); \
		flush_tlb_page(__vma, __address);			  \
	}								  \
	__changed;							  \
})
L
Linus Torvalds 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
#endif

#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
#define ptep_test_and_clear_young(__vma, __address, __ptep)		\
({									\
	pte_t __pte = *(__ptep);					\
	int r = 1;							\
	if (!pte_young(__pte))						\
		r = 0;							\
	else								\
		set_pte_at((__vma)->vm_mm, (__address),			\
			   (__ptep), pte_mkold(__pte));			\
	r;								\
})
#endif

#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
#define ptep_clear_flush_young(__vma, __address, __ptep)		\
({									\
	int __young;							\
	__young = ptep_test_and_clear_young(__vma, __address, __ptep);	\
	if (__young)							\
		flush_tlb_page(__vma, __address);			\
	__young;							\
})
#endif

#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
#define ptep_get_and_clear(__mm, __address, __ptep)			\
({									\
	pte_t __pte = *(__ptep);					\
	pte_clear((__mm), (__address), (__ptep));			\
	__pte;								\
})
#endif

62 63 64 65 66 67 68 69 70
#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
#define ptep_get_and_clear_full(__mm, __address, __ptep, __full)	\
({									\
	pte_t __pte;							\
	__pte = ptep_get_and_clear((__mm), (__address), (__ptep));	\
	__pte;								\
})
#endif

71 72 73 74 75 76 77
/*
 * Some architectures may be able to avoid expensive synchronization
 * primitives when modifications are made to PTE's which are already
 * not present, or in the process of an address space destruction.
 */
#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
#define pte_clear_not_present_full(__mm, __address, __ptep, __full)	\
78 79 80 81 82
do {									\
	pte_clear((__mm), (__address), (__ptep));			\
} while (0)
#endif

L
Linus Torvalds 已提交
83 84 85 86 87 88 89 90 91 92 93
#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
#define ptep_clear_flush(__vma, __address, __ptep)			\
({									\
	pte_t __pte;							\
	__pte = ptep_get_and_clear((__vma)->vm_mm, __address, __ptep);	\
	flush_tlb_page(__vma, __address);				\
	__pte;								\
})
#endif

#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
94
struct mm_struct;
L
Linus Torvalds 已提交
95 96 97 98 99 100 101 102 103 104 105
static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
{
	pte_t old_pte = *ptep;
	set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
}
#endif

#ifndef __HAVE_ARCH_PTE_SAME
#define pte_same(A,B)	(pte_val(A) == pte_val(B))
#endif

106 107 108 109 110 111 112 113 114
#ifndef __HAVE_ARCH_PAGE_TEST_DIRTY
#define page_test_dirty(page)		(0)
#endif

#ifndef __HAVE_ARCH_PAGE_CLEAR_DIRTY
#define page_clear_dirty(page)		do { } while (0)
#endif

#ifndef __HAVE_ARCH_PAGE_TEST_DIRTY
115 116 117
#define pte_maybe_dirty(pte)		pte_dirty(pte)
#else
#define pte_maybe_dirty(pte)		(1)
L
Linus Torvalds 已提交
118 119 120 121 122 123 124 125 126 127
#endif

#ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG
#define page_test_and_clear_young(page) (0)
#endif

#ifndef __HAVE_ARCH_PGD_OFFSET_GATE
#define pgd_offset_gate(mm, addr)	pgd_offset(mm, addr)
#endif

128
#ifndef __HAVE_ARCH_MOVE_PTE
129 130 131
#define move_pte(pte, prot, old_addr, new_addr)	(pte)
#endif

L
Linus Torvalds 已提交
132
/*
133 134 135
 * When walking page tables, get the address of the next boundary,
 * or the end address of the range if that comes earlier.  Although no
 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
L
Linus Torvalds 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
 */

#define pgd_addr_end(addr, end)						\
({	unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK;	\
	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
})

#ifndef pud_addr_end
#define pud_addr_end(addr, end)						\
({	unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK;	\
	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
})
#endif

#ifndef pmd_addr_end
#define pmd_addr_end(addr, end)						\
({	unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK;	\
	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
})
#endif

/*
 * When walking page tables, we usually want to skip any p?d_none entries;
 * and any p?d_bad entries - reporting the error before resetting to none.
 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
 */
void pgd_clear_bad(pgd_t *);
void pud_clear_bad(pud_t *);
void pmd_clear_bad(pmd_t *);

static inline int pgd_none_or_clear_bad(pgd_t *pgd)
{
	if (pgd_none(*pgd))
		return 1;
	if (unlikely(pgd_bad(*pgd))) {
		pgd_clear_bad(pgd);
		return 1;
	}
	return 0;
}

static inline int pud_none_or_clear_bad(pud_t *pud)
{
	if (pud_none(*pud))
		return 1;
	if (unlikely(pud_bad(*pud))) {
		pud_clear_bad(pud);
		return 1;
	}
	return 0;
}

static inline int pmd_none_or_clear_bad(pmd_t *pmd)
{
	if (pmd_none(*pmd))
		return 1;
	if (unlikely(pmd_bad(*pmd))) {
		pmd_clear_bad(pmd);
		return 1;
	}
	return 0;
}
198 199
#endif /* CONFIG_MMU */

200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
static inline pte_t __ptep_modify_prot_start(struct mm_struct *mm,
					     unsigned long addr,
					     pte_t *ptep)
{
	/*
	 * Get the current pte state, but zero it out to make it
	 * non-present, preventing the hardware from asynchronously
	 * updating it.
	 */
	return ptep_get_and_clear(mm, addr, ptep);
}

static inline void __ptep_modify_prot_commit(struct mm_struct *mm,
					     unsigned long addr,
					     pte_t *ptep, pte_t pte)
{
	/*
	 * The pte is non-present, so there's no hardware state to
	 * preserve.
	 */
	set_pte_at(mm, addr, ptep, pte);
}

#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
/*
 * Start a pte protection read-modify-write transaction, which
 * protects against asynchronous hardware modifications to the pte.
 * The intention is not to prevent the hardware from making pte
 * updates, but to prevent any updates it may make from being lost.
 *
 * This does not protect against other software modifications of the
 * pte; the appropriate pte lock must be held over the transation.
 *
 * Note that this interface is intended to be batchable, meaning that
 * ptep_modify_prot_commit may not actually update the pte, but merely
 * queue the update to be done at some later time.  The update must be
 * actually committed before the pte lock is released, however.
 */
static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
					   unsigned long addr,
					   pte_t *ptep)
{
	return __ptep_modify_prot_start(mm, addr, ptep);
}

/*
 * Commit an update to a pte, leaving any hardware-controlled bits in
 * the PTE unmodified.
 */
static inline void ptep_modify_prot_commit(struct mm_struct *mm,
					   unsigned long addr,
					   pte_t *ptep, pte_t pte)
{
	__ptep_modify_prot_commit(mm, addr, ptep, pte);
}
#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */

257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
/*
 * A facility to provide lazy MMU batching.  This allows PTE updates and
 * page invalidations to be delayed until a call to leave lazy MMU mode
 * is issued.  Some architectures may benefit from doing this, and it is
 * beneficial for both shadow and direct mode hypervisors, which may batch
 * the PTE updates which happen during this window.  Note that using this
 * interface requires that read hazards be removed from the code.  A read
 * hazard could result in the direct mode hypervisor case, since the actual
 * write to the page tables may not yet have taken place, so reads though
 * a raw PTE pointer after it has been modified are not guaranteed to be
 * up to date.  This mode can only be entered and left under the protection of
 * the page table locks for all page tables which may be modified.  In the UP
 * case, this is required so that preemption is disabled, and in the SMP case,
 * it must synchronize the delayed page table writes properly on other CPUs.
 */
#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
#define arch_enter_lazy_mmu_mode()	do {} while (0)
#define arch_leave_lazy_mmu_mode()	do {} while (0)
#define arch_flush_lazy_mmu_mode()	do {} while (0)
#endif

/*
 * A facility to provide batching of the reload of page tables with the
 * actual context switch code for paravirtualized guests.  By convention,
 * only one of the lazy modes (CPU, MMU) should be active at any given
 * time, entry should never be nested, and entry and exits should always
 * be paired.  This is for sanity of maintaining and reasoning about the
 * kernel code.
 */
#ifndef __HAVE_ARCH_ENTER_LAZY_CPU_MODE
#define arch_enter_lazy_cpu_mode()	do {} while (0)
#define arch_leave_lazy_cpu_mode()	do {} while (0)
#define arch_flush_lazy_cpu_mode()	do {} while (0)
#endif

L
Linus Torvalds 已提交
292 293 294
#endif /* !__ASSEMBLY__ */

#endif /* _ASM_GENERIC_PGTABLE_H */