inode.c 99.0 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  Goal-directed block allocation by Stephen Tweedie
 *	(sct@redhat.com), 1993, 1998
 *  Big-endian to little-endian byte-swapping/bitmaps by
 *        David S. Miller (davem@caip.rutgers.edu), 1995
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
22
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 24 25 26 27
 */

#include <linux/module.h>
#include <linux/fs.h>
#include <linux/time.h>
28 29
#include <linux/ext4_jbd2.h>
#include <linux/jbd2.h>
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
#include <linux/mpage.h>
#include <linux/uio.h>
#include <linux/bio.h>
#include "xattr.h"
#include "acl.h"

/*
 * Test whether an inode is a fast symlink.
 */
45
static int ext4_inode_is_fast_symlink(struct inode *inode)
46
{
47
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
48 49 50 51 52 53
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
54
 * The ext4 forget function must perform a revoke if we are freeing data
55 56 57 58 59 60 61
 * which has been journaled.  Metadata (eg. indirect blocks) must be
 * revoked in all cases.
 *
 * "bh" may be NULL: a metadata block may have been freed from memory
 * but there may still be a record of it in the journal, and that record
 * still needs to be revoked.
 */
62 63
int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
			struct buffer_head *bh, ext4_fsblk_t blocknr)
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
{
	int err;

	might_sleep();

	BUFFER_TRACE(bh, "enter");

	jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
		  "data mode %lx\n",
		  bh, is_metadata, inode->i_mode,
		  test_opt(inode->i_sb, DATA_FLAGS));

	/* Never use the revoke function if we are doing full data
	 * journaling: there is no need to, and a V1 superblock won't
	 * support it.  Otherwise, only skip the revoke on un-journaled
	 * data blocks. */

81 82
	if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
	    (!is_metadata && !ext4_should_journal_data(inode))) {
83
		if (bh) {
84
			BUFFER_TRACE(bh, "call jbd2_journal_forget");
85
			return ext4_journal_forget(handle, bh);
86 87 88 89 90 91 92
		}
		return 0;
	}

	/*
	 * data!=journal && (is_metadata || should_journal_data(inode))
	 */
93 94
	BUFFER_TRACE(bh, "call ext4_journal_revoke");
	err = ext4_journal_revoke(handle, blocknr, bh);
95
	if (err)
96
		ext4_abort(inode->i_sb, __FUNCTION__,
97 98 99 100 101 102 103 104 105 106 107
			   "error %d when attempting revoke", err);
	BUFFER_TRACE(bh, "exit");
	return err;
}

/*
 * Work out how many blocks we need to proceed with the next chunk of a
 * truncate transaction.
 */
static unsigned long blocks_for_truncate(struct inode *inode)
{
A
Aneesh Kumar K.V 已提交
108
	ext4_lblk_t needed;
109 110 111 112 113 114

	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);

	/* Give ourselves just enough room to cope with inodes in which
	 * i_blocks is corrupt: we've seen disk corruptions in the past
	 * which resulted in random data in an inode which looked enough
115
	 * like a regular file for ext4 to try to delete it.  Things
116 117 118 119 120 121 122
	 * will go a bit crazy if that happens, but at least we should
	 * try not to panic the whole kernel. */
	if (needed < 2)
		needed = 2;

	/* But we need to bound the transaction so we don't overflow the
	 * journal. */
123 124
	if (needed > EXT4_MAX_TRANS_DATA)
		needed = EXT4_MAX_TRANS_DATA;
125

126
	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
}

/*
 * Truncate transactions can be complex and absolutely huge.  So we need to
 * be able to restart the transaction at a conventient checkpoint to make
 * sure we don't overflow the journal.
 *
 * start_transaction gets us a new handle for a truncate transaction,
 * and extend_transaction tries to extend the existing one a bit.  If
 * extend fails, we need to propagate the failure up and restart the
 * transaction in the top-level truncate loop. --sct
 */
static handle_t *start_transaction(struct inode *inode)
{
	handle_t *result;

143
	result = ext4_journal_start(inode, blocks_for_truncate(inode));
144 145 146
	if (!IS_ERR(result))
		return result;

147
	ext4_std_error(inode->i_sb, PTR_ERR(result));
148 149 150 151 152 153 154 155 156 157 158
	return result;
}

/*
 * Try to extend this transaction for the purposes of truncation.
 *
 * Returns 0 if we managed to create more room.  If we can't create more
 * room, and the transaction must be restarted we return 1.
 */
static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
{
159
	if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
160
		return 0;
161
	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
162 163 164 165 166 167 168 169 170
		return 0;
	return 1;
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
171
static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
172 173
{
	jbd_debug(2, "restarting handle %p\n", handle);
174
	return ext4_journal_restart(handle, blocks_for_truncate(inode));
175 176 177 178 179
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
180
void ext4_delete_inode (struct inode * inode)
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
{
	handle_t *handle;

	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

	handle = start_transaction(inode);
	if (IS_ERR(handle)) {
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
196
		ext4_orphan_del(NULL, inode);
197 198 199 200 201 202 203
		goto no_delete;
	}

	if (IS_SYNC(inode))
		handle->h_sync = 1;
	inode->i_size = 0;
	if (inode->i_blocks)
204
		ext4_truncate(inode);
205
	/*
206
	 * Kill off the orphan record which ext4_truncate created.
207
	 * AKPM: I think this can be inside the above `if'.
208
	 * Note that ext4_orphan_del() has to be able to cope with the
209
	 * deletion of a non-existent orphan - this is because we don't
210
	 * know if ext4_truncate() actually created an orphan record.
211 212
	 * (Well, we could do this if we need to, but heck - it works)
	 */
213 214
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
215 216 217 218 219 220 221 222

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
223
	if (ext4_mark_inode_dirty(handle, inode))
224 225 226
		/* If that failed, just do the required in-core inode clear. */
		clear_inode(inode);
	else
227 228
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
	return;
no_delete:
	clear_inode(inode);	/* We must guarantee clearing of inode... */
}

typedef struct {
	__le32	*p;
	__le32	key;
	struct buffer_head *bh;
} Indirect;

static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
{
	p->key = *(p->p = v);
	p->bh = bh;
}

/**
247
 *	ext4_block_to_path - parse the block number into array of offsets
248 249 250
 *	@inode: inode in question (we are only interested in its superblock)
 *	@i_block: block number to be parsed
 *	@offsets: array to store the offsets in
D
Dave Kleikamp 已提交
251 252
 *	@boundary: set this non-zero if the referred-to block is likely to be
 *	       followed (on disk) by an indirect block.
253
 *
254
 *	To store the locations of file's data ext4 uses a data structure common
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
 *	for UNIX filesystems - tree of pointers anchored in the inode, with
 *	data blocks at leaves and indirect blocks in intermediate nodes.
 *	This function translates the block number into path in that tree -
 *	return value is the path length and @offsets[n] is the offset of
 *	pointer to (n+1)th node in the nth one. If @block is out of range
 *	(negative or too large) warning is printed and zero returned.
 *
 *	Note: function doesn't find node addresses, so no IO is needed. All
 *	we need to know is the capacity of indirect blocks (taken from the
 *	inode->i_sb).
 */

/*
 * Portability note: the last comparison (check that we fit into triple
 * indirect block) is spelled differently, because otherwise on an
 * architecture with 32-bit longs and 8Kb pages we might get into trouble
 * if our filesystem had 8Kb blocks. We might use long long, but that would
 * kill us on x86. Oh, well, at least the sign propagation does not matter -
 * i_block would have to be negative in the very beginning, so we would not
 * get there at all.
 */

277
static int ext4_block_to_path(struct inode *inode,
A
Aneesh Kumar K.V 已提交
278 279
			ext4_lblk_t i_block,
			ext4_lblk_t offsets[4], int *boundary)
280
{
281 282 283
	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
	const long direct_blocks = EXT4_NDIR_BLOCKS,
284 285 286 287 288 289
		indirect_blocks = ptrs,
		double_blocks = (1 << (ptrs_bits * 2));
	int n = 0;
	int final = 0;

	if (i_block < 0) {
290
		ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0");
291 292 293 294
	} else if (i_block < direct_blocks) {
		offsets[n++] = i_block;
		final = direct_blocks;
	} else if ( (i_block -= direct_blocks) < indirect_blocks) {
295
		offsets[n++] = EXT4_IND_BLOCK;
296 297 298
		offsets[n++] = i_block;
		final = ptrs;
	} else if ((i_block -= indirect_blocks) < double_blocks) {
299
		offsets[n++] = EXT4_DIND_BLOCK;
300 301 302 303
		offsets[n++] = i_block >> ptrs_bits;
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
304
		offsets[n++] = EXT4_TIND_BLOCK;
305 306 307 308 309
		offsets[n++] = i_block >> (ptrs_bits * 2);
		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else {
310
		ext4_warning(inode->i_sb, "ext4_block_to_path",
311
				"block %lu > max",
312 313
				i_block + direct_blocks +
				indirect_blocks + double_blocks);
314 315 316 317 318 319 320
	}
	if (boundary)
		*boundary = final - 1 - (i_block & (ptrs - 1));
	return n;
}

/**
321
 *	ext4_get_branch - read the chain of indirect blocks leading to data
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
 *	@inode: inode in question
 *	@depth: depth of the chain (1 - direct pointer, etc.)
 *	@offsets: offsets of pointers in inode/indirect blocks
 *	@chain: place to store the result
 *	@err: here we store the error value
 *
 *	Function fills the array of triples <key, p, bh> and returns %NULL
 *	if everything went OK or the pointer to the last filled triple
 *	(incomplete one) otherwise. Upon the return chain[i].key contains
 *	the number of (i+1)-th block in the chain (as it is stored in memory,
 *	i.e. little-endian 32-bit), chain[i].p contains the address of that
 *	number (it points into struct inode for i==0 and into the bh->b_data
 *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 *	block for i>0 and NULL for i==0. In other words, it holds the block
 *	numbers of the chain, addresses they were taken from (and where we can
 *	verify that chain did not change) and buffer_heads hosting these
 *	numbers.
 *
 *	Function stops when it stumbles upon zero pointer (absent block)
 *		(pointer to last triple returned, *@err == 0)
 *	or when it gets an IO error reading an indirect block
 *		(ditto, *@err == -EIO)
 *	or when it reads all @depth-1 indirect blocks successfully and finds
 *	the whole chain, all way to the data (returns %NULL, *err == 0).
346 347
 *
 *      Need to be called with
348
 *      down_read(&EXT4_I(inode)->i_data_sem)
349
 */
A
Aneesh Kumar K.V 已提交
350 351
static Indirect *ext4_get_branch(struct inode *inode, int depth,
				 ext4_lblk_t  *offsets,
352 353 354 355 356 357 358 359
				 Indirect chain[4], int *err)
{
	struct super_block *sb = inode->i_sb;
	Indirect *p = chain;
	struct buffer_head *bh;

	*err = 0;
	/* i_data is not going away, no lock needed */
360
	add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets);
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
	if (!p->key)
		goto no_block;
	while (--depth) {
		bh = sb_bread(sb, le32_to_cpu(p->key));
		if (!bh)
			goto failure;
		add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
		/* Reader: end */
		if (!p->key)
			goto no_block;
	}
	return NULL;

failure:
	*err = -EIO;
no_block:
	return p;
}

/**
381
 *	ext4_find_near - find a place for allocation with sufficient locality
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
 *	@inode: owner
 *	@ind: descriptor of indirect block.
 *
 *	This function returns the prefered place for block allocation.
 *	It is used when heuristic for sequential allocation fails.
 *	Rules are:
 *	  + if there is a block to the left of our position - allocate near it.
 *	  + if pointer will live in indirect block - allocate near that block.
 *	  + if pointer will live in inode - allocate in the same
 *	    cylinder group.
 *
 * In the latter case we colour the starting block by the callers PID to
 * prevent it from clashing with concurrent allocations for a different inode
 * in the same block group.   The PID is used here so that functionally related
 * files will be close-by on-disk.
 *
 *	Caller must make sure that @ind is valid and will stay that way.
 */
400
static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
401
{
402
	struct ext4_inode_info *ei = EXT4_I(inode);
403 404
	__le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
	__le32 *p;
405 406
	ext4_fsblk_t bg_start;
	ext4_grpblk_t colour;
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421

	/* Try to find previous block */
	for (p = ind->p - 1; p >= start; p--) {
		if (*p)
			return le32_to_cpu(*p);
	}

	/* No such thing, so let's try location of indirect block */
	if (ind->bh)
		return ind->bh->b_blocknr;

	/*
	 * It is going to be referred to from the inode itself? OK, just put it
	 * into the same cylinder group then.
	 */
422
	bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
423
	colour = (current->pid % 16) *
424
			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
425 426 427 428
	return bg_start + colour;
}

/**
429
 *	ext4_find_goal - find a prefered place for allocation.
430 431 432 433 434 435 436 437 438 439
 *	@inode: owner
 *	@block:  block we want
 *	@chain:  chain of indirect blocks
 *	@partial: pointer to the last triple within a chain
 *	@goal:	place to store the result.
 *
 *	Normally this function find the prefered place for block allocation,
 *	stores it in *@goal and returns zero.
 */

A
Aneesh Kumar K.V 已提交
440
static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
441 442
		Indirect chain[4], Indirect *partial)
{
443
	struct ext4_block_alloc_info *block_i;
444

445
	block_i =  EXT4_I(inode)->i_block_alloc_info;
446 447 448 449 450 451 452 453 454 455

	/*
	 * try the heuristic for sequential allocation,
	 * failing that at least try to get decent locality.
	 */
	if (block_i && (block == block_i->last_alloc_logical_block + 1)
		&& (block_i->last_alloc_physical_block != 0)) {
		return block_i->last_alloc_physical_block + 1;
	}

456
	return ext4_find_near(inode, partial);
457 458 459
}

/**
460
 *	ext4_blks_to_allocate: Look up the block map and count the number
461 462 463 464 465 466 467 468 469 470
 *	of direct blocks need to be allocated for the given branch.
 *
 *	@branch: chain of indirect blocks
 *	@k: number of blocks need for indirect blocks
 *	@blks: number of data blocks to be mapped.
 *	@blocks_to_boundary:  the offset in the indirect block
 *
 *	return the total number of blocks to be allocate, including the
 *	direct and indirect blocks.
 */
471
static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
		int blocks_to_boundary)
{
	unsigned long count = 0;

	/*
	 * Simple case, [t,d]Indirect block(s) has not allocated yet
	 * then it's clear blocks on that path have not allocated
	 */
	if (k > 0) {
		/* right now we don't handle cross boundary allocation */
		if (blks < blocks_to_boundary + 1)
			count += blks;
		else
			count += blocks_to_boundary + 1;
		return count;
	}

	count++;
	while (count < blks && count <= blocks_to_boundary &&
		le32_to_cpu(*(branch[0].p + count)) == 0) {
		count++;
	}
	return count;
}

/**
498
 *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
499 500 501 502 503 504 505 506
 *	@indirect_blks: the number of blocks need to allocate for indirect
 *			blocks
 *
 *	@new_blocks: on return it will store the new block numbers for
 *	the indirect blocks(if needed) and the first direct block,
 *	@blks:	on return it will store the total number of allocated
 *		direct blocks
 */
507 508 509
static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
			ext4_fsblk_t goal, int indirect_blks, int blks,
			ext4_fsblk_t new_blocks[4], int *err)
510 511 512 513
{
	int target, i;
	unsigned long count = 0;
	int index = 0;
514
	ext4_fsblk_t current_block = 0;
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
	int ret = 0;

	/*
	 * Here we try to allocate the requested multiple blocks at once,
	 * on a best-effort basis.
	 * To build a branch, we should allocate blocks for
	 * the indirect blocks(if not allocated yet), and at least
	 * the first direct block of this branch.  That's the
	 * minimum number of blocks need to allocate(required)
	 */
	target = blks + indirect_blks;

	while (1) {
		count = target;
		/* allocating blocks for indirect blocks and direct blocks */
530
		current_block = ext4_new_blocks(handle,inode,goal,&count,err);
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
		if (*err)
			goto failed_out;

		target -= count;
		/* allocate blocks for indirect blocks */
		while (index < indirect_blks && count) {
			new_blocks[index++] = current_block++;
			count--;
		}

		if (count > 0)
			break;
	}

	/* save the new block number for the first direct block */
	new_blocks[index] = current_block;

	/* total number of blocks allocated for direct blocks */
	ret = count;
	*err = 0;
	return ret;
failed_out:
	for (i = 0; i <index; i++)
554
		ext4_free_blocks(handle, inode, new_blocks[i], 1);
555 556 557 558
	return ret;
}

/**
559
 *	ext4_alloc_branch - allocate and set up a chain of blocks.
560 561 562 563 564 565 566 567 568 569
 *	@inode: owner
 *	@indirect_blks: number of allocated indirect blocks
 *	@blks: number of allocated direct blocks
 *	@offsets: offsets (in the blocks) to store the pointers to next.
 *	@branch: place to store the chain in.
 *
 *	This function allocates blocks, zeroes out all but the last one,
 *	links them into chain and (if we are synchronous) writes them to disk.
 *	In other words, it prepares a branch that can be spliced onto the
 *	inode. It stores the information about that chain in the branch[], in
570
 *	the same format as ext4_get_branch() would do. We are calling it after
571 572
 *	we had read the existing part of chain and partial points to the last
 *	triple of that (one with zero ->key). Upon the exit we have the same
573
 *	picture as after the successful ext4_get_block(), except that in one
574 575 576 577 578 579
 *	place chain is disconnected - *branch->p is still zero (we did not
 *	set the last link), but branch->key contains the number that should
 *	be placed into *branch->p to fill that gap.
 *
 *	If allocation fails we free all blocks we've allocated (and forget
 *	their buffer_heads) and return the error value the from failed
580
 *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
581 582
 *	as described above and return 0.
 */
583 584
static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
			int indirect_blks, int *blks, ext4_fsblk_t goal,
A
Aneesh Kumar K.V 已提交
585
			ext4_lblk_t *offsets, Indirect *branch)
586 587 588 589 590 591
{
	int blocksize = inode->i_sb->s_blocksize;
	int i, n = 0;
	int err = 0;
	struct buffer_head *bh;
	int num;
592 593
	ext4_fsblk_t new_blocks[4];
	ext4_fsblk_t current_block;
594

595
	num = ext4_alloc_blocks(handle, inode, goal, indirect_blks,
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
				*blks, new_blocks, &err);
	if (err)
		return err;

	branch[0].key = cpu_to_le32(new_blocks[0]);
	/*
	 * metadata blocks and data blocks are allocated.
	 */
	for (n = 1; n <= indirect_blks;  n++) {
		/*
		 * Get buffer_head for parent block, zero it out
		 * and set the pointer to new one, then send
		 * parent to disk.
		 */
		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
		branch[n].bh = bh;
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
614
		err = ext4_journal_get_create_access(handle, bh);
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
		if (err) {
			unlock_buffer(bh);
			brelse(bh);
			goto failed;
		}

		memset(bh->b_data, 0, blocksize);
		branch[n].p = (__le32 *) bh->b_data + offsets[n];
		branch[n].key = cpu_to_le32(new_blocks[n]);
		*branch[n].p = branch[n].key;
		if ( n == indirect_blks) {
			current_block = new_blocks[n];
			/*
			 * End of chain, update the last new metablock of
			 * the chain to point to the new allocated
			 * data blocks numbers
			 */
			for (i=1; i < num; i++)
				*(branch[n].p + i) = cpu_to_le32(++current_block);
		}
		BUFFER_TRACE(bh, "marking uptodate");
		set_buffer_uptodate(bh);
		unlock_buffer(bh);

639 640
		BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
		err = ext4_journal_dirty_metadata(handle, bh);
641 642 643 644 645 646 647 648
		if (err)
			goto failed;
	}
	*blks = num;
	return err;
failed:
	/* Allocation failed, free what we already allocated */
	for (i = 1; i <= n ; i++) {
649
		BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
650
		ext4_journal_forget(handle, branch[i].bh);
651 652
	}
	for (i = 0; i <indirect_blks; i++)
653
		ext4_free_blocks(handle, inode, new_blocks[i], 1);
654

655
	ext4_free_blocks(handle, inode, new_blocks[i], num);
656 657 658 659 660

	return err;
}

/**
661
 * ext4_splice_branch - splice the allocated branch onto inode.
662 663 664
 * @inode: owner
 * @block: (logical) number of block we are adding
 * @chain: chain of indirect blocks (with a missing link - see
665
 *	ext4_alloc_branch)
666 667 668 669 670 671 672 673
 * @where: location of missing link
 * @num:   number of indirect blocks we are adding
 * @blks:  number of direct blocks we are adding
 *
 * This function fills the missing link and does all housekeeping needed in
 * inode (->i_blocks, etc.). In case of success we end up with the full
 * chain to new block and return 0.
 */
674
static int ext4_splice_branch(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
675
			ext4_lblk_t block, Indirect *where, int num, int blks)
676 677 678
{
	int i;
	int err = 0;
679 680
	struct ext4_block_alloc_info *block_i;
	ext4_fsblk_t current_block;
681

682
	block_i = EXT4_I(inode)->i_block_alloc_info;
683 684 685 686 687 688 689
	/*
	 * If we're splicing into a [td]indirect block (as opposed to the
	 * inode) then we need to get write access to the [td]indirect block
	 * before the splice.
	 */
	if (where->bh) {
		BUFFER_TRACE(where->bh, "get_write_access");
690
		err = ext4_journal_get_write_access(handle, where->bh);
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
		if (err)
			goto err_out;
	}
	/* That's it */

	*where->p = where->key;

	/*
	 * Update the host buffer_head or inode to point to more just allocated
	 * direct blocks blocks
	 */
	if (num == 0 && blks > 1) {
		current_block = le32_to_cpu(where->key) + 1;
		for (i = 1; i < blks; i++)
			*(where->p + i ) = cpu_to_le32(current_block++);
	}

	/*
	 * update the most recently allocated logical & physical block
	 * in i_block_alloc_info, to assist find the proper goal block for next
	 * allocation
	 */
	if (block_i) {
		block_i->last_alloc_logical_block = block + blks - 1;
		block_i->last_alloc_physical_block =
				le32_to_cpu(where[num].key) + blks - 1;
	}

	/* We are done with atomic stuff, now do the rest of housekeeping */

K
Kalpak Shah 已提交
721
	inode->i_ctime = ext4_current_time(inode);
722
	ext4_mark_inode_dirty(handle, inode);
723 724 725 726 727 728 729 730 731

	/* had we spliced it onto indirect block? */
	if (where->bh) {
		/*
		 * If we spliced it onto an indirect block, we haven't
		 * altered the inode.  Note however that if it is being spliced
		 * onto an indirect block at the very end of the file (the
		 * file is growing) then we *will* alter the inode to reflect
		 * the new i_size.  But that is not done here - it is done in
732
		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
733 734
		 */
		jbd_debug(5, "splicing indirect only\n");
735 736
		BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
		err = ext4_journal_dirty_metadata(handle, where->bh);
737 738 739 740 741 742 743 744 745 746 747 748 749
		if (err)
			goto err_out;
	} else {
		/*
		 * OK, we spliced it into the inode itself on a direct block.
		 * Inode was dirtied above.
		 */
		jbd_debug(5, "splicing direct\n");
	}
	return err;

err_out:
	for (i = 1; i <= num; i++) {
750
		BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
751 752
		ext4_journal_forget(handle, where[i].bh);
		ext4_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
753
	}
754
	ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776

	return err;
}

/*
 * Allocation strategy is simple: if we have to allocate something, we will
 * have to go the whole way to leaf. So let's do it before attaching anything
 * to tree, set linkage between the newborn blocks, write them if sync is
 * required, recheck the path, free and repeat if check fails, otherwise
 * set the last missing link (that will protect us from any truncate-generated
 * removals - all blocks on the path are immune now) and possibly force the
 * write on the parent block.
 * That has a nice additional property: no special recovery from the failed
 * allocations is needed - we simply release blocks and do not touch anything
 * reachable from inode.
 *
 * `handle' can be NULL if create == 0.
 *
 * The BKL may not be held on entry here.  Be sure to take it early.
 * return > 0, # of blocks mapped or allocated.
 * return = 0, if plain lookup failed.
 * return < 0, error case.
777 778 779
 *
 *
 * Need to be called with
780 781
 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
782
 */
783
int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
784
		ext4_lblk_t iblock, unsigned long maxblocks,
785 786 787 788
		struct buffer_head *bh_result,
		int create, int extend_disksize)
{
	int err = -EIO;
A
Aneesh Kumar K.V 已提交
789
	ext4_lblk_t offsets[4];
790 791
	Indirect chain[4];
	Indirect *partial;
792
	ext4_fsblk_t goal;
793 794 795
	int indirect_blks;
	int blocks_to_boundary = 0;
	int depth;
796
	struct ext4_inode_info *ei = EXT4_I(inode);
797
	int count = 0;
798
	ext4_fsblk_t first_block = 0;
799 800


A
Alex Tomas 已提交
801
	J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
802
	J_ASSERT(handle != NULL || create == 0);
A
Aneesh Kumar K.V 已提交
803 804
	depth = ext4_block_to_path(inode, iblock, offsets,
					&blocks_to_boundary);
805 806 807 808

	if (depth == 0)
		goto out;

809
	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
810 811 812 813 814 815 816 817

	/* Simplest case - block found, no allocation needed */
	if (!partial) {
		first_block = le32_to_cpu(chain[depth - 1].key);
		clear_buffer_new(bh_result);
		count++;
		/*map more blocks*/
		while (count < maxblocks && count <= blocks_to_boundary) {
818
			ext4_fsblk_t blk;
819 820 821 822 823 824 825 826

			blk = le32_to_cpu(*(chain[depth-1].p + count));

			if (blk == first_block + count)
				count++;
			else
				break;
		}
827
		goto got_it;
828 829 830 831 832 833 834 835 836 837 838
	}

	/* Next simple case - plain lookup or failed read of indirect block */
	if (!create || err == -EIO)
		goto cleanup;

	/*
	 * Okay, we need to do block allocation.  Lazily initialize the block
	 * allocation info here if necessary
	*/
	if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
839
		ext4_init_block_alloc_info(inode);
840

841
	goal = ext4_find_goal(inode, iblock, chain, partial);
842 843 844 845 846 847 848 849

	/* the number of blocks need to allocate for [d,t]indirect blocks */
	indirect_blks = (chain + depth) - partial - 1;

	/*
	 * Next look up the indirect map to count the totoal number of
	 * direct blocks to allocate for this branch.
	 */
850
	count = ext4_blks_to_allocate(partial, indirect_blks,
851 852
					maxblocks, blocks_to_boundary);
	/*
853
	 * Block out ext4_truncate while we alter the tree
854
	 */
855
	err = ext4_alloc_branch(handle, inode, indirect_blks, &count, goal,
856 857 858
				offsets + (partial - chain), partial);

	/*
859
	 * The ext4_splice_branch call will free and forget any buffers
860 861 862 863 864 865
	 * on the new chain if there is a failure, but that risks using
	 * up transaction credits, especially for bitmaps where the
	 * credits cannot be returned.  Can we handle this somehow?  We
	 * may need to return -EAGAIN upwards in the worst case.  --sct
	 */
	if (!err)
866
		err = ext4_splice_branch(handle, inode, iblock,
867 868
					partial, indirect_blks, count);
	/*
869
	 * i_disksize growing is protected by i_data_sem.  Don't forget to
870
	 * protect it if you're about to implement concurrent
871
	 * ext4_get_block() -bzzz
872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
	*/
	if (!err && extend_disksize && inode->i_size > ei->i_disksize)
		ei->i_disksize = inode->i_size;
	if (err)
		goto cleanup;

	set_buffer_new(bh_result);
got_it:
	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
	if (count > blocks_to_boundary)
		set_buffer_boundary(bh_result);
	err = count;
	/* Clean up and exit */
	partial = chain + depth - 1;	/* the whole chain */
cleanup:
	while (partial > chain) {
		BUFFER_TRACE(partial->bh, "call brelse");
		brelse(partial->bh);
		partial--;
	}
	BUFFER_TRACE(bh_result, "returned");
out:
	return err;
}

897
#define DIO_CREDITS (EXT4_RESERVE_TRANS_BLOCKS + 32)
898

899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
			unsigned long max_blocks, struct buffer_head *bh,
			int create, int extend_disksize)
{
	int retval;
	if (create) {
		down_write((&EXT4_I(inode)->i_data_sem));
	} else {
		down_read((&EXT4_I(inode)->i_data_sem));
	}
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
				bh, create, extend_disksize);
	} else {
		retval = ext4_get_blocks_handle(handle, inode, block,
				max_blocks, bh, create, extend_disksize);
	}
	if (create) {
		up_write((&EXT4_I(inode)->i_data_sem));
	} else {
		up_read((&EXT4_I(inode)->i_data_sem));
	}
	return retval;
}

924
static int ext4_get_block(struct inode *inode, sector_t iblock,
925 926
			struct buffer_head *bh_result, int create)
{
927
	handle_t *handle = ext4_journal_current_handle();
928 929 930 931 932 933 934 935 936 937 938 939 940 941
	int ret = 0;
	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;

	if (!create)
		goto get_block;		/* A read */

	if (max_blocks == 1)
		goto get_block;		/* A single block get */

	if (handle->h_transaction->t_state == T_LOCKED) {
		/*
		 * Huge direct-io writes can hold off commits for long
		 * periods of time.  Let this commit run.
		 */
942 943
		ext4_journal_stop(handle);
		handle = ext4_journal_start(inode, DIO_CREDITS);
944 945 946 947 948
		if (IS_ERR(handle))
			ret = PTR_ERR(handle);
		goto get_block;
	}

949
	if (handle->h_buffer_credits <= EXT4_RESERVE_TRANS_BLOCKS) {
950 951 952
		/*
		 * Getting low on buffer credits...
		 */
953
		ret = ext4_journal_extend(handle, DIO_CREDITS);
954 955 956 957
		if (ret > 0) {
			/*
			 * Couldn't extend the transaction.  Start a new one.
			 */
958
			ret = ext4_journal_restart(handle, DIO_CREDITS);
959 960 961 962 963
		}
	}

get_block:
	if (ret == 0) {
A
Alex Tomas 已提交
964
		ret = ext4_get_blocks_wrap(handle, inode, iblock,
965 966 967 968 969 970 971 972 973 974 975 976
					max_blocks, bh_result, create, 0);
		if (ret > 0) {
			bh_result->b_size = (ret << inode->i_blkbits);
			ret = 0;
		}
	}
	return ret;
}

/*
 * `handle' can be NULL if create is zero
 */
977
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
978
				ext4_lblk_t block, int create, int *errp)
979 980 981 982 983 984 985 986 987
{
	struct buffer_head dummy;
	int fatal = 0, err;

	J_ASSERT(handle != NULL || create == 0);

	dummy.b_state = 0;
	dummy.b_blocknr = -1000;
	buffer_trace_init(&dummy.b_history);
A
Alex Tomas 已提交
988
	err = ext4_get_blocks_wrap(handle, inode, block, 1,
989 990
					&dummy, create, 1);
	/*
991
	 * ext4_get_blocks_handle() returns number of blocks
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
	 * mapped. 0 in case of a HOLE.
	 */
	if (err > 0) {
		if (err > 1)
			WARN_ON(1);
		err = 0;
	}
	*errp = err;
	if (!err && buffer_mapped(&dummy)) {
		struct buffer_head *bh;
		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
		if (!bh) {
			*errp = -EIO;
			goto err;
		}
		if (buffer_new(&dummy)) {
			J_ASSERT(create != 0);
A
Aneesh Kumar K.V 已提交
1009
			J_ASSERT(handle != NULL);
1010 1011 1012 1013 1014

			/*
			 * Now that we do not always journal data, we should
			 * keep in mind whether this should always journal the
			 * new buffer as metadata.  For now, regular file
1015
			 * writes use ext4_get_block instead, so it's not a
1016 1017 1018 1019
			 * problem.
			 */
			lock_buffer(bh);
			BUFFER_TRACE(bh, "call get_create_access");
1020
			fatal = ext4_journal_get_create_access(handle, bh);
1021 1022 1023 1024 1025
			if (!fatal && !buffer_uptodate(bh)) {
				memset(bh->b_data,0,inode->i_sb->s_blocksize);
				set_buffer_uptodate(bh);
			}
			unlock_buffer(bh);
1026 1027
			BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
			err = ext4_journal_dirty_metadata(handle, bh);
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
			if (!fatal)
				fatal = err;
		} else {
			BUFFER_TRACE(bh, "not a new buffer");
		}
		if (fatal) {
			*errp = fatal;
			brelse(bh);
			bh = NULL;
		}
		return bh;
	}
err:
	return NULL;
}

1044
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1045
			       ext4_lblk_t block, int create, int *err)
1046 1047 1048
{
	struct buffer_head * bh;

1049
	bh = ext4_getblk(handle, inode, block, create, err);
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
	ll_rw_block(READ_META, 1, &bh);
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

static int walk_page_buffers(	handle_t *handle,
				struct buffer_head *head,
				unsigned from,
				unsigned to,
				int *partial,
				int (*fn)(	handle_t *handle,
						struct buffer_head *bh))
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

	for (	bh = head, block_start = 0;
		ret == 0 && (bh != head || !block_start);
		block_start = block_end, bh = next)
	{
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
1098
 * close off a transaction and start a new one between the ext4_get_block()
1099
 * and the commit_write().  So doing the jbd2_journal_start at the start of
1100 1101
 * prepare_write() is the right place.
 *
1102 1103
 * Also, this function can nest inside ext4_writepage() ->
 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1104 1105 1106 1107
 * has generated enough buffer credits to do the whole page.  So we won't
 * block on the journal in that case, which is good, because the caller may
 * be PF_MEMALLOC.
 *
1108
 * By accident, ext4 can be reentered when a transaction is open via
1109 1110 1111 1112 1113 1114
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
1115
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1116 1117 1118 1119 1120 1121 1122 1123 1124
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
static int do_journal_get_write_access(handle_t *handle,
					struct buffer_head *bh)
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
1125
	return ext4_journal_get_write_access(handle, bh);
1126 1127
}

N
Nick Piggin 已提交
1128 1129 1130
static int ext4_write_begin(struct file *file, struct address_space *mapping,
				loff_t pos, unsigned len, unsigned flags,
				struct page **pagep, void **fsdata)
1131
{
N
Nick Piggin 已提交
1132
 	struct inode *inode = mapping->host;
1133
	int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1134 1135
	handle_t *handle;
	int retries = 0;
N
Nick Piggin 已提交
1136 1137 1138 1139 1140 1141 1142
 	struct page *page;
 	pgoff_t index;
 	unsigned from, to;

 	index = pos >> PAGE_CACHE_SHIFT;
 	from = pos & (PAGE_CACHE_SIZE - 1);
 	to = from + len;
1143 1144

retry:
N
Nick Piggin 已提交
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
 	page = __grab_cache_page(mapping, index);
 	if (!page)
 		return -ENOMEM;
 	*pagep = page;

  	handle = ext4_journal_start(inode, needed_blocks);
  	if (IS_ERR(handle)) {
 		unlock_page(page);
 		page_cache_release(page);
  		ret = PTR_ERR(handle);
  		goto out;
1156
	}
1157

N
Nick Piggin 已提交
1158 1159 1160 1161
	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
							ext4_get_block);

	if (!ret && ext4_should_journal_data(inode)) {
1162 1163 1164
		ret = walk_page_buffers(handle, page_buffers(page),
				from, to, NULL, do_journal_get_write_access);
	}
N
Nick Piggin 已提交
1165 1166

	if (ret) {
1167
		ext4_journal_stop(handle);
N
Nick Piggin 已提交
1168 1169 1170 1171
 		unlock_page(page);
 		page_cache_release(page);
	}

1172
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1173
		goto retry;
1174
out:
1175 1176 1177
	return ret;
}

1178
int ext4_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1179
{
1180
	int err = jbd2_journal_dirty_data(handle, bh);
1181
	if (err)
1182
		ext4_journal_abort_handle(__FUNCTION__, __FUNCTION__,
N
Nick Piggin 已提交
1183
						bh, handle, err);
1184 1185 1186
	return err;
}

N
Nick Piggin 已提交
1187 1188
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1189 1190 1191 1192
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
1193
	return ext4_journal_dirty_metadata(handle, bh);
1194 1195
}

N
Nick Piggin 已提交
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
/*
 * Generic write_end handler for ordered and writeback ext4 journal modes.
 * We can't use generic_write_end, because that unlocks the page and we need to
 * unlock the page after ext4_journal_stop, but ext4_journal_stop must run
 * after block_write_end.
 */
static int ext4_generic_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
{
	struct inode *inode = file->f_mapping->host;

	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);

	if (pos+copied > inode->i_size) {
		i_size_write(inode, pos+copied);
		mark_inode_dirty(inode);
	}

	return copied;
}

1219 1220 1221 1222
/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
1223
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1224 1225
 * buffers are managed internally.
 */
N
Nick Piggin 已提交
1226 1227 1228 1229
static int ext4_ordered_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
1230
{
1231
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1232 1233
	struct inode *inode = file->f_mapping->host;
	unsigned from, to;
1234 1235
	int ret = 0, ret2;

N
Nick Piggin 已提交
1236 1237 1238
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

1239
	ret = walk_page_buffers(handle, page_buffers(page),
1240
		from, to, NULL, ext4_journal_dirty_data);
1241 1242 1243

	if (ret == 0) {
		/*
N
Nick Piggin 已提交
1244
		 * generic_write_end() will run mark_inode_dirty() if i_size
1245 1246 1247 1248 1249
		 * changes.  So let's piggyback the i_disksize mark_inode_dirty
		 * into that.
		 */
		loff_t new_i_size;

N
Nick Piggin 已提交
1250
		new_i_size = pos + copied;
1251 1252
		if (new_i_size > EXT4_I(inode)->i_disksize)
			EXT4_I(inode)->i_disksize = new_i_size;
N
Nick Piggin 已提交
1253 1254 1255 1256
		copied = ext4_generic_write_end(file, mapping, pos, len, copied,
							page, fsdata);
		if (copied < 0)
			ret = copied;
1257
	}
1258
	ret2 = ext4_journal_stop(handle);
1259 1260
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1261 1262 1263 1264
	unlock_page(page);
	page_cache_release(page);

	return ret ? ret : copied;
1265 1266
}

N
Nick Piggin 已提交
1267 1268 1269 1270
static int ext4_writeback_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
1271
{
1272
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1273
	struct inode *inode = file->f_mapping->host;
1274 1275 1276
	int ret = 0, ret2;
	loff_t new_i_size;

N
Nick Piggin 已提交
1277
	new_i_size = pos + copied;
1278 1279
	if (new_i_size > EXT4_I(inode)->i_disksize)
		EXT4_I(inode)->i_disksize = new_i_size;
1280

N
Nick Piggin 已提交
1281 1282 1283 1284
	copied = ext4_generic_write_end(file, mapping, pos, len, copied,
							page, fsdata);
	if (copied < 0)
		ret = copied;
1285

1286
	ret2 = ext4_journal_stop(handle);
1287 1288
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1289 1290 1291 1292
	unlock_page(page);
	page_cache_release(page);

	return ret ? ret : copied;
1293 1294
}

N
Nick Piggin 已提交
1295 1296 1297 1298
static int ext4_journalled_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
1299
{
1300
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1301
	struct inode *inode = mapping->host;
1302 1303
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
1304
	unsigned from, to;
1305

N
Nick Piggin 已提交
1306 1307 1308 1309 1310 1311 1312 1313
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

	if (copied < len) {
		if (!PageUptodate(page))
			copied = 0;
		page_zero_new_buffers(page, from+copied, to);
	}
1314 1315

	ret = walk_page_buffers(handle, page_buffers(page), from,
N
Nick Piggin 已提交
1316
				to, &partial, write_end_fn);
1317 1318
	if (!partial)
		SetPageUptodate(page);
N
Nick Piggin 已提交
1319 1320
	if (pos+copied > inode->i_size)
		i_size_write(inode, pos+copied);
1321 1322 1323 1324
	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
	if (inode->i_size > EXT4_I(inode)->i_disksize) {
		EXT4_I(inode)->i_disksize = inode->i_size;
		ret2 = ext4_mark_inode_dirty(handle, inode);
1325 1326 1327
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1328

1329
	ret2 = ext4_journal_stop(handle);
1330 1331
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1332 1333 1334 1335
	unlock_page(page);
	page_cache_release(page);

	return ret ? ret : copied;
1336 1337 1338 1339 1340 1341 1342
}

/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
1343
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
1344 1345 1346 1347 1348 1349 1350 1351
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
1352
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
1353 1354 1355 1356 1357
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

1358
	if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
1370
		 * NB. EXT4_STATE_JDATA is not set on files other than
1371 1372 1373 1374 1375 1376
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

1377 1378
		EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
		journal = EXT4_JOURNAL(inode);
1379 1380 1381
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
1382 1383 1384 1385 1386

		if (err)
			return 0;
	}

1387
	return generic_block_bmap(mapping,block,ext4_get_block);
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
}

static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

1402
static int jbd2_journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1403 1404
{
	if (buffer_mapped(bh))
1405
		return ext4_journal_dirty_data(handle, bh);
1406 1407 1408 1409 1410 1411
	return 0;
}

/*
 * Note that we always start a transaction even if we're not journalling
 * data.  This is to preserve ordering: any hole instantiation within
1412
 * __block_write_full_page -> ext4_get_block() should be journalled
1413 1414 1415 1416 1417 1418 1419
 * along with the data so we don't crash and then get metadata which
 * refers to old data.
 *
 * In all journalling modes block_write_full_page() will start the I/O.
 *
 * Problem:
 *
1420 1421
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
1422 1423 1424
 *
 * Similar for:
 *
1425
 *	ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1426
 *
1427
 * Same applies to ext4_get_block().  We will deadlock on various things like
1428
 * lock_journal and i_data_sem
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
 *
 * Setting PF_MEMALLOC here doesn't work - too many internal memory
 * allocations fail.
 *
 * 16May01: If we're reentered then journal_current_handle() will be
 *	    non-zero. We simply *return*.
 *
 * 1 July 2001: @@@ FIXME:
 *   In journalled data mode, a data buffer may be metadata against the
 *   current transaction.  But the same file is part of a shared mapping
 *   and someone does a writepage() on it.
 *
 *   We will move the buffer onto the async_data list, but *after* it has
 *   been dirtied. So there's a small window where we have dirty data on
 *   BJ_Metadata.
 *
 *   Note that this only applies to the last partial page in the file.  The
 *   bit which block_write_full_page() uses prepare/commit for.  (That's
 *   broken code anyway: it's wrong for msync()).
 *
 *   It's a rare case: affects the final partial page, for journalled data
 *   where the file is subject to bith write() and writepage() in the same
 *   transction.  To fix it we'll need a custom block_write_full_page().
 *   We'll probably need that anyway for journalling writepage() output.
 *
 * We don't honour synchronous mounts for writepage().  That would be
 * disastrous.  Any write() or metadata operation will sync the fs for
 * us.
 *
 * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
 * we don't need to open a transaction here.
 */
1461
static int ext4_ordered_writepage(struct page *page,
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
				struct writeback_control *wbc)
{
	struct inode *inode = page->mapping->host;
	struct buffer_head *page_bufs;
	handle_t *handle = NULL;
	int ret = 0;
	int err;

	J_ASSERT(PageLocked(page));

	/*
	 * We give up here if we're reentered, because it might be for a
	 * different filesystem.
	 */
1476
	if (ext4_journal_current_handle())
1477 1478
		goto out_fail;

1479
	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493

	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out_fail;
	}

	if (!page_has_buffers(page)) {
		create_empty_buffers(page, inode->i_sb->s_blocksize,
				(1 << BH_Dirty)|(1 << BH_Uptodate));
	}
	page_bufs = page_buffers(page);
	walk_page_buffers(handle, page_bufs, 0,
			PAGE_CACHE_SIZE, NULL, bget_one);

1494
	ret = block_write_full_page(page, ext4_get_block, wbc);
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509

	/*
	 * The page can become unlocked at any point now, and
	 * truncate can then come in and change things.  So we
	 * can't touch *page from now on.  But *page_bufs is
	 * safe due to elevated refcount.
	 */

	/*
	 * And attach them to the current transaction.  But only if
	 * block_write_full_page() succeeded.  Otherwise they are unmapped,
	 * and generally junk.
	 */
	if (ret == 0) {
		err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1510
					NULL, jbd2_journal_dirty_data_fn);
1511 1512 1513 1514 1515
		if (!ret)
			ret = err;
	}
	walk_page_buffers(handle, page_bufs, 0,
			PAGE_CACHE_SIZE, NULL, bput_one);
1516
	err = ext4_journal_stop(handle);
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
	if (!ret)
		ret = err;
	return ret;

out_fail:
	redirty_page_for_writepage(wbc, page);
	unlock_page(page);
	return ret;
}

1527
static int ext4_writeback_writepage(struct page *page,
1528 1529 1530 1531 1532 1533 1534
				struct writeback_control *wbc)
{
	struct inode *inode = page->mapping->host;
	handle_t *handle = NULL;
	int ret = 0;
	int err;

1535
	if (ext4_journal_current_handle())
1536 1537
		goto out_fail;

1538
	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1539 1540 1541 1542 1543
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out_fail;
	}

1544 1545
	if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
		ret = nobh_writepage(page, ext4_get_block, wbc);
1546
	else
1547
		ret = block_write_full_page(page, ext4_get_block, wbc);
1548

1549
	err = ext4_journal_stop(handle);
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
	if (!ret)
		ret = err;
	return ret;

out_fail:
	redirty_page_for_writepage(wbc, page);
	unlock_page(page);
	return ret;
}

1560
static int ext4_journalled_writepage(struct page *page,
1561 1562 1563 1564 1565 1566 1567
				struct writeback_control *wbc)
{
	struct inode *inode = page->mapping->host;
	handle_t *handle = NULL;
	int ret = 0;
	int err;

1568
	if (ext4_journal_current_handle())
1569 1570
		goto no_write;

1571
	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto no_write;
	}

	if (!page_has_buffers(page) || PageChecked(page)) {
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
		ClearPageChecked(page);
		ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
1584
					ext4_get_block);
1585
		if (ret != 0) {
1586
			ext4_journal_stop(handle);
1587 1588 1589 1590 1591 1592
			goto out_unlock;
		}
		ret = walk_page_buffers(handle, page_buffers(page), 0,
			PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);

		err = walk_page_buffers(handle, page_buffers(page), 0,
N
Nick Piggin 已提交
1593
				PAGE_CACHE_SIZE, NULL, write_end_fn);
1594 1595
		if (ret == 0)
			ret = err;
1596
		EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1597 1598 1599 1600 1601 1602 1603
		unlock_page(page);
	} else {
		/*
		 * It may be a page full of checkpoint-mode buffers.  We don't
		 * really know unless we go poke around in the buffer_heads.
		 * But block_write_full_page will do the right thing.
		 */
1604
		ret = block_write_full_page(page, ext4_get_block, wbc);
1605
	}
1606
	err = ext4_journal_stop(handle);
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
	if (!ret)
		ret = err;
out:
	return ret;

no_write:
	redirty_page_for_writepage(wbc, page);
out_unlock:
	unlock_page(page);
	goto out;
}

1619
static int ext4_readpage(struct file *file, struct page *page)
1620
{
1621
	return mpage_readpage(page, ext4_get_block);
1622 1623 1624
}

static int
1625
ext4_readpages(struct file *file, struct address_space *mapping,
1626 1627
		struct list_head *pages, unsigned nr_pages)
{
1628
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
1629 1630
}

1631
static void ext4_invalidatepage(struct page *page, unsigned long offset)
1632
{
1633
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
1634 1635 1636 1637 1638 1639 1640

	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

1641
	jbd2_journal_invalidatepage(journal, page, offset);
1642 1643
}

1644
static int ext4_releasepage(struct page *page, gfp_t wait)
1645
{
1646
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
1647 1648 1649 1650

	WARN_ON(PageChecked(page));
	if (!page_has_buffers(page))
		return 0;
1651
	return jbd2_journal_try_to_free_buffers(journal, page, wait);
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
}

/*
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 * If the O_DIRECT write is intantiating holes inside i_size and the machine
 * crashes then stale disk data _may_ be exposed inside the file.
 */
1662
static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
1663 1664 1665 1666 1667
			const struct iovec *iov, loff_t offset,
			unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
1668
	struct ext4_inode_info *ei = EXT4_I(inode);
1669 1670 1671 1672 1673 1674 1675 1676
	handle_t *handle = NULL;
	ssize_t ret;
	int orphan = 0;
	size_t count = iov_length(iov, nr_segs);

	if (rw == WRITE) {
		loff_t final_size = offset + count;

1677
		handle = ext4_journal_start(inode, DIO_CREDITS);
1678 1679 1680 1681 1682
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
			goto out;
		}
		if (final_size > inode->i_size) {
1683
			ret = ext4_orphan_add(handle, inode);
1684 1685 1686 1687 1688 1689 1690 1691 1692
			if (ret)
				goto out_stop;
			orphan = 1;
			ei->i_disksize = inode->i_size;
		}
	}

	ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
				 offset, nr_segs,
1693
				 ext4_get_block, NULL);
1694 1695

	/*
1696
	 * Reacquire the handle: ext4_get_block() can restart the transaction
1697
	 */
1698
	handle = ext4_journal_current_handle();
1699 1700 1701 1702 1703 1704

out_stop:
	if (handle) {
		int err;

		if (orphan && inode->i_nlink)
1705
			ext4_orphan_del(handle, inode);
1706 1707 1708 1709 1710 1711 1712 1713 1714
		if (orphan && ret > 0) {
			loff_t end = offset + ret;
			if (end > inode->i_size) {
				ei->i_disksize = end;
				i_size_write(inode, end);
				/*
				 * We're going to return a positive `ret'
				 * here due to non-zero-length I/O, so there's
				 * no way of reporting error returns from
1715
				 * ext4_mark_inode_dirty() to userspace.  So
1716 1717
				 * ignore it.
				 */
1718
				ext4_mark_inode_dirty(handle, inode);
1719 1720
			}
		}
1721
		err = ext4_journal_stop(handle);
1722 1723 1724 1725 1726 1727 1728 1729
		if (ret == 0)
			ret = err;
	}
out:
	return ret;
}

/*
1730
 * Pages can be marked dirty completely asynchronously from ext4's journalling
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
1742
static int ext4_journalled_set_page_dirty(struct page *page)
1743 1744 1745 1746 1747
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

1748 1749 1750 1751
static const struct address_space_operations ext4_ordered_aops = {
	.readpage	= ext4_readpage,
	.readpages	= ext4_readpages,
	.writepage	= ext4_ordered_writepage,
1752
	.sync_page	= block_sync_page,
N
Nick Piggin 已提交
1753 1754
	.write_begin	= ext4_write_begin,
	.write_end	= ext4_ordered_write_end,
1755 1756 1757 1758
	.bmap		= ext4_bmap,
	.invalidatepage	= ext4_invalidatepage,
	.releasepage	= ext4_releasepage,
	.direct_IO	= ext4_direct_IO,
1759 1760 1761
	.migratepage	= buffer_migrate_page,
};

1762 1763 1764 1765
static const struct address_space_operations ext4_writeback_aops = {
	.readpage	= ext4_readpage,
	.readpages	= ext4_readpages,
	.writepage	= ext4_writeback_writepage,
1766
	.sync_page	= block_sync_page,
N
Nick Piggin 已提交
1767 1768
	.write_begin	= ext4_write_begin,
	.write_end	= ext4_writeback_write_end,
1769 1770 1771 1772
	.bmap		= ext4_bmap,
	.invalidatepage	= ext4_invalidatepage,
	.releasepage	= ext4_releasepage,
	.direct_IO	= ext4_direct_IO,
1773 1774 1775
	.migratepage	= buffer_migrate_page,
};

1776 1777 1778 1779
static const struct address_space_operations ext4_journalled_aops = {
	.readpage	= ext4_readpage,
	.readpages	= ext4_readpages,
	.writepage	= ext4_journalled_writepage,
1780
	.sync_page	= block_sync_page,
N
Nick Piggin 已提交
1781 1782
	.write_begin	= ext4_write_begin,
	.write_end	= ext4_journalled_write_end,
1783 1784 1785 1786
	.set_page_dirty	= ext4_journalled_set_page_dirty,
	.bmap		= ext4_bmap,
	.invalidatepage	= ext4_invalidatepage,
	.releasepage	= ext4_releasepage,
1787 1788
};

1789
void ext4_set_aops(struct inode *inode)
1790
{
1791 1792 1793 1794
	if (ext4_should_order_data(inode))
		inode->i_mapping->a_ops = &ext4_ordered_aops;
	else if (ext4_should_writeback_data(inode))
		inode->i_mapping->a_ops = &ext4_writeback_aops;
1795
	else
1796
		inode->i_mapping->a_ops = &ext4_journalled_aops;
1797 1798 1799
}

/*
1800
 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
1801 1802 1803 1804
 * up to the end of the block which corresponds to `from'.
 * This required during truncate. We need to physically zero the tail end
 * of that block so it doesn't yield old data if the file is later grown.
 */
A
Alex Tomas 已提交
1805
int ext4_block_truncate_page(handle_t *handle, struct page *page,
1806 1807
		struct address_space *mapping, loff_t from)
{
1808
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
1809
	unsigned offset = from & (PAGE_CACHE_SIZE-1);
A
Aneesh Kumar K.V 已提交
1810 1811
	unsigned blocksize, length, pos;
	ext4_lblk_t iblock;
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
	struct inode *inode = mapping->host;
	struct buffer_head *bh;
	int err = 0;

	blocksize = inode->i_sb->s_blocksize;
	length = blocksize - (offset & (blocksize - 1));
	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

	/*
	 * For "nobh" option,  we can only work if we don't need to
	 * read-in the page - otherwise we create buffers to do the IO.
	 */
	if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
1825
	     ext4_should_writeback_data(inode) && PageUptodate(page)) {
1826
		zero_user_page(page, offset, length, KM_USER0);
1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
		set_page_dirty(page);
		goto unlock;
	}

	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	err = 0;
	if (buffer_freed(bh)) {
		BUFFER_TRACE(bh, "freed: skip");
		goto unlock;
	}

	if (!buffer_mapped(bh)) {
		BUFFER_TRACE(bh, "unmapped");
1851
		ext4_get_block(inode, iblock, bh, 0);
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
		/* unmapped? It's a hole - nothing to do */
		if (!buffer_mapped(bh)) {
			BUFFER_TRACE(bh, "still unmapped");
			goto unlock;
		}
	}

	/* Ok, it's mapped. Make sure it's up-to-date */
	if (PageUptodate(page))
		set_buffer_uptodate(bh);

	if (!buffer_uptodate(bh)) {
		err = -EIO;
		ll_rw_block(READ, 1, &bh);
		wait_on_buffer(bh);
		/* Uhhuh. Read error. Complain and punt. */
		if (!buffer_uptodate(bh))
			goto unlock;
	}

1872
	if (ext4_should_journal_data(inode)) {
1873
		BUFFER_TRACE(bh, "get write access");
1874
		err = ext4_journal_get_write_access(handle, bh);
1875 1876 1877 1878
		if (err)
			goto unlock;
	}

1879
	zero_user_page(page, offset, length, KM_USER0);
1880 1881 1882 1883

	BUFFER_TRACE(bh, "zeroed end of block");

	err = 0;
1884 1885
	if (ext4_should_journal_data(inode)) {
		err = ext4_journal_dirty_metadata(handle, bh);
1886
	} else {
1887 1888
		if (ext4_should_order_data(inode))
			err = ext4_journal_dirty_data(handle, bh);
1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
		mark_buffer_dirty(bh);
	}

unlock:
	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * Probably it should be a library function... search for first non-zero word
 * or memcmp with zero_page, whatever is better for particular architecture.
 * Linus?
 */
static inline int all_zeroes(__le32 *p, __le32 *q)
{
	while (p < q)
		if (*p++)
			return 0;
	return 1;
}

/**
1912
 *	ext4_find_shared - find the indirect blocks for partial truncation.
1913 1914
 *	@inode:	  inode in question
 *	@depth:	  depth of the affected branch
1915
 *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
1916 1917 1918
 *	@chain:	  place to store the pointers to partial indirect blocks
 *	@top:	  place to the (detached) top of branch
 *
1919
 *	This is a helper function used by ext4_truncate().
1920 1921 1922 1923 1924 1925 1926
 *
 *	When we do truncate() we may have to clean the ends of several
 *	indirect blocks but leave the blocks themselves alive. Block is
 *	partially truncated if some data below the new i_size is refered
 *	from it (and it is on the path to the first completely truncated
 *	data block, indeed).  We have to free the top of that path along
 *	with everything to the right of the path. Since no allocation
1927
 *	past the truncation point is possible until ext4_truncate()
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
 *	finishes, we may safely do the latter, but top of branch may
 *	require special attention - pageout below the truncation point
 *	might try to populate it.
 *
 *	We atomically detach the top of branch from the tree, store the
 *	block number of its root in *@top, pointers to buffer_heads of
 *	partially truncated blocks - in @chain[].bh and pointers to
 *	their last elements that should not be removed - in
 *	@chain[].p. Return value is the pointer to last filled element
 *	of @chain.
 *
 *	The work left to caller to do the actual freeing of subtrees:
 *		a) free the subtree starting from *@top
 *		b) free the subtrees whose roots are stored in
 *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
 *		c) free the subtrees growing from the inode past the @chain[0].
 *			(no partially truncated stuff there).  */

1946
static Indirect *ext4_find_shared(struct inode *inode, int depth,
A
Aneesh Kumar K.V 已提交
1947
			ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
1948 1949 1950 1951 1952 1953 1954 1955
{
	Indirect *partial, *p;
	int k, err;

	*top = 0;
	/* Make k index the deepest non-null offest + 1 */
	for (k = depth; k > 1 && !offsets[k-1]; k--)
		;
1956
	partial = ext4_get_branch(inode, k, offsets, chain, &err);
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
	/* Writer: pointers */
	if (!partial)
		partial = chain + k-1;
	/*
	 * If the branch acquired continuation since we've looked at it -
	 * fine, it should all survive and (new) top doesn't belong to us.
	 */
	if (!partial->key && *partial->p)
		/* Writer: end */
		goto no_top;
	for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
		;
	/*
	 * OK, we've found the last block that must survive. The rest of our
	 * branch should be detached before unlocking. However, if that rest
	 * of branch is all ours and does not grow immediately from the inode
	 * it's easier to cheat and just decrement partial->p.
	 */
	if (p == chain + k - 1 && p > chain) {
		p->p--;
	} else {
		*top = *p->p;
1979
		/* Nope, don't do this in ext4.  Must leave the tree intact */
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
#if 0
		*p->p = 0;
#endif
	}
	/* Writer: end */

	while(partial > p) {
		brelse(partial->bh);
		partial--;
	}
no_top:
	return partial;
}

/*
 * Zero a number of block pointers in either an inode or an indirect block.
 * If we restart the transaction we must again get write access to the
 * indirect block for further modification.
 *
 * We release `count' blocks on disk, but (last - first) may be greater
 * than `count' because there can be holes in there.
 */
2002 2003
static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
		struct buffer_head *bh, ext4_fsblk_t block_to_free,
2004 2005 2006 2007 2008
		unsigned long count, __le32 *first, __le32 *last)
{
	__le32 *p;
	if (try_to_extend_transaction(handle, inode)) {
		if (bh) {
2009 2010
			BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
			ext4_journal_dirty_metadata(handle, bh);
2011
		}
2012 2013
		ext4_mark_inode_dirty(handle, inode);
		ext4_journal_test_restart(handle, inode);
2014 2015
		if (bh) {
			BUFFER_TRACE(bh, "retaking write access");
2016
			ext4_journal_get_write_access(handle, bh);
2017 2018 2019 2020 2021
		}
	}

	/*
	 * Any buffers which are on the journal will be in memory. We find
2022
	 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
2023
	 * on them.  We've already detached each block from the file, so
2024
	 * bforget() in jbd2_journal_forget() should be safe.
2025
	 *
2026
	 * AKPM: turn on bforget in jbd2_journal_forget()!!!
2027 2028 2029 2030
	 */
	for (p = first; p < last; p++) {
		u32 nr = le32_to_cpu(*p);
		if (nr) {
A
Aneesh Kumar K.V 已提交
2031
			struct buffer_head *tbh;
2032 2033

			*p = 0;
A
Aneesh Kumar K.V 已提交
2034 2035
			tbh = sb_find_get_block(inode->i_sb, nr);
			ext4_forget(handle, 0, inode, tbh, nr);
2036 2037 2038
		}
	}

2039
	ext4_free_blocks(handle, inode, block_to_free, count);
2040 2041 2042
}

/**
2043
 * ext4_free_data - free a list of data blocks
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
 * @handle:	handle for this transaction
 * @inode:	inode we are dealing with
 * @this_bh:	indirect buffer_head which contains *@first and *@last
 * @first:	array of block numbers
 * @last:	points immediately past the end of array
 *
 * We are freeing all blocks refered from that array (numbers are stored as
 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
 *
 * We accumulate contiguous runs of blocks to free.  Conveniently, if these
 * blocks are contiguous then releasing them at one time will only affect one
 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
 * actually use a lot of journal space.
 *
 * @this_bh will be %NULL if @first and @last point into the inode's direct
 * block pointers.
 */
2061
static void ext4_free_data(handle_t *handle, struct inode *inode,
2062 2063 2064
			   struct buffer_head *this_bh,
			   __le32 *first, __le32 *last)
{
2065
	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
2066 2067 2068 2069
	unsigned long count = 0;	    /* Number of blocks in the run */
	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
					       corresponding to
					       block_to_free */
2070
	ext4_fsblk_t nr;		    /* Current block # */
2071 2072 2073 2074 2075 2076
	__le32 *p;			    /* Pointer into inode/ind
					       for current block */
	int err;

	if (this_bh) {				/* For indirect block */
		BUFFER_TRACE(this_bh, "get_write_access");
2077
		err = ext4_journal_get_write_access(handle, this_bh);
2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
		/* Important: if we can't update the indirect pointers
		 * to the blocks, we can't free them. */
		if (err)
			return;
	}

	for (p = first; p < last; p++) {
		nr = le32_to_cpu(*p);
		if (nr) {
			/* accumulate blocks to free if they're contiguous */
			if (count == 0) {
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			} else if (nr == block_to_free + count) {
				count++;
			} else {
2095
				ext4_clear_blocks(handle, inode, this_bh,
2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
						  block_to_free,
						  count, block_to_free_p, p);
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			}
		}
	}

	if (count > 0)
2106
		ext4_clear_blocks(handle, inode, this_bh, block_to_free,
2107 2108 2109
				  count, block_to_free_p, p);

	if (this_bh) {
2110 2111
		BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
		ext4_journal_dirty_metadata(handle, this_bh);
2112 2113 2114 2115
	}
}

/**
2116
 *	ext4_free_branches - free an array of branches
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
 *	@handle: JBD handle for this transaction
 *	@inode:	inode we are dealing with
 *	@parent_bh: the buffer_head which contains *@first and *@last
 *	@first:	array of block numbers
 *	@last:	pointer immediately past the end of array
 *	@depth:	depth of the branches to free
 *
 *	We are freeing all blocks refered from these branches (numbers are
 *	stored as little-endian 32-bit) and updating @inode->i_blocks
 *	appropriately.
 */
2128
static void ext4_free_branches(handle_t *handle, struct inode *inode,
2129 2130 2131
			       struct buffer_head *parent_bh,
			       __le32 *first, __le32 *last, int depth)
{
2132
	ext4_fsblk_t nr;
2133 2134 2135 2136 2137 2138 2139
	__le32 *p;

	if (is_handle_aborted(handle))
		return;

	if (depth--) {
		struct buffer_head *bh;
2140
		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
		p = last;
		while (--p >= first) {
			nr = le32_to_cpu(*p);
			if (!nr)
				continue;		/* A hole */

			/* Go read the buffer for the next level down */
			bh = sb_bread(inode->i_sb, nr);

			/*
			 * A read failure? Report error and clear slot
			 * (should be rare).
			 */
			if (!bh) {
2155
				ext4_error(inode->i_sb, "ext4_free_branches",
2156
					   "Read failure, inode=%lu, block=%llu",
2157 2158 2159 2160 2161 2162
					   inode->i_ino, nr);
				continue;
			}

			/* This zaps the entire block.  Bottom up. */
			BUFFER_TRACE(bh, "free child branches");
2163
			ext4_free_branches(handle, inode, bh,
2164 2165 2166 2167 2168 2169 2170 2171
					   (__le32*)bh->b_data,
					   (__le32*)bh->b_data + addr_per_block,
					   depth);

			/*
			 * We've probably journalled the indirect block several
			 * times during the truncate.  But it's no longer
			 * needed and we now drop it from the transaction via
2172
			 * jbd2_journal_revoke().
2173 2174 2175
			 *
			 * That's easy if it's exclusively part of this
			 * transaction.  But if it's part of the committing
2176
			 * transaction then jbd2_journal_forget() will simply
2177
			 * brelse() it.  That means that if the underlying
2178
			 * block is reallocated in ext4_get_block(),
2179 2180 2181 2182 2183 2184 2185 2186
			 * unmap_underlying_metadata() will find this block
			 * and will try to get rid of it.  damn, damn.
			 *
			 * If this block has already been committed to the
			 * journal, a revoke record will be written.  And
			 * revoke records must be emitted *before* clearing
			 * this block's bit in the bitmaps.
			 */
2187
			ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207

			/*
			 * Everything below this this pointer has been
			 * released.  Now let this top-of-subtree go.
			 *
			 * We want the freeing of this indirect block to be
			 * atomic in the journal with the updating of the
			 * bitmap block which owns it.  So make some room in
			 * the journal.
			 *
			 * We zero the parent pointer *after* freeing its
			 * pointee in the bitmaps, so if extend_transaction()
			 * for some reason fails to put the bitmap changes and
			 * the release into the same transaction, recovery
			 * will merely complain about releasing a free block,
			 * rather than leaking blocks.
			 */
			if (is_handle_aborted(handle))
				return;
			if (try_to_extend_transaction(handle, inode)) {
2208 2209
				ext4_mark_inode_dirty(handle, inode);
				ext4_journal_test_restart(handle, inode);
2210 2211
			}

2212
			ext4_free_blocks(handle, inode, nr, 1);
2213 2214 2215 2216 2217 2218 2219

			if (parent_bh) {
				/*
				 * The block which we have just freed is
				 * pointed to by an indirect block: journal it
				 */
				BUFFER_TRACE(parent_bh, "get_write_access");
2220
				if (!ext4_journal_get_write_access(handle,
2221 2222 2223
								   parent_bh)){
					*p = 0;
					BUFFER_TRACE(parent_bh,
2224 2225
					"call ext4_journal_dirty_metadata");
					ext4_journal_dirty_metadata(handle,
2226 2227 2228 2229 2230 2231 2232
								    parent_bh);
				}
			}
		}
	} else {
		/* We have reached the bottom of the tree. */
		BUFFER_TRACE(parent_bh, "free data blocks");
2233
		ext4_free_data(handle, inode, parent_bh, first, last);
2234 2235 2236 2237
	}
}

/*
2238
 * ext4_truncate()
2239
 *
2240 2241
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257
 * simultaneously on behalf of the same inode.
 *
 * As we work through the truncate and commmit bits of it to the journal there
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
2258
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
2259
 * that this inode's truncate did not complete and it will again call
2260 2261
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
2262
 * that's fine - as long as they are linked from the inode, the post-crash
2263
 * ext4_truncate() run will find them and release them.
2264
 */
2265
void ext4_truncate(struct inode *inode)
2266 2267
{
	handle_t *handle;
2268
	struct ext4_inode_info *ei = EXT4_I(inode);
2269
	__le32 *i_data = ei->i_data;
2270
	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
2271
	struct address_space *mapping = inode->i_mapping;
A
Aneesh Kumar K.V 已提交
2272
	ext4_lblk_t offsets[4];
2273 2274 2275 2276
	Indirect chain[4];
	Indirect *partial;
	__le32 nr = 0;
	int n;
A
Aneesh Kumar K.V 已提交
2277
	ext4_lblk_t last_block;
2278 2279 2280 2281 2282 2283
	unsigned blocksize = inode->i_sb->s_blocksize;
	struct page *page;

	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
	    S_ISLNK(inode->i_mode)))
		return;
2284
	if (ext4_inode_is_fast_symlink(inode))
2285 2286 2287 2288 2289 2290
		return;
	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
		return;

	/*
	 * We have to lock the EOF page here, because lock_page() nests
2291
	 * outside jbd2_journal_start().
2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
	 */
	if ((inode->i_size & (blocksize - 1)) == 0) {
		/* Block boundary? Nothing to do */
		page = NULL;
	} else {
		page = grab_cache_page(mapping,
				inode->i_size >> PAGE_CACHE_SHIFT);
		if (!page)
			return;
	}

A
Aneesh Kumar K.V 已提交
2303 2304 2305 2306
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
		ext4_ext_truncate(inode, page);
		return;
	}
A
Alex Tomas 已提交
2307

2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
	handle = start_transaction(inode);
	if (IS_ERR(handle)) {
		if (page) {
			clear_highpage(page);
			flush_dcache_page(page);
			unlock_page(page);
			page_cache_release(page);
		}
		return;		/* AKPM: return what? */
	}

	last_block = (inode->i_size + blocksize-1)
2320
					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
2321 2322

	if (page)
2323
		ext4_block_truncate_page(handle, page, mapping, inode->i_size);
2324

2325
	n = ext4_block_to_path(inode, last_block, offsets, NULL);
2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
	if (n == 0)
		goto out_stop;	/* error */

	/*
	 * OK.  This truncate is going to happen.  We add the inode to the
	 * orphan list, so that if this truncate spans multiple transactions,
	 * and we crash, we will resume the truncate when the filesystem
	 * recovers.  It also marks the inode dirty, to catch the new size.
	 *
	 * Implication: the file must always be in a sane, consistent
	 * truncatable state while each transaction commits.
	 */
2338
	if (ext4_orphan_add(handle, inode))
2339 2340 2341 2342 2343 2344 2345
		goto out_stop;

	/*
	 * The orphan list entry will now protect us from any crash which
	 * occurs before the truncate completes, so it is now safe to propagate
	 * the new, shorter inode size (held for now in i_size) into the
	 * on-disk inode. We do this via i_disksize, which is the value which
2346
	 * ext4 *really* writes onto the disk inode.
2347 2348 2349 2350
	 */
	ei->i_disksize = inode->i_size;

	/*
2351
	 * From here we block out all ext4_get_block() callers who want to
2352 2353
	 * modify the block allocation tree.
	 */
2354
	down_write(&ei->i_data_sem);
2355 2356

	if (n == 1) {		/* direct blocks */
2357 2358
		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
			       i_data + EXT4_NDIR_BLOCKS);
2359 2360 2361
		goto do_indirects;
	}

2362
	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
2363 2364 2365 2366
	/* Kill the top of shared branch (not detached) */
	if (nr) {
		if (partial == chain) {
			/* Shared branch grows from the inode */
2367
			ext4_free_branches(handle, inode, NULL,
2368 2369 2370 2371 2372 2373 2374 2375 2376
					   &nr, &nr+1, (chain+n-1) - partial);
			*partial->p = 0;
			/*
			 * We mark the inode dirty prior to restart,
			 * and prior to stop.  No need for it here.
			 */
		} else {
			/* Shared branch grows from an indirect block */
			BUFFER_TRACE(partial->bh, "get_write_access");
2377
			ext4_free_branches(handle, inode, partial->bh,
2378 2379 2380 2381 2382 2383
					partial->p,
					partial->p+1, (chain+n-1) - partial);
		}
	}
	/* Clear the ends of indirect blocks on the shared branch */
	while (partial > chain) {
2384
		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
2385 2386 2387 2388 2389 2390 2391 2392 2393 2394
				   (__le32*)partial->bh->b_data+addr_per_block,
				   (chain+n-1) - partial);
		BUFFER_TRACE(partial->bh, "call brelse");
		brelse (partial->bh);
		partial--;
	}
do_indirects:
	/* Kill the remaining (whole) subtrees */
	switch (offsets[0]) {
	default:
2395
		nr = i_data[EXT4_IND_BLOCK];
2396
		if (nr) {
2397 2398
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
			i_data[EXT4_IND_BLOCK] = 0;
2399
		}
2400 2401
	case EXT4_IND_BLOCK:
		nr = i_data[EXT4_DIND_BLOCK];
2402
		if (nr) {
2403 2404
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
			i_data[EXT4_DIND_BLOCK] = 0;
2405
		}
2406 2407
	case EXT4_DIND_BLOCK:
		nr = i_data[EXT4_TIND_BLOCK];
2408
		if (nr) {
2409 2410
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
			i_data[EXT4_TIND_BLOCK] = 0;
2411
		}
2412
	case EXT4_TIND_BLOCK:
2413 2414 2415
		;
	}

2416
	ext4_discard_reservation(inode);
2417

2418
	up_write(&ei->i_data_sem);
K
Kalpak Shah 已提交
2419
	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
2420
	ext4_mark_inode_dirty(handle, inode);
2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432

	/*
	 * In a multi-transaction truncate, we only make the final transaction
	 * synchronous
	 */
	if (IS_SYNC(inode))
		handle->h_sync = 1;
out_stop:
	/*
	 * If this was a simple ftruncate(), and the file will remain alive
	 * then we need to clear up the orphan record which we created above.
	 * However, if this was a real unlink then we were called by
2433
	 * ext4_delete_inode(), and we allow that function to clean up the
2434 2435 2436
	 * orphan info for us.
	 */
	if (inode->i_nlink)
2437
		ext4_orphan_del(handle, inode);
2438

2439
	ext4_journal_stop(handle);
2440 2441
}

2442 2443
static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
		unsigned long ino, struct ext4_iloc *iloc)
2444
{
2445 2446
	unsigned long desc, group_desc;
	ext4_group_t block_group;
2447
	unsigned long offset;
2448
	ext4_fsblk_t block;
2449
	struct buffer_head *bh;
2450
	struct ext4_group_desc * gdp;
2451

2452
	if (!ext4_valid_inum(sb, ino)) {
2453 2454 2455 2456 2457 2458 2459 2460
		/*
		 * This error is already checked for in namei.c unless we are
		 * looking at an NFS filehandle, in which case no error
		 * report is needed
		 */
		return 0;
	}

2461 2462 2463
	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
	if (block_group >= EXT4_SB(sb)->s_groups_count) {
		ext4_error(sb,"ext4_get_inode_block","group >= groups count");
2464 2465 2466
		return 0;
	}
	smp_rmb();
2467 2468 2469
	group_desc = block_group >> EXT4_DESC_PER_BLOCK_BITS(sb);
	desc = block_group & (EXT4_DESC_PER_BLOCK(sb) - 1);
	bh = EXT4_SB(sb)->s_group_desc[group_desc];
2470
	if (!bh) {
2471
		ext4_error (sb, "ext4_get_inode_block",
2472 2473 2474 2475
			    "Descriptor not loaded");
		return 0;
	}

2476 2477
	gdp = (struct ext4_group_desc *)((__u8 *)bh->b_data +
		desc * EXT4_DESC_SIZE(sb));
2478 2479 2480
	/*
	 * Figure out the offset within the block group inode table
	 */
2481 2482
	offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
		EXT4_INODE_SIZE(sb);
2483 2484
	block = ext4_inode_table(sb, gdp) +
		(offset >> EXT4_BLOCK_SIZE_BITS(sb));
2485 2486

	iloc->block_group = block_group;
2487
	iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
2488 2489 2490 2491
	return block;
}

/*
2492
 * ext4_get_inode_loc returns with an extra refcount against the inode's
2493 2494 2495 2496
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
2497 2498
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
2499
{
2500
	ext4_fsblk_t block;
2501 2502
	struct buffer_head *bh;

2503
	block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2504 2505 2506 2507 2508
	if (!block)
		return -EIO;

	bh = sb_getblk(inode->i_sb, block);
	if (!bh) {
2509
		ext4_error (inode->i_sb, "ext4_get_inode_loc",
2510
				"unable to read inode block - "
2511
				"inode=%lu, block=%llu",
2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529
				 inode->i_ino, block);
		return -EIO;
	}
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
2530
			struct ext4_group_desc *desc;
2531 2532
			int inodes_per_buffer;
			int inode_offset, i;
2533
			ext4_group_t block_group;
2534 2535 2536
			int start;

			block_group = (inode->i_ino - 1) /
2537
					EXT4_INODES_PER_GROUP(inode->i_sb);
2538
			inodes_per_buffer = bh->b_size /
2539
				EXT4_INODE_SIZE(inode->i_sb);
2540
			inode_offset = ((inode->i_ino - 1) %
2541
					EXT4_INODES_PER_GROUP(inode->i_sb));
2542 2543 2544
			start = inode_offset & ~(inodes_per_buffer - 1);

			/* Is the inode bitmap in cache? */
2545
			desc = ext4_get_group_desc(inode->i_sb,
2546 2547 2548 2549 2550
						block_group, NULL);
			if (!desc)
				goto make_io;

			bitmap_bh = sb_getblk(inode->i_sb,
2551
				ext4_inode_bitmap(inode->i_sb, desc));
2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566
			if (!bitmap_bh)
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
			for (i = start; i < start + inodes_per_buffer; i++) {
				if (i == inode_offset)
					continue;
2567
				if (ext4_test_bit(i, bitmap_bh->b_data))
2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590
					break;
			}
			brelse(bitmap_bh);
			if (i == start + inodes_per_buffer) {
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
		submit_bh(READ_META, bh);
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
2591
			ext4_error(inode->i_sb, "ext4_get_inode_loc",
2592
					"unable to read inode block - "
2593
					"inode=%lu, block=%llu",
2594 2595 2596 2597 2598 2599 2600 2601 2602 2603
					inode->i_ino, block);
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

2604
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
2605 2606
{
	/* We have all inode data except xattrs in memory here. */
2607 2608
	return __ext4_get_inode_loc(inode, iloc,
		!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
2609 2610
}

2611
void ext4_set_inode_flags(struct inode *inode)
2612
{
2613
	unsigned int flags = EXT4_I(inode)->i_flags;
2614 2615

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2616
	if (flags & EXT4_SYNC_FL)
2617
		inode->i_flags |= S_SYNC;
2618
	if (flags & EXT4_APPEND_FL)
2619
		inode->i_flags |= S_APPEND;
2620
	if (flags & EXT4_IMMUTABLE_FL)
2621
		inode->i_flags |= S_IMMUTABLE;
2622
	if (flags & EXT4_NOATIME_FL)
2623
		inode->i_flags |= S_NOATIME;
2624
	if (flags & EXT4_DIRSYNC_FL)
2625 2626 2627
		inode->i_flags |= S_DIRSYNC;
}

2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
	unsigned int flags = ei->vfs_inode.i_flags;

	ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
			EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
	if (flags & S_SYNC)
		ei->i_flags |= EXT4_SYNC_FL;
	if (flags & S_APPEND)
		ei->i_flags |= EXT4_APPEND_FL;
	if (flags & S_IMMUTABLE)
		ei->i_flags |= EXT4_IMMUTABLE_FL;
	if (flags & S_NOATIME)
		ei->i_flags |= EXT4_NOATIME_FL;
	if (flags & S_DIRSYNC)
		ei->i_flags |= EXT4_DIRSYNC_FL;
}
2646 2647 2648 2649
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
					struct ext4_inode_info *ei)
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
2650 2651
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
2652 2653 2654 2655 2656 2657

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
A
Aneesh Kumar K.V 已提交
2658 2659 2660 2661 2662 2663
		if (ei->i_flags & EXT4_HUGE_FILE_FL) {
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
2664 2665 2666 2667
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
2668

2669
void ext4_read_inode(struct inode * inode)
2670
{
2671 2672 2673
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
	struct ext4_inode_info *ei = EXT4_I(inode);
2674 2675 2676
	struct buffer_head *bh;
	int block;

2677 2678 2679
#ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
	ei->i_acl = EXT4_ACL_NOT_CACHED;
	ei->i_default_acl = EXT4_ACL_NOT_CACHED;
2680 2681 2682
#endif
	ei->i_block_alloc_info = NULL;

2683
	if (__ext4_get_inode_loc(inode, &iloc, 0))
2684 2685
		goto bad_inode;
	bh = iloc.bh;
2686
	raw_inode = ext4_raw_inode(&iloc);
2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
	if(!(test_opt (inode->i_sb, NO_UID32))) {
		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
	}
	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);

	ei->i_state = 0;
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
2706
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
2707 2708 2709 2710 2711 2712 2713 2714 2715 2716
			/* this inode is deleted */
			brelse (bh);
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2717
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
2718
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
2719
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
2720
	    cpu_to_le32(EXT4_OS_HURD)) {
B
Badari Pulavarty 已提交
2721 2722
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
2723
	}
2724
	inode->i_size = ext4_isize(raw_inode);
2725 2726 2727 2728 2729 2730 2731
	ei->i_disksize = inode->i_size;
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
2732
	for (block = 0; block < EXT4_N_BLOCKS; block++)
2733 2734 2735
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

2736 2737
	if (inode->i_ino >= EXT4_FIRST_INO(inode->i_sb) + 1 &&
	    EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
2738 2739
		/*
		 * When mke2fs creates big inodes it does not zero out
2740
		 * the unused bytes above EXT4_GOOD_OLD_INODE_SIZE,
2741 2742 2743
		 * so ignore those first few inodes.
		 */
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
2744
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
2745 2746
		    EXT4_INODE_SIZE(inode->i_sb)) {
			brelse (bh);
2747
			goto bad_inode;
2748
		}
2749 2750
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
2751 2752
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
2753 2754
		} else {
			__le32 *magic = (void *)raw_inode +
2755
					EXT4_GOOD_OLD_INODE_SIZE +
2756
					ei->i_extra_isize;
2757 2758
			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
				 ei->i_state |= EXT4_STATE_XATTR;
2759 2760 2761 2762
		}
	} else
		ei->i_extra_isize = 0;

K
Kalpak Shah 已提交
2763 2764 2765 2766 2767
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

2768
	if (S_ISREG(inode->i_mode)) {
2769 2770 2771
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
2772
	} else if (S_ISDIR(inode->i_mode)) {
2773 2774
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
2775
	} else if (S_ISLNK(inode->i_mode)) {
2776 2777
		if (ext4_inode_is_fast_symlink(inode))
			inode->i_op = &ext4_fast_symlink_inode_operations;
2778
		else {
2779 2780
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
2781 2782
		}
	} else {
2783
		inode->i_op = &ext4_special_inode_operations;
2784 2785 2786 2787 2788 2789 2790 2791
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
	}
	brelse (iloc.bh);
2792
	ext4_set_inode_flags(inode);
2793 2794 2795 2796 2797 2798 2799
	return;

bad_inode:
	make_bad_inode(inode);
	return;
}

2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;
	int err = 0;

	if (i_blocks <= ~0U) {
		/*
		 * i_blocks can be represnted in a 32 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
2814
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
2815
		raw_inode->i_blocks_high = 0;
A
Aneesh Kumar K.V 已提交
2816
		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
2817 2818 2819 2820 2821 2822 2823 2824 2825 2826
	} else if (i_blocks <= 0xffffffffffffULL) {
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
		err = ext4_update_rocompat_feature(handle, sb,
					    EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
		if (err)
			goto  err_out;
		/* i_block is stored in the split  48 bit fields */
A
Aneesh Kumar K.V 已提交
2827
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
2828
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
A
Aneesh Kumar K.V 已提交
2829
		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
2830
	} else {
A
Aneesh Kumar K.V 已提交
2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
		/*
		 * i_blocks should be represented in a 48 bit variable
		 * as multiple of  file system block size
		 */
		err = ext4_update_rocompat_feature(handle, sb,
					    EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
		if (err)
			goto  err_out;
		ei->i_flags |= EXT4_HUGE_FILE_FL;
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
2844 2845 2846 2847 2848
	}
err_out:
	return err;
}

2849 2850 2851 2852 2853 2854 2855
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
2856
static int ext4_do_update_inode(handle_t *handle,
2857
				struct inode *inode,
2858
				struct ext4_iloc *iloc)
2859
{
2860 2861
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
2862 2863 2864 2865 2866
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
2867 2868
	if (ei->i_state & EXT4_STATE_NEW)
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
2869

2870
	ext4_get_inode_flags(ei);
2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
	if(!(test_opt(inode->i_sb, NO_UID32))) {
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
		if(!ei->i_dtime) {
			raw_inode->i_uid_high =
				cpu_to_le16(high_16_bits(inode->i_uid));
			raw_inode->i_gid_high =
				cpu_to_le16(high_16_bits(inode->i_gid));
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
		raw_inode->i_uid_low =
			cpu_to_le16(fs_high2lowuid(inode->i_uid));
		raw_inode->i_gid_low =
			cpu_to_le16(fs_high2lowgid(inode->i_gid));
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
2897 2898 2899 2900 2901 2902

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

2903 2904
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
2905 2906
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
	raw_inode->i_flags = cpu_to_le32(ei->i_flags);
2907 2908
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
2909 2910
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
2911
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
	ext4_isize_set(raw_inode, ei->i_disksize);
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
2928
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
2929 2930 2931 2932
			sb->s_dirt = 1;
			handle->h_sync = 1;
			err = ext4_journal_dirty_metadata(handle,
					EXT4_SB(sb)->s_sbh);
2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
2947
	} else for (block = 0; block < EXT4_N_BLOCKS; block++)
2948 2949 2950 2951 2952
		raw_inode->i_block[block] = ei->i_data[block];

	if (ei->i_extra_isize)
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);

2953 2954
	BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
	rc = ext4_journal_dirty_metadata(handle, bh);
2955 2956
	if (!err)
		err = rc;
2957
	ei->i_state &= ~EXT4_STATE_NEW;
2958 2959 2960

out_brelse:
	brelse (bh);
2961
	ext4_std_error(inode->i_sb, err);
2962 2963 2964 2965
	return err;
}

/*
2966
 * ext4_write_inode()
2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
 *   trasnaction to commit.
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
2983
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
3000
int ext4_write_inode(struct inode *inode, int wait)
3001 3002 3003 3004
{
	if (current->flags & PF_MEMALLOC)
		return 0;

3005
	if (ext4_journal_current_handle()) {
M
Mingming Cao 已提交
3006
		jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3007 3008 3009 3010 3011 3012 3013
		dump_stack();
		return -EIO;
	}

	if (!wait)
		return 0;

3014
	return ext4_force_commit(inode->i_sb);
3015 3016 3017
}

/*
3018
 * ext4_setattr()
3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
 * Called with inode->sem down.
 */
3034
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
3050 3051
		handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
					EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
3052 3053 3054 3055 3056 3057
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
		error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
		if (error) {
3058
			ext4_journal_stop(handle);
3059 3060 3061 3062 3063 3064 3065 3066
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
3067 3068
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
3069 3070
	}

3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081
	if (attr->ia_valid & ATTR_SIZE) {
		if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
				error = -EFBIG;
				goto err_out;
			}
		}
	}

3082 3083 3084 3085
	if (S_ISREG(inode->i_mode) &&
	    attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
		handle_t *handle;

3086
		handle = ext4_journal_start(inode, 3);
3087 3088 3089 3090 3091
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}

3092 3093 3094
		error = ext4_orphan_add(handle, inode);
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
3095 3096
		if (!error)
			error = rc;
3097
		ext4_journal_stop(handle);
3098 3099 3100 3101
	}

	rc = inode_setattr(inode, attr);

3102
	/* If inode_setattr's call to ext4_truncate failed to get a
3103 3104 3105
	 * transaction handle at all, we need to clean up the in-core
	 * orphan list manually. */
	if (inode->i_nlink)
3106
		ext4_orphan_del(NULL, inode);
3107 3108

	if (!rc && (ia_valid & ATTR_MODE))
3109
		rc = ext4_acl_chmod(inode);
3110 3111

err_out:
3112
	ext4_std_error(inode->i_sb, error);
3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130
	if (!error)
		error = rc;
	return error;
}


/*
 * How many blocks doth make a writepage()?
 *
 * With N blocks per page, it may be:
 * N data blocks
 * 2 indirect block
 * 2 dindirect
 * 1 tindirect
 * N+5 bitmap blocks (from the above)
 * N+5 group descriptor summary blocks
 * 1 inode block
 * 1 superblock.
3131
 * 2 * EXT4_SINGLEDATA_TRANS_BLOCKS for the quote files
3132
 *
3133
 * 3 * (N + 5) + 2 + 2 * EXT4_SINGLEDATA_TRANS_BLOCKS
3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145
 *
 * With ordered or writeback data it's the same, less the N data blocks.
 *
 * If the inode's direct blocks can hold an integral number of pages then a
 * page cannot straddle two indirect blocks, and we can only touch one indirect
 * and dindirect block, and the "5" above becomes "3".
 *
 * This still overestimates under most circumstances.  If we were to pass the
 * start and end offsets in here as well we could do block_to_path() on each
 * block and work out the exact number of indirects which are touched.  Pah.
 */

A
Alex Tomas 已提交
3146
int ext4_writepage_trans_blocks(struct inode *inode)
3147
{
3148 3149
	int bpp = ext4_journal_blocks_per_page(inode);
	int indirects = (EXT4_NDIR_BLOCKS % bpp) ? 5 : 3;
3150 3151
	int ret;

A
Alex Tomas 已提交
3152 3153 3154
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
		return ext4_ext_writepage_trans_blocks(inode, bpp);

3155
	if (ext4_should_journal_data(inode))
3156 3157 3158 3159 3160 3161 3162
		ret = 3 * (bpp + indirects) + 2;
	else
		ret = 2 * (bpp + indirects) + 2;

#ifdef CONFIG_QUOTA
	/* We know that structure was already allocated during DQUOT_INIT so
	 * we will be updating only the data blocks + inodes */
3163
	ret += 2*EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
3164 3165 3166 3167 3168 3169
#endif

	return ret;
}

/*
3170
 * The caller must have previously called ext4_reserve_inode_write().
3171 3172
 * Give this, we know that the caller already has write access to iloc->bh.
 */
3173 3174
int ext4_mark_iloc_dirty(handle_t *handle,
		struct inode *inode, struct ext4_iloc *iloc)
3175 3176 3177 3178 3179 3180
{
	int err = 0;

	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

3181
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
3182
	err = ext4_do_update_inode(handle, inode, iloc);
3183 3184 3185 3186 3187 3188 3189 3190 3191 3192
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
3193 3194
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
3195 3196 3197
{
	int err = 0;
	if (handle) {
3198
		err = ext4_get_inode_loc(inode, iloc);
3199 3200
		if (!err) {
			BUFFER_TRACE(iloc->bh, "get_write_access");
3201
			err = ext4_journal_get_write_access(handle, iloc->bh);
3202 3203 3204 3205 3206 3207
			if (err) {
				brelse(iloc->bh);
				iloc->bh = NULL;
			}
		}
	}
3208
	ext4_std_error(inode->i_sb, err);
3209 3210 3211
	return err;
}

3212 3213 3214 3215
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
3216 3217 3218 3219
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;
	struct ext4_xattr_entry *entry;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);
	entry = IFIRST(header);

	/* No extended attributes present */
	if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
		header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 *
 * Is this efficient/effective?  Well, we're being nice to the system
 * by cleaning up our inodes proactively so they can be reaped
 * without I/O.  But we are potentially leaving up to five seconds'
 * worth of inodes floating about which prune_icache wants us to
 * write out.  One way to fix that would be to get prune_icache()
 * to do a write_super() to free up some memory.  It has the desired
 * effect.
 */
3268
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
3269
{
3270
	struct ext4_iloc iloc;
3271 3272 3273
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
3274 3275

	might_sleep();
3276
	err = ext4_reserve_inode_write(handle, inode, &iloc);
3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292
	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
	    !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
				EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
A
Aneesh Kumar K.V 已提交
3293 3294
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
3295 3296 3297 3298
					ext4_warning(inode->i_sb, __FUNCTION__,
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
3299 3300
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
3301 3302 3303 3304
				}
			}
		}
	}
3305
	if (!err)
3306
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
3307 3308 3309 3310
	return err;
}

/*
3311
 * ext4_dirty_inode() is called from __mark_inode_dirty()
3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
3324
void ext4_dirty_inode(struct inode *inode)
3325
{
3326
	handle_t *current_handle = ext4_journal_current_handle();
3327 3328
	handle_t *handle;

3329
	handle = ext4_journal_start(inode, 2);
3330 3331 3332 3333 3334 3335 3336 3337 3338 3339
	if (IS_ERR(handle))
		goto out;
	if (current_handle &&
		current_handle->h_transaction != handle->h_transaction) {
		/* This task has a transaction open against a different fs */
		printk(KERN_EMERG "%s: transactions do not match!\n",
		       __FUNCTION__);
	} else {
		jbd_debug(5, "marking dirty.  outer handle=%p\n",
				current_handle);
3340
		ext4_mark_inode_dirty(handle, inode);
3341
	}
3342
	ext4_journal_stop(handle);
3343 3344 3345 3346 3347 3348 3349 3350
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
3351
 * ext4_reserve_inode_write, this leaves behind no bh reference and
3352 3353 3354
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
3355
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
3356
{
3357
	struct ext4_iloc iloc;
3358 3359 3360

	int err = 0;
	if (handle) {
3361
		err = ext4_get_inode_loc(inode, &iloc);
3362 3363
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
3364
			err = jbd2_journal_get_write_access(handle, iloc.bh);
3365
			if (!err)
3366
				err = ext4_journal_dirty_metadata(handle,
3367 3368 3369 3370
								  iloc.bh);
			brelse(iloc.bh);
		}
	}
3371
	ext4_std_error(inode->i_sb, err);
3372 3373 3374 3375
	return err;
}
#endif

3376
int ext4_change_inode_journal_flag(struct inode *inode, int val)
3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

3392
	journal = EXT4_JOURNAL(inode);
3393
	if (is_journal_aborted(journal))
3394 3395
		return -EROFS;

3396 3397
	jbd2_journal_lock_updates(journal);
	jbd2_journal_flush(journal);
3398 3399 3400 3401 3402 3403 3404 3405 3406 3407

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
3408
		EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
3409
	else
3410 3411
		EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
	ext4_set_aops(inode);
3412

3413
	jbd2_journal_unlock_updates(journal);
3414 3415 3416

	/* Finally we can mark the inode as dirty. */

3417
	handle = ext4_journal_start(inode, 1);
3418 3419 3420
	if (IS_ERR(handle))
		return PTR_ERR(handle);

3421
	err = ext4_mark_inode_dirty(handle, inode);
3422
	handle->h_sync = 1;
3423 3424
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
3425 3426 3427

	return err;
}