tiling_strategy_manager.cc 25.9 KB
Newer Older
C
ckey_Dou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/**
 * Copyright 2020 Huawei Technologies Co., Ltd
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
#include "poly/tiling_strategy_manager.h"
D
dabaiji 已提交
17
#include <numeric>
C
ckey_Dou 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
#include <iostream>

namespace akg {
namespace ir {
namespace poly {
std::unordered_map<TileAxis *, std::vector<AttrInfo>> TilingStrategy::GetInterestedInfo(const std::string &attr_key,
                                                                                        bool match_whole_word) {
  std::unordered_map<TileAxis *, std::vector<AttrInfo>> result;
  std::vector<TileAxis *> axes =
    match_whole_word ? analyzer_->GetAxesOfAttr(attr_key) : analyzer_->GetAxesContainsAttr(attr_key);
  for (auto a : axes) {
    std::vector<AttrInfo> info;
    for (const auto &attr : a->attrs) {
      if ((match_whole_word && attr.attr_key != attr_key) ||
          (!match_whole_word && attr.attr_key.find(attr_key) == std::string::npos)) {
        continue;
      }
      info.emplace_back(attr);
    }
    result[a] = info;
  }
  return result;
}

void CustomTilingStrategy::AddConstraint() {
  auto interested_info = GetInterestedInfo(interested_attr_key, false);
  for (auto it : interested_info) {
    TileAxis *axis = it.first;
    for (auto attr : it.second) {
      std::vector<std::string> modes = akg::common::Split(attr.attr_key, ":");
      CHECK_EQ(modes.size(), 2U);
      std::string constraint_str = attr.attr_value;
      std::string related_buf;
      if (constraint_str.find("->") != std::string::npos) {
        std::vector<std::string> res = akg::common::Split(constraint_str, "->");
        related_buf = res[0];
        constraint_str = res[1];
      }
      std::vector<std::string> constraints = akg::common::Split(constraint_str, "_");
      CHECK_GE(constraints.size(), 1U);
      std::vector<std::string> level = akg::common::Split(constraints[0], ":");
      CHECK(level.size() == 2U && level[0] == "LEVEL");
      CHECK(level[1] == "L1" || level[1] == "L0");
      TileLevel lv = level[1] == "L1" ? LEVEL1 : LEVEL0;
      constraints.erase(constraints.begin());
      for (const auto &con : constraints) {
        std::vector<std::string> items = akg::common::Split(con, ":");
        CHECK_EQ(items.size(), 2U);
        CHECK_NE(items[0], "");
        CHECK_NE(items[1], "");
        if (items[0] == "MIN") {
          if (items[1] == "MIN") {
            if (lv == LEVEL1) {
              axis->l1_constraints.tile_extent_ = axis->l1_constraints.tile_min_;
            } else if (lv == LEVEL0) {
              axis->l0_constraints.tile_extent_ = axis->l0_constraints.tile_min_;
            }
          } else {
            if (lv == LEVEL1) {
              axis->l1_constraints.tile_min_ = CastToExpr(items[1]);
            } else if (lv == LEVEL0) {
              axis->l0_constraints.tile_min_ = CastToExpr(items[1]);
            }
          }
        } else if (items[0] == "FACTOR") {
          axis->TileRestrainToSingleValue(CastToExpr(items[1]), lv);
        } else if (items[0] == "CANDIDATE") {
          if (lv == LEVEL1)
            axis->InsertL1CandFactor(CastToExpr(items[1]));
          else
            axis->InsertL0CandFactor(CastToExpr(items[1]));
        } else if (items[0] == "MAX") {
          if (items[1] == "FULL") {
            axis->TileRestrainEntire(lv);
          } else {
            if (lv == LEVEL1) {
              axis->l1_constraints.tile_extent_ = CastToExpr(items[1]);
            } else if (lv == LEVEL0) {
              axis->l0_constraints.tile_extent_ = CastToExpr(items[1]);
            }
          }
        } else if (items[0] == "MOD") {
          axis->TileRestrainMod(CastToExpr(items[1]), lv);
        } else if (items[0] == "FORBIDISO") {
          axis->forbid_iso = true;
        } else if (items[0] == "PRIORITY") {
          axis->priority = static_cast<int>(std::strtol(items[1].c_str(), nullptr, 10));
        } else if (items[0] == "EXPANSION") {
          std::string info = related_buf + "->" + items[1];
          analyzer_->RootAxis()->MarkWithAttr(AttrInfo{"EXPANSION", info});
        } else if (items[0] == "AXISINFO") {
          axis->axis_type_ = items[1];
        }
      }
    }
  }
}

void ConflictTreeRangeStrategy::AddConstraint() {
  auto ApplyConflictStrategy = [this](TileAxis *axis) {
    int64_t const_extent = axis->GetConstExtent();
    if (const_extent == -1) {
      return;
    }
    // When axis has conflict ranges, it is likely a padded axis;
    // When padded axis has "MOD" attr, it is likely a transformed axis;
    // It is not safe to apply min tile(1) to padded-and-transformed axis
    // as poly may generate wrong index.
    if (!axis->HasAttr("MOD")) {
      axis->InsertL1CandFactor(CastIntToExpr(MIN_TILE));
    }
    if (axis->HasAttr("MODSHIFT")) {
      const_extent = (const_extent - axis->range_min);
      axis->RemoveAttr("MODSHIFT");
    }
    if (axis->HasAttr("SHIFT")) {
      axis->RemoveAttr("SHIFT");
    }
    axis->range_min = MIN_TILE;
    axis->InsertL1CandFactor(CastInt64ToExpr(const_extent));
    axis->l1_constraints.tile_min_ = CastIntToExpr(MIN_TILE);
    axis->l1_constraints.tile_extent_ = CastInt64ToExpr(const_extent);
    axis->l0_constraints.tile_min_ = CastIntToExpr(MIN_TILE);
    axis->l0_constraints.tile_extent_ = CastInt64ToExpr(const_extent);
  };
  auto CheckRange = [this, &ApplyConflictStrategy](TileAxis *axis) {
    std::unordered_set<int64_t> offset;
    std::unordered_set<int64_t> extent;
    int64_t min_off = -1;
    for (const auto &r : axis->tree_ranges) {
      const auto int_range = r.second.as<IntImm>();
      if (int_range == nullptr) {
        return;
      }
      if (r.first != 0) {
        offset.insert(r.first);
        if (min_off == -1) {
          min_off = r.first;
        } else if (r.first < min_off) {
          min_off = r.first;
        }
      }
      if (int_range->value != 0) {
        extent.insert(int_range->value - r.first);
      }
    }
    for (auto o : offset) {
      if (o % min_off != 0) {
        ApplyConflictStrategy(axis);
        return;
      }
    }
    if (extent.size() >= 2U) {
      ApplyConflictStrategy(axis);
    }
  };
  analyzer_->ForEachAxisTopDown(CheckRange);
}

void ModStrategy::AddConstraint() {
  auto interested_info = GetInterestedInfo(interested_attr_key);
  for (auto it : interested_info) {
    TileAxis *axis = it.first;
    for (const auto &attr : it.second) {
      CHECK_NE(attr.attr_value, "");
      auto mod_value = static_cast<int>(std::strtol(attr.attr_value.c_str(), nullptr, 10));
      axis->TileRestrainMod(mod_value, LEVEL1);
    }
  }
}

void CastStrategy::AddConstraint() {
  auto interested_info = GetInterestedInfo(interested_attr_key);
  for (auto it : interested_info) {
    TileAxis *axis = it.first;
    for (const auto &attr : it.second) {
      std::vector<std::string> src_dst = akg::common::Split(attr.attr_value, "->");
      CHECK_EQ(src_dst.size(), 2U);

      std::vector<std::string> src_list = akg::common::Split(src_dst[0], ",");
      CHECK_GE(src_list.size(), 1U);
      for (const auto &src : src_list) {
        std::vector<std::string> src_info = akg::common::Split(src, ":");
        CHECK_EQ(src_info.size(), 2U);
        CHECK_NE(src_info[1], "");
        axis->data_size[src_info[0]] = static_cast<int>(std::strtol(src_info[1].c_str(), nullptr, 10));
      }

      std::vector<std::string> dst_info = akg::common::Split(src_dst[1], ":");
      CHECK_EQ(dst_info.size(), 2U);
      CHECK_NE(dst_info[1], "");
      axis->data_size[dst_info[0]] = static_cast<int>(std::strtol(dst_info[1].c_str(), nullptr, 10));
    }
  }
}

void ReduceStrategy::AddConstraint() {
  for (auto axis : analyzer_->GetAxesOfAttr("REDUCE_DST_LAST")) {
    int64_t block_size = GetMaxAlignBytes(axis->data_size);
    int64_t const_extent = axis->GetConstExtent();
    if (const_extent == -1) {
      continue;
    }
    int64_t align_elem = ktvm::ir::gcd(block_size, const_extent);
    if (align_elem == block_size) {
      axis->l1_constraints.tile_min_ = align_elem;
    } else {
      axis->forbid_iso = true;
    }
  }
}

void VectorizedStrategy::AddConstraint() {
  if (analyzer_->op_type_ != VECTOR_OP) {
    return;
  }
  for (auto axis : analyzer_->GetAxesOfAttr("VECTORIZED")) {
235
    if (axis->HasAttr("DYNAMIC_BOUND") || axis->range_extent.as<IntImm>() == nullptr) {
C
ckey_Dou 已提交
236 237 238
      continue;
    }
    int64_t min_byte = -1;
239 240 241 242 243 244
    for (const auto &it : axis->data_size) {
      if (it.second == 0) {
        continue;
      }
      if (min_byte == -1 || min_byte > it.second) {
        min_byte = it.second;
C
ckey_Dou 已提交
245 246
      }
    }
247 248
    min_byte = min_byte == -1 ? 1 : min_byte;
    CHECK_GT(min_byte, 0);
C
ckey_Dou 已提交
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
    axis->l1_constraints.tile_mod_ = CanonicalSimplify(CastIntToExpr(VECTORIZE_BYTE / min_byte));
  }
}

void TensorOfTensorStrategy::AddConstraint() {
  for (auto axis : analyzer_->GetAxesOfAttr("TOT")) {
    if (!axis->HasAttr("ALIGN:DMA")) continue;
    axis->TileRestrainToSingleValue(CastIntToExpr(MIN_TILE), LEVEL1);
  }
}

void PassDownAttrStrategy::AddConstraint() {
  for (auto axis : analyzer_->GetAxesOfAttr(AttrInfo{"ATTR", "pass_down"})) {
    axis->TileRestrainEntire(LEVEL1);
  }
}

void DynamicShapeLimitStrategy::AddConstraint() {
  auto interested_info = GetInterestedInfo(interested_attr_key);
  for (auto it : interested_info) {
    TileAxis *axis = it.first;
    for (const auto &attr : it.second) {
      CHECK_NE(attr.attr_value, "");
      axis->dyn_shape_limit = static_cast<int>(std::strtol(attr.attr_value.c_str(), nullptr, 10));
    }
  }
}

void DynamicBoundStrategy::AddConstraint() {
  auto interested_info = GetInterestedInfo(interested_attr_key);
  for (auto it : interested_info) {
    TileAxis *axis = it.first;
    for (const auto &attr : it.second) {
      CHECK_NE(attr.attr_value, "");
      auto bound = static_cast<int>(std::strtol(attr.attr_value.c_str(), nullptr, 10));
      axis->TileRestrainMod(bound, LEVEL1);
      axis->forbid_iso = true;
    }
  }
}

void ShiftAxisStrategy::AddConstraint() {
  auto interested_info = GetInterestedInfo(interested_attr_key);
  for (auto it : interested_info) {
    TileAxis *axis = it.first;
    int64_t const_extent = axis->GetConstExtent();
    if (const_extent == -1) {
      continue;
    }
    for (const auto &attr : it.second) {
      CHECK_NE(attr.attr_value, "");
      auto share_time = static_cast<int>(std::strtol(attr.attr_value.c_str(), nullptr, 10));
      axis->TileRestrainToSingleValue(const_extent * (share_time + 1), LEVEL1);
      break;
    }
  }
}

void ModShiftAxisStrategy::AddConstraint() {
  auto interested_info = GetInterestedInfo(interested_attr_key);
  for (auto it : interested_info) {
    TileAxis *axis = it.first;
    int64_t const_extent = axis->GetConstExtent();
    if (const_extent == -1) {
      continue;
    }
    for (const auto &attr : it.second) {
      axis->forbid_iso = true;
      auto imm_min = axis->GetConstConstraint(LEVEL1).tile_min_.as<IntImm>()->value;
      if (imm_min > const_extent) {
        CHECK_NE(attr.attr_value, "");
        auto share_time = static_cast<int>(std::strtol(attr.attr_value.c_str(), nullptr, 10));
        axis->TileRestrainToSingleValue(const_extent * (share_time + 1), LEVEL1);
      } else {
        auto ForbidOthersIso = [](TileAxis *a) { a->forbid_iso = true; };
        analyzer_->ForEachAxisTopDown(ForbidOthersIso);
      }
      break;
    }
  }
}

void ConvStrategy::AddConstraint() {
  conv_info_ = analyzer_->scop_->GetConvInfoForTiling();
  auto interested_info = GetInterestedInfo(interested_attr_key);
  for (auto it : interested_info) {
    TileAxis *axis = it.first;
    for (const auto &attr : it.second) {
      axis->axis_type_ = attr.attr_value;
      if (attr.attr_value == "N" || attr.attr_value == "C1_in_out") {
        axis->TileRestrainToSingleValue(CastIntToExpr(MIN_TILE), LEVEL1);
        axis->TileRestrainToSingleValue(CastIntToExpr(MIN_TILE), LEVEL0);
      } else if (attr.attr_value == "H") {
        RestrainH(axis);
      } else if (attr.attr_value == "W") {
        if (analyzer_->scop_->IsConvBackpropFilter()) {
          axis->TileRestrainEntire(LEVEL1);
        } else {
          RestrainW(axis);
        }
      } else if (attr.attr_value.find("C0") != std::string::npos || attr.attr_value == "kh" ||
                 attr.attr_value == "kw") {
        axis->TileRestrainEntire(LEVEL1);
      } else if (attr.attr_value == "C1_in" && analyzer_->is_dynamic_) {
        // dynamic case
        axis->TileRestrainEntire(LEVEL1);
      }
    }
  }
}

void ConvStrategy::RestrainH(TileAxis *axis) {
  CHECK(conv_info_.find(ATTR_CONV_FEATURE_H) != conv_info_.end());
  CHECK(conv_info_.find(ATTR_CONV_PAD_TOP) != conv_info_.end());
  CHECK(conv_info_.find(ATTR_CONV_STRIDE_H) != conv_info_.end());
  CHECK(conv_info_.find(ATTR_CONV_DILATION_H) != conv_info_.end());
  CHECK(conv_info_.find(ATTR_CONV_KERNEL_H) != conv_info_.end());
  Expr h = conv_info_[ATTR_CONV_FEATURE_H];
  Expr p_top = conv_info_[ATTR_CONV_PAD_TOP];
  Expr s_h = conv_info_[ATTR_CONV_STRIDE_H];
  Expr d_h = conv_info_[ATTR_CONV_DILATION_H];
  Expr k_h = conv_info_[ATTR_CONV_KERNEL_H];
  CHECK(h.defined() && p_top.defined() && s_h.defined() && d_h.defined() && k_h.defined()) << "Conv attr not defined.";
  Expr k_h_d = (k_h - 1) * d_h + 1;
  int tile_out_h = MIN_TILE + 1;
  while (arith_ana_.CanProve(
    ((ktvm::ir::FloorDiv::make((axis->range_extent + tile_out_h - 1), CastIntToExpr(tile_out_h)) - 1) * tile_out_h -
     1) * s_h +
        k_h_d >
      h + p_top &&
    tile_out_h <= axis->range_extent)) {
    tile_out_h += 1;
  }
  axis->l1_constraints.tile_min_ = CastIntToExpr(tile_out_h);
}

void ConvStrategy::RestrainW(TileAxis *axis) {
  CHECK(conv_info_.find(ATTR_CONV_FEATURE_W) != conv_info_.end());
  CHECK(conv_info_.find(ATTR_CONV_PAD_LEFT) != conv_info_.end());
  CHECK(conv_info_.find(ATTR_CONV_STRIDE_W) != conv_info_.end());
  CHECK(conv_info_.find(ATTR_CONV_DILATION_W) != conv_info_.end());
  CHECK(conv_info_.find(ATTR_CONV_KERNEL_W) != conv_info_.end());
  Expr w = conv_info_[ATTR_CONV_FEATURE_W];
  Expr p_left = conv_info_[ATTR_CONV_PAD_LEFT];
  Expr s_w = conv_info_[ATTR_CONV_STRIDE_W];
  Expr d_w = conv_info_[ATTR_CONV_DILATION_W];
  Expr k_w = conv_info_[ATTR_CONV_KERNEL_W];
  CHECK(w.defined() && p_left.defined() && s_w.defined() && d_w.defined() && k_w.defined()) << "Conv attr not defined.";
  Expr k_w_d = (k_w - 1) * d_w + 1;
  int tile_out_w = 1;
  while (arith_ana_.CanProve(
    ((ktvm::ir::FloorDiv::make((axis->range_extent + tile_out_w - 1), CastIntToExpr(tile_out_w)) - 1) * tile_out_w -
     1) * s_w +
        k_w_d >
      w + p_left &&
    tile_out_w <= axis->range_extent)) {
    tile_out_w += 1;
  }
  axis->l1_constraints.tile_min_ = CastIntToExpr(tile_out_w);
}

void GemmStrategy::AddConstraint() {
  auto interested_info = GetInterestedInfo(interested_attr_key);
  for (auto it : interested_info) {
    TileAxis *axis = it.first;
    for (const auto &attr : it.second) {
      axis->axis_type_ = attr.attr_value;
      if (attr.attr_value == "mi" || attr.attr_value == "ni" || attr.attr_value == "ki") {
        axis->TileRestrainMod(CastIntToExpr(CUBE_UNIT), LEVEL1);
        axis->TileRestrainMod(CastIntToExpr(CUBE_UNIT), LEVEL0);
        axis->TileRestrainToSingleValue(CastIntToExpr(CUBE_UNIT), LEVEL1);
        axis->TileRestrainToSingleValue(CastIntToExpr(CUBE_UNIT), LEVEL0);
      } else if (attr.attr_value == "bo" || attr.attr_value == "bi") {
        axis->TileRestrainToSingleValue(CastIntToExpr(MIN_TILE), LEVEL1);
        axis->TileRestrainToSingleValue(CastIntToExpr(MIN_TILE), LEVEL0);
      }
    }
  }
}

std::pair<int, int> MulticoreStrategy::GetProposalRangeForFullMulticore(TileAxis *multicore_axis) {
  int max_core = cand_.GetCoreNumConf();
  int used_core = 1;
432
  std::pair<int, int> proposal_range = std::make_pair(cand_.GetMinFactorForMinDataGranularity(multicore_axis), -1);
C
ckey_Dou 已提交
433 434 435 436 437
  auto this_level_core = std::max(static_cast<int>(max_core / used_core), 1);
  std::stringstream ss;
  if (multicore_axis->range_extent.as<IntImm>() == nullptr) return proposal_range;
  auto shape = multicore_axis->range_extent.as<IntImm>()->value;
  bool is_last_level = false;
438
  for (auto other_axis : this->cand_.GetTileAxis()) {
C
ckey_Dou 已提交
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
    if (other_axis == multicore_axis) break;
    if (other_axis->index != multicore_axis->index || other_axis->HasAttr("REDUCE_AXIS")) continue;
    if (other_axis->range_extent.as<IntImm>() == nullptr) return proposal_range;
    int64_t l1_val = TileVarId::UNDEFINE;
    std::tie(l1_val, std::ignore) = cand_.GetConstTileVal(other_axis);
    if (l1_val == TileVarId::VAR) return proposal_range;
    if (l1_val == TileVarId::UNDEFINE) {
      CHECK(other_axis->l1_constraints.tile_min_.as<IntImm>())
        << "Static shape " << shape << " should have const tile min, while got "
        << other_axis->l1_constraints.tile_min_;
      l1_val = other_axis->l1_constraints.tile_min_.as<IntImm>()->value;
    }
    auto block_extent = std::max(static_cast<int>(other_axis->range_extent.as<IntImm>()->value / l1_val), 1);
    ss << "range " << multicore_axis->range_extent << " l1 tile " << l1_val << " -> block extent " << block_extent
       << " this level " << this_level_core;
    logger_.AppendLog(DO_TILING, ss);
    ss.str("");
    if (block_extent > this_level_core) {
      int factor = (block_extent + this_level_core - 1) / this_level_core;
      this_level_core = (block_extent + factor - 1) / factor;
      is_last_level = true;
    } else if (block_extent * 2 > this_level_core) {
      this_level_core = block_extent;
      is_last_level = true;
    } else {
      this_level_core = block_extent;
    }
    if (is_last_level) break;
    used_core *= this_level_core;
    this_level_core = std::max(static_cast<int>(max_core / used_core), 1);
    ss << "use core " << used_core << " this level " << this_level_core;
    logger_.AppendLog(DO_TILING, ss);
    ss.str("");
  }
  proposal_range.second = std::max(static_cast<int>(shape / this_level_core), 1);
  ss << " proposal range (" << proposal_range.first << ", " << proposal_range.second << ")";
  logger_.AppendLog(DO_TILING, ss);
  return proposal_range;
}
478

C
ckey_Dou 已提交
479 480 481 482 483 484 485 486
int64_t MulticoreStrategy::AdjustTilingAccordingToMulticoreConstraint(TileAxis *multicore_axis, int64_t tiling_factor) {
  CHECK_GT(tiling_factor, 0) << "tiling factor cant be zero or negative";
  auto proposal_range = GetProposalRangeForFullMulticore(multicore_axis);
  auto min_factor_for_enough_data = proposal_range.first;
  auto max_factor_for_full_cores = proposal_range.second;
  auto origin_factor = tiling_factor;
  std::stringstream ss;

487
  if ((!multicore_axis->mc_sup) || (multicore_axis->HasAttr("REDUCE_AXIS") || (max_factor_for_full_cores <= 0))) {
C
ckey_Dou 已提交
488 489 490
    logger_.AppendLine(DO_TILING, "This axis is not suitable for multicore, return.");
    return origin_factor;
  }
491 492 493 494 495 496 497 498 499
  if (tiling_factor < cand_.GetMinFactorToEnableMulticore(multicore_axis)) {
    logger_.AppendLine(DO_TILING, "Inner-most tile size is smaller than 32 bytes, multicore is disable, return.");
    return origin_factor;
  }
  if ((tiling_factor <= min_factor_for_enough_data) ||
      (min_factor_for_enough_data >= cand_.GetCoreNumConf() * max_factor_for_full_cores)) {
    logger_.AppendLine(DO_TILING, "Cannot increase degree of parallelism by adjusting current tiling factor, return.");
    return origin_factor;
  }
C
ckey_Dou 已提交
500 501 502 503 504 505 506 507 508 509 510

  auto CheckConstConstraint = [this, &ss](Expr constraint) {
    if (constraint.as<IntImm>() == nullptr) {
      ss << "Static shape should have const constraint, while got " << constraint;
      logger_.LogFatalAndSaveLog(ss.str());
    }
  };
  CheckConstConstraint(multicore_axis->range_extent);
  CheckConstConstraint(multicore_axis->l1_constraints.tile_min_);
  CheckConstConstraint(multicore_axis->l1_constraints.tile_mod_);

511
  auto pending_blocks = cand_.GetMaximalPendingBlocks(multicore_axis);
C
ckey_Dou 已提交
512 513
  if (tiling_factor < max_factor_for_full_cores) {
    auto end = static_cast<int>(sqrt(max_factor_for_full_cores));
514 515 516 517
    while (max_factor_for_full_cores % tiling_factor != 0 && tiling_factor > end) {
      --tiling_factor;
    }
  } else if (max_factor_for_full_cores >= min_factor_for_enough_data) {
C
ckey_Dou 已提交
518
    tiling_factor = max_factor_for_full_cores;
519 520 521 522 523 524 525
  } else if (max_factor_for_full_cores < min_factor_for_enough_data) {
    // In this case, simply adjusting tiling factor to max_factor_for_full_core may lead to insufficient data
    // in each core while adjusting tiling factor to min_factor_for_enough_date may lead to fewer parallel cores.
    // Since pending blocks can compensate data in each core, we make decision upon on its value.
    tiling_factor = pending_blocks >= static_cast<int>(min_factor_for_enough_data / max_factor_for_full_cores)
                      ? max_factor_for_full_cores
                      : min_factor_for_enough_data;
C
ckey_Dou 已提交
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
  }

  auto shape = multicore_axis->range_extent.as<IntImm>()->value;
  bool efficient = (shape % tiling_factor == 0) >= (shape % origin_factor == 0);
  auto multicore_shrink_limit = 2;
  auto reduced_mem = std::max(origin_factor - tiling_factor, min_factor_for_enough_data - tiling_factor);
  if ((static_cast<int>(origin_factor / tiling_factor) >= multicore_shrink_limit) && reduced_mem > pending_blocks) {
    ss << "If axis adjust to " << tiling_factor << ", " << reduced_mem << " memory is reduced;"
       << " while maximal pending blocks is only " << pending_blocks << ", adjust may not be efficient.";
    logger_.AppendLog(DO_TILING, ss);
    efficient = false;
  }
  bool valid = tiling_factor >= multicore_axis->l1_constraints.tile_min_.as<IntImm>()->value;
  if (tiling_factor >= multicore_axis->l1_constraints.tile_mod_.as<IntImm>()->value) {
    valid = valid && tiling_factor % multicore_axis->l1_constraints.tile_mod_.as<IntImm>()->value == 0;
  } else {
    auto weak_constraint = multicore_axis->l1_constraints.tile_mod_.as<IntImm>()->value % tiling_factor == 0;
    valid = valid && multicore_axis->HasAttr("VECTORIZED") && weak_constraint;
  }
  ss << "--> Adjust tiling factor " << origin_factor << " to " << tiling_factor << " if valid(" << valid
     << ") and efficient(" << efficient << ") according to proposal range (" << min_factor_for_enough_data << ", "
     << max_factor_for_full_cores << ")";
  logger_.AppendLog(DO_TILING, ss);
  return (valid && efficient) ? tiling_factor : origin_factor;
}

D
dabaiji 已提交
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
void TilingPriorityScorer::SetPriorityByScoring() {
  std::stringstream ss;
  for (int band_idx = 0; band_idx < static_cast<int>(analyzer_.RootAxis()->children.size()); ++band_idx) {
    std::map<double, std::vector<TileAxis *>> priority_map;
    std::vector<TileAxis *> tile_axes = GetBandTileAxes(band_idx);

    auto norm_range = static_cast<int>(tile_axes.size());
    auto dd_scores = MinMaxScaler(ComputeTileDependency(tile_axes), norm_range);
    auto pl_scores = MinMaxScaler(ComputeParallelism(tile_axes), norm_range);
    auto vec_scores = MinMaxScaler(ComputeVectorization(tile_axes), norm_range);

    bool has_custom_priority = false;
    int default_priority = -1;
    for (int i = 0; i < static_cast<int>(tile_axes.size()); ++i) {
      auto axis = tile_axes[i];

      if (axis->priority != default_priority) {
        has_custom_priority = true;
        break;
      }

      ss << "Axis " << axis->index << " , " << axis->dim_axis << ": ";
      auto total_score = (weight_.tile_dependency * dd_scores[i] + weight_.parallelism * pl_scores[i] +
                          weight_.vectorization * vec_scores[i]) /
                         weight_.Sum();
      ss << "score = (tile dependency) " << weight_.tile_dependency << "*" << dd_scores[i] << " + (parallelism) "
         << weight_.parallelism << " * " << pl_scores[i] << " + (vectorization) " << weight_.vectorization << " * "
         << vec_scores[i] << " / " << weight_.Sum() << " = " << total_score;
      logger_.AppendLog(DO_TILING, ss);

      if (priority_map.find(total_score) == priority_map.end()) {
        priority_map[total_score] = {axis};
      } else {
        priority_map[total_score].emplace_back(axis);
      }
    }

    if (has_custom_priority) {
      continue;
    }

    int priority = static_cast<int>(tile_axes.size()) - 1;
    for (auto it : priority_map) {
      for (auto a : it.second) {
        a->priority = priority;
        priority -= 1;
      }
    }
  }
}

std::vector<double> TilingPriorityScorer::ComputeTileDependency(std::vector<TileAxis *> tile_axes) {
  std::vector<double> scores;
  scores.reserve(tile_axes.size());
  for (auto axis : tile_axes) {
    scores.emplace_back((axis->dim_axis + 1) * axis->HasAttr("REDUCE_AXIS"));
  }
  return scores;
}

std::vector<double> TilingPriorityScorer::ComputeParallelism(std::vector<TileAxis *> tile_axes) {
  std::vector<double> scores;
  scores.reserve(tile_axes.size());
  for (auto axis : tile_axes) {
    scores.emplace_back(!axis->mc_sup);
  }
  return scores;
}

std::vector<double> TilingPriorityScorer::ComputeVectorization(std::vector<TileAxis *> tile_axes) {
  std::vector<double> scores;
  scores.reserve(tile_axes.size());
  std::unordered_map<DavinciMemScope, int> coef_map = {
    {DavinciMemScope::MEM_SCOPE_GM, 2},   // continuous dma copy is considered as the most important factor
    {DavinciMemScope::MEM_SCOPE_UB, 1},   // vectorization instruction is also important
    {DavinciMemScope::MEM_SCOPE_L1, 0},   // does not consider impact of L1 dma copy
    {DavinciMemScope::MEM_SCOPE_L0A, 0},  // does not consider impact of L0 dma copy
    {DavinciMemScope::MEM_SCOPE_L0B, 0}, {DavinciMemScope::MEM_SCOPE_L0C, 0},
  };
  for (auto axis : tile_axes) {
    int vec_level = 0;
    for (auto it : analyzer_.buf_info_) {
      auto buf = it.second.get();
      auto coef = coef_map[buf->scope];
      int dim_depth = 1;
      for (auto &a : *(buf->tile_axis)) {
        if (a == axis) {
          vec_level += coef * dim_depth;
          break;
        }
        dim_depth += 1;
      }
    }
    scores.emplace_back(vec_level);
  }
  return scores;
}

C
ckey_Dou 已提交
650 651 652
}  // namespace poly
}  // namespace ir
}  // namespace akg