vision.cpp 5.0 KB
Newer Older
1
#include "megbrain/imperative/ops/autogen.h"
2 3
#include "megbrain/opr/dnn/roi_align.h"
#include "megbrain/opr/dnn/roi_pooling.h"
4 5
#include "megbrain/opr/imgproc.h"

6 7
#include "../blob_manager_impl.h"
#include "../dnn_op_helper.h"
8 9 10 11 12
#include "../op_trait.h"
namespace mgb {
namespace imperative {

namespace {
M
Megvii Engine Team 已提交
13
auto apply_on_var_node(const OpDef& def, const VarNodeArray& inputs) {
14 15
    auto&& op = static_cast<const CvtColor&>(def);
    mgb_assert(inputs.size() == 1);
16 17
    OperatorNodeConfig config{op.make_name()};
    return opr::CvtColor::make(inputs[0], op.param(), config);
18
}
M
Megvii Engine Team 已提交
19 20
OP_TRAIT_REG(CvtColor, CvtColor).apply_on_var_node(apply_on_var_node).fallback();
}  // namespace
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91

namespace {
namespace roi_align {
VarNodeArray apply_on_var_node(const OpDef& def, const VarNodeArray& inputs) {
    auto&& op = static_cast<const ROIAlign&>(def);
    mgb_assert(inputs.size() == 2);
    OperatorNodeConfig config{op.make_name()};
    auto* opr = opr::ROIAlign::make(inputs[0], inputs[1], op.param(), config)
                        .node()
                        ->owner_opr();
    return {opr->output(0), opr->output(1)};
}

std::tuple<SmallVector<LogicalTensorDesc>, bool> infer_output_attrs_fallible(
        const OpDef& def, const SmallVector<LogicalTensorDesc>& inputs) {
    auto&& op = static_cast<const ROIAlign&>(def);
    if (inputs[0].layout.is_empty() || inputs[1].layout.is_empty()) {
        return {{{TensorLayout(inputs[0].layout.dtype), inputs[0].comp_node},
                 {TensorLayout(dtype::Int32()), inputs[1].comp_node}},
                false};
    }

    SmallVector<LogicalTensorDesc> descs(2u);
    size_t n = inputs[1].layout[0];
    size_t c = inputs[0].layout[1];
    descs[0].layout = TensorLayout(
            {n, c, op.pooled_height, op.pooled_width}, inputs[0].layout.dtype);
    descs[0].layout.init_contiguous_stride();
    descs[0].comp_node = inputs[0].comp_node;

    descs[1].layout =
            TensorLayout({n, c, op.pooled_height, op.pooled_width}, dtype::Int32());
    descs[1].layout.init_contiguous_stride();
    descs[1].comp_node = descs[0].comp_node;

    return {descs, true};
}

SmallVector<TensorPtr> apply_on_physical_tensor(
        const OpDef& def, const SmallVector<TensorPtr>& inputs,
        SmallVector<LogicalTensorDesc>& output_descs, const bool& validated) {
    auto&& op = static_cast<const ROIAlign&>(def);
    CompNode cn = inputs[0]->comp_node();

    TensorLayout out_layout = output_descs[0].layout;
    TensorLayout ind_layout = output_descs[1].layout;
    if (!validated) {
        size_t n = inputs[1]->layout()[0];
        size_t c = inputs[0]->layout()[1];
        out_layout = TensorLayout(
                {n, c, op.pooled_height, op.pooled_width}, inputs[0]->layout().dtype);
        out_layout.init_contiguous_stride();
        ind_layout =
                TensorLayout({n, c, op.pooled_height, op.pooled_width}, dtype::Int32());
        ind_layout.init_contiguous_stride();
    }

    DeviceTensorND out =
            BlobManager::inst()->alloc_workspace_with_defrag(cn, out_layout);
    DeviceTensorND inds =
            BlobManager::inst()->alloc_workspace_with_defrag(cn, ind_layout);

    if (out_layout.is_empty() || ind_layout.is_empty()) {
        return {Tensor::make(out), Tensor::make(inds)};
    }

    DnnOprCaller<megdnn::ROIAlign> dnn_opr(cn);
    dnn_opr.op->param() = op.param();

    size_t sz = dnn_opr.op->get_workspace_in_bytes(
            inputs[0]->layout(), inputs[1]->layout(), out_layout, ind_layout);
92 93

    auto dnn_wk = dnn_opr.create_workspace(sz);
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134

    dnn_opr.op->exec(
            inputs[0]->dnn_tensor(), inputs[1]->dnn_tensor(), out.as_megdnn(),
            inds.as_megdnn(), dnn_wk);
    return {Tensor::make(out), Tensor::make(inds)};
}

SmallVector<VarNode::LayoutConstraintCallback> get_input_layout_constraint(
        const OpDef& def, const SmallVector<TensorPtr>& inputs) {
    SmallVector<VarNode::LayoutConstraintCallback> layout_checker(inputs.size());
    layout_checker[0] = layout_checker[1] = [](const TensorLayout& layout) {
        return layout.is_contiguous();
    };
    return layout_checker;
}

OP_TRAIT_REG(ROIAlign, ROIAlign)
        .apply_on_var_node(apply_on_var_node)
        .apply_on_physical_tensor(apply_on_physical_tensor)
        .infer_output_attrs_fallible(infer_output_attrs_fallible)
        .get_input_layout_constraint(get_input_layout_constraint)
        .fallback();
}  // namespace roi_align
}  // namespace

namespace {
namespace roi_pooling {
VarNodeArray apply_on_var_node(const OpDef& def, const VarNodeArray& inputs) {
    auto&& op = static_cast<const ROIPooling&>(def);
    mgb_assert(inputs.size() == 3);
    OperatorNodeConfig config{op.make_name()};
    auto* opr =
            opr::ROIPooling::make(inputs[0], inputs[1], inputs[2], op.param(), config)
                    .node()
                    ->owner_opr();
    return {opr->output(0), opr->output(1)};
}
OP_TRAIT_REG(ROIPooling, ROIPooling).apply_on_var_node(apply_on_var_node).fallback();
}  // namespace roi_pooling
}  // namespace

M
Megvii Engine Team 已提交
135 136
}  // namespace imperative
}  // namespace mgb