algos.cpp 51.4 KB
Newer Older
1 2 3 4
/**
 * \file dnn/src/armv7/matrix_mul/algos.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
9 10
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
 */

#include "src/armv7/matrix_mul/algos.h"
#include "src/armv7/matrix_mul/fp16/strategy.h"
#include "src/armv7/matrix_mul/fp32/strategy.h"
#include "src/armv7/matrix_mul/int16x16x32/strategy.h"
#include "src/armv7/matrix_mul/int8/strategy.h"
#include "src/armv7/matrix_mul/int8x8x16/strategy.h"
#include "src/armv7/matrix_mul/quint8/strategy.h"
#include "src/common/utils.h"
#include "src/fallback/matrix_mul/gemm_impl.h"

#include "midout.h"

MIDOUT_DECL(megdnn_armv7_matmul_kern)

using namespace megdnn;
using namespace armv7;

/* ===================== F32 algo ===================== */

namespace {
void f32_kern(const MatrixMulImpl::KernParam& kern_param) {
    MIDOUT_BEGIN(megdnn_armv7_matmul_kern, midout_iv("f32_kern"_hash)) {
        auto M = kern_param.M, N = kern_param.N, K = kern_param.K;
        auto trA = kern_param.trA, trB = kern_param.trB;
        auto LDA = kern_param.LDA, LDB = kern_param.LDB, LDC = kern_param.LDC;
        auto A_type = kern_param.A_type, B_type = kern_param.B_type,
             C_type = kern_param.C_type;
        const auto Aptr = kern_param.A<float>(), Bptr = kern_param.B<float>();
        auto Cptr = kern_param.C<float>();

        armv7::matmul::sgemm_4x12 strategy(M, N, K, A_type, B_type, C_type);
        megdnn::matmul::GemmInterleaved<armv7::matmul::sgemm_4x12>(
                M, N, K, trA, trB, strategy)
                .execute(Aptr, LDA, Bptr, LDB, Cptr, LDC,
                         kern_param.workspace_ptr);
    }
    MIDOUT_END();
}

}  // anonymous namespace

bool MatrixMulImpl::AlgoF32::usable(
        const KernSizeParam& kern_size_param) const {
    return kern_size_param.compute_mode == Param::ComputeMode::DEFAULT &&
           kern_size_param.format == param::MatrixMul::Format::DEFAULT &&
           kern_size_param.B_type == kern_size_param.A_type &&
           kern_size_param.C_type == kern_size_param.A_type &&
           kern_size_param.A_type == dtype::Float32();
}

size_t MatrixMulImpl::AlgoF32::get_workspace(
        const KernSizeParam& kern_size_param) const {
    MIDOUT_BEGIN(megdnn_armv7_matmul_kern,
                 midout_iv("AlgoF32::get_workspace"_hash)) {
        auto M = kern_size_param.M, N = kern_size_param.N,
             K = kern_size_param.K;
        auto trA = kern_size_param.trA, trB = kern_size_param.trB;
        auto A_type = kern_size_param.A_type, B_type = kern_size_param.B_type,
             C_type = kern_size_param.C_type;
        armv7::matmul::sgemm_4x12 strategy(M, N, K, A_type, B_type, C_type);
        return megdnn::matmul::GemmInterleaved<armv7::matmul::sgemm_4x12>(
                       M, N, K, trA, trB, strategy)
                .get_workspace_size();
    }
    MIDOUT_END();
78
    return 0;
79 80 81 82 83 84 85 86 87
}

MatrixMulImpl::kern_t MatrixMulImpl::AlgoF32::get_kern(
        const KernSizeParam&) const {
    return f32_kern;
}

MEGDNN_REG_GEMM_FUNC_FOR_IM2COL_IMPL(AlgoF32, megdnn_armv7_matmul_kern,
                                     "AlgoF32Impl"_hash,
88 89
                                     armv7::matmul::sgemm_4x12, float, float,
                                     AlgoDataType::FLOAT32, DEFAULT);
90

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
/* ===================== F32 algo mk4 K4x12 ===================== */

namespace {
void f32_mk4_pack_4x12_kern(const MatrixMulImpl::KernParam& kern_param) {
    MIDOUT_BEGIN(megdnn_armv7_matmul_kern,
                 midout_iv("f32_mk4_pack_4x12_kern"_hash)) {
        auto M = kern_param.M, N = kern_param.N, K = kern_param.K;
        auto trA = kern_param.trA, trB = kern_param.trB;
        auto LDA = kern_param.LDA, LDB = kern_param.LDB, LDC = kern_param.LDC;
        auto A_type = kern_param.A_type, B_type = kern_param.B_type,
             C_type = kern_param.C_type;
        const auto Aptr = kern_param.A<float>(), Bptr = kern_param.B<float>();
        auto Cptr = kern_param.C<float>();

        armv7::matmul::sgemm_mk4_pack_4x12 strategy(M, N, K, A_type, B_type,
                                                    C_type);
        megdnn::matmul::GemmInterleaved<armv7::matmul::sgemm_mk4_pack_4x12>(
                M, N, K, trA, trB, strategy)
                .execute(Aptr, LDA, Bptr, LDB, Cptr, LDC,
                         kern_param.workspace_ptr);
    }
    MIDOUT_END();
}

}  // anonymous namespace

bool MatrixMulImpl::AlgoF32MK4Pack4x12::usable(
        const KernSizeParam& kern_size_param) const {
    return kern_size_param.compute_mode == Param::ComputeMode::DEFAULT &&
           kern_size_param.format == param::MatrixMul::Format::MK4 &&
           kern_size_param.B_type == kern_size_param.A_type &&
           kern_size_param.C_type == kern_size_param.A_type &&
           kern_size_param.A_type == dtype::Float32() && !kern_size_param.trA &&
           !kern_size_param.trB && kern_size_param.M % 4 == 0 &&
           kern_size_param.K % 4 == 0 && !kern_size_param.trA &&
           !kern_size_param.trB;
}

size_t MatrixMulImpl::AlgoF32MK4Pack4x12::get_workspace(
        const KernSizeParam& kern_size_param) const {
    MIDOUT_BEGIN(megdnn_armv7_matmul_kern,
                 midout_iv("AlgoF32MK4Pack4x12::get_workspace"_hash)) {
        auto M = kern_size_param.M, N = kern_size_param.N,
             K = kern_size_param.K;
        auto trA = kern_size_param.trA, trB = kern_size_param.trB;
        auto A_type = kern_size_param.A_type, B_type = kern_size_param.B_type,
             C_type = kern_size_param.C_type;
        armv7::matmul::sgemm_mk4_pack_4x12 strategy(M, N, K, A_type, B_type,
                                                    C_type);
        return megdnn::matmul::GemmInterleaved<
                       armv7::matmul::sgemm_mk4_pack_4x12>(M, N, K, trA, trB,
                                                           strategy)
                .get_workspace_size();
    }
    MIDOUT_END();
146
    return 0;
147 148 149 150 151 152 153 154 155 156 157
}

MatrixMulImpl::kern_t MatrixMulImpl::AlgoF32MK4Pack4x12::get_kern(
        const KernSizeParam&) const {
    return f32_mk4_pack_4x12_kern;
}

MEGDNN_REG_GEMM_FUNC_FOR_IM2COL_IMPL(AlgoF32MK4Pack4x12,
                                     megdnn_armv7_matmul_kern,
                                     "AlgoF32MK4Pack4x12"_hash,
                                     armv7::matmul::sgemm_mk4_pack_4x12, float,
158
                                     float, AlgoDataType::FLOAT32, MK4);
159

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
#if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
/* ===================== F16 K4x16x1 algo ===================== */
namespace {
void f16_kern(const MatrixMulImpl::KernParam& kern_param) {
    MIDOUT_BEGIN(megdnn_armv7_matmul_kern, midout_iv("f16_kern"_hash)) {
        auto M = kern_param.M, N = kern_param.N, K = kern_param.K;
        auto trA = kern_param.trA, trB = kern_param.trB;
        auto LDA = kern_param.LDA, LDB = kern_param.LDB, LDC = kern_param.LDC;
        auto A_type = kern_param.A_type, B_type = kern_param.B_type,
             C_type = kern_param.C_type;
        const auto Aptr = kern_param.A<dt_float16>(),
                   Bptr = kern_param.B<dt_float16>();
        auto Cptr = kern_param.C<dt_float16>();

        armv7::matmul::hgemm_4x16 strategy(M, N, K, A_type, B_type, C_type);
        megdnn::matmul::GemmInterleaved<armv7::matmul::hgemm_4x16>(
                M, N, K, trA, trB, strategy)
                .execute(Aptr, LDA, Bptr, LDB, Cptr, LDC,
                         kern_param.workspace_ptr);
    }
    MIDOUT_END();
}
}  // anonymous namespace

bool MatrixMulImpl::AlgoF16K4x16x1::usable(
        const KernSizeParam& kern_size_param) const {
    return kern_size_param.compute_mode == Param::ComputeMode::DEFAULT &&
           kern_size_param.format == param::MatrixMul::Format::DEFAULT &&
           kern_size_param.C_type == kern_size_param.A_type &&
           kern_size_param.B_type == kern_size_param.A_type &&
           kern_size_param.A_type == dtype::Float16();
}

size_t MatrixMulImpl::AlgoF16K4x16x1::get_workspace(
        const KernSizeParam& kern_size_param) const {
    MIDOUT_BEGIN(megdnn_armv7_matmul_kern,
                 midout_iv("AlgoF16K4x16x1::get_workspace"_hash)) {
        auto M = kern_size_param.M, N = kern_size_param.N,
             K = kern_size_param.K;
        auto trA = kern_size_param.trA, trB = kern_size_param.trB;
        auto A_type = kern_size_param.A_type, B_type = kern_size_param.B_type,
             C_type = kern_size_param.C_type;
        armv7::matmul::hgemm_4x16 strategy(M, N, K, A_type, B_type, C_type);
        return megdnn::matmul::GemmInterleaved<armv7::matmul::hgemm_4x16>(
                       M, N, K, trA, trB, strategy)
                .get_workspace_size();
    }
    MIDOUT_END();
208
    return 0;
209 210 211 212 213 214 215 216 217 218
}

MatrixMulImpl::kern_t MatrixMulImpl::AlgoF16K4x16x1::get_kern(
        const KernSizeParam&) const {
    return f16_kern;
}

MEGDNN_REG_GEMM_FUNC_FOR_IM2COL_IMPL(AlgoF16K4x16x1, megdnn_armv7_matmul_kern,
                                     "AlgoF16K4x16x1"_hash,
                                     armv7::matmul::hgemm_4x16, dt_float16,
219 220
                                     dt_float16, AlgoDataType::FLOAT16,
                                     DEFAULT);
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272

#endif

/* ===================== Int8x8x32 Kernel 4x2x16 algo ===================== */

namespace {
void kern_int8x8x32_k4x2x16(const MatrixMulImpl::KernParam& kern_param) {
    MIDOUT_BEGIN(megdnn_armv7_matmul_kern,
                 midout_iv("kern_int8x8x32_k4x2x16"_hash)) {
        auto M = kern_param.M, N = kern_param.N, K = kern_param.K;
        auto Aptr = kern_param.A<dt_int8>(), Bptr = kern_param.B<dt_int8>();
        auto Cptr = kern_param.C<dt_int32>();
        auto LDA = kern_param.LDA, LDB = kern_param.LDB, LDC = kern_param.LDC;
        auto trA = kern_param.trA, trB = kern_param.trB;

        armv7::matmul::gemm_s8_4x2 strategy(M, N, K, kern_param.A_type,
                                            kern_param.B_type,
                                            kern_param.C_type);
        megdnn::matmul::GemmInterleaved<armv7::matmul::gemm_s8_4x2>(
                M, N, K, trA, trB, strategy)
                .execute(Aptr, LDA, Bptr, LDB, Cptr, LDC,
                         kern_param.workspace_ptr);
    }
    MIDOUT_END();
}
}  // anonymous namespace

bool MatrixMulImpl::AlgoInt8x8x32K4x2x16::usable(
        const KernSizeParam& kern_size_param) const {
    return can_be_treated_as_int8x8x32(kern_size_param);
}

bool MatrixMulImpl::AlgoInt8x8x32K4x2x16::preferred(
        const KernSizeParam& kern_size_param) const {
    return kern_size_param.K > 32;
}

size_t MatrixMulImpl::AlgoInt8x8x32K4x2x16::get_workspace(
        const KernSizeParam& kern_size_param) const {
    MIDOUT_BEGIN(megdnn_armv7_matmul_kern,
                 midout_iv("AlgoInt8x8x32K4x2x16::get_workspace"_hash)) {
        auto M = kern_size_param.M, N = kern_size_param.N,
             K = kern_size_param.K;
        auto A_type = kern_size_param.A_type, B_type = kern_size_param.B_type,
             C_type = kern_size_param.C_type;
        auto trA = kern_size_param.trA, trB = kern_size_param.trB;
        matmul::gemm_s8_4x2 strategy(M, N, K, A_type, B_type, C_type);
        return megdnn::matmul::GemmInterleaved<matmul::gemm_s8_4x2>(
                       M, N, K, trA, trB, strategy)
                .get_workspace_size();
    }
    MIDOUT_END();
273
    return 0;
274 275 276 277 278 279 280 281 282 283 284
}

MatrixMulImpl::kern_t MatrixMulImpl::AlgoInt8x8x32K4x2x16::get_kern(
        const KernSizeParam&) const {
    return kern_int8x8x32_k4x2x16;
}

MEGDNN_REG_GEMM_FUNC_FOR_IM2COL_IMPL(AlgoInt8x8x32K4x2x16,
                                     megdnn_armv7_matmul_kern,
                                     "AlgoInt8x8x32K4x2x16"_hash,
                                     armv7::matmul::gemm_s8_4x2, int8_t,
285 286
                                     int32_t, AlgoDataType::QINT8X8X32,
                                     DEFAULT);
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
/* ===================== Int8x8x32 Kernel 4x8x8 algo ===================== */

namespace {
void kern_int8x8x32_k4x8x8(const MatrixMulImpl::KernParam& kern_param) {
    MIDOUT_BEGIN(megdnn_armv7_matmul_kern,
                 midout_iv("kern_int8x8x32_k4x8x8"_hash)) {
        auto M = kern_param.M, N = kern_param.N, K = kern_param.K;
        auto Aptr = kern_param.A<dt_int8>(), Bptr = kern_param.B<dt_int8>();
        auto Cptr = kern_param.C<dt_int32>();
        auto LDA = kern_param.LDA, LDB = kern_param.LDB, LDC = kern_param.LDC;
        auto trA = kern_param.trA, trB = kern_param.trB;

        armv7::matmul::gemm_s8_4x8 strategy(M, N, K, kern_param.A_type,
                                            kern_param.B_type,
                                            kern_param.C_type);
        megdnn::matmul::GemmInterleaved<armv7::matmul::gemm_s8_4x8>(
                M, N, K, trA, trB, strategy)
                .execute(Aptr, LDA, Bptr, LDB, Cptr, LDC,
                         kern_param.workspace_ptr);
    }
    MIDOUT_END();
}
}  // anonymous namespace

bool MatrixMulImpl::AlgoInt8x8x32K4x8x8::usable(
        const KernSizeParam& kern_size_param) const {
    return can_be_treated_as_int8x8x32(kern_size_param);
}

bool MatrixMulImpl::AlgoInt8x8x32K4x8x8::preferred(
        const KernSizeParam& kern_size_param) const {
    return kern_size_param.K <= 32;
}

size_t MatrixMulImpl::AlgoInt8x8x32K4x8x8::get_workspace(
        const KernSizeParam& kern_size_param) const {
    MIDOUT_BEGIN(megdnn_armv7_matmul_kern,
                 midout_iv("AlgoInt8x8x32K4x8x8::get_workspace"_hash)) {
        auto M = kern_size_param.M, N = kern_size_param.N,
             K = kern_size_param.K;
        auto A_type = kern_size_param.A_type, B_type = kern_size_param.B_type,
             C_type = kern_size_param.C_type;
        auto trA = kern_size_param.trA, trB = kern_size_param.trB;
        matmul::gemm_s8_4x8 strategy(M, N, K, A_type, B_type, C_type);
        return megdnn::matmul::GemmInterleaved<matmul::gemm_s8_4x8>(
                       M, N, K, trA, trB, strategy)
                .get_workspace_size();
    }
    MIDOUT_END();
336
    return 0;
337 338 339 340 341 342 343 344 345 346 347
}

MatrixMulImpl::kern_t MatrixMulImpl::AlgoInt8x8x32K4x8x8::get_kern(
        const KernSizeParam&) const {
    return kern_int8x8x32_k4x8x8;
}

MEGDNN_REG_GEMM_FUNC_FOR_IM2COL_IMPL(AlgoInt8x8x32K4x8x8,
                                     megdnn_armv7_matmul_kern,
                                     "AlgoInt8x8x32K4x8x8"_hash,
                                     armv7::matmul::gemm_s8_4x8, int8_t,
348 349
                                     int32_t, AlgoDataType::QINT8X8X32,
                                     DEFAULT);
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
/* ===================== Quint8 Kernel 4x8x8 algo ===================== */

namespace {
void kern_quint8_k4x8x8(const MatrixMulImpl::KernParam& kern_param) {
    MIDOUT_BEGIN(megdnn_armv7_matmul_kern,
                 midout_iv("kern_quint8_k4x8x8"_hash)) {
        auto M = kern_param.M, N = kern_param.N, K = kern_param.K;
        auto Aptr = kern_param.A<dt_uint8>(), Bptr = kern_param.B<dt_uint8>();
        auto Cptr = kern_param.C<dt_int32>();
        auto LDA = kern_param.LDA, LDB = kern_param.LDB, LDC = kern_param.LDC;
        auto trA = kern_param.trA, trB = kern_param.trB;

        armv7::matmul::gemm_u8_4x8 strategy(M, N, K, kern_param.A_type,
                                            kern_param.B_type,
                                            kern_param.C_type);
        megdnn::matmul::GemmInterleaved<armv7::matmul::gemm_u8_4x8>(
                M, N, K, trA, trB, strategy)
                .execute(Aptr, LDA, Bptr, LDB, Cptr, LDC,
                         kern_param.workspace_ptr);
    }
    MIDOUT_END();
}
}  // anonymous namespace

bool MatrixMulImpl::AlgoQuint8K4x8x8::usable(
        const KernSizeParam& kern_size_param) const {
    return kern_size_param.A_type.enumv() == DTypeEnum::Quantized8Asymm &&
           kern_size_param.B_type.enumv() == DTypeEnum::Quantized8Asymm &&
           kern_size_param.C_type.enumv() == DTypeEnum::QuantizedS32 &&
           kern_size_param.format == param::MatrixMul::Format::DEFAULT &&
           kern_size_param.compute_mode == Param::ComputeMode::DEFAULT;
}

size_t MatrixMulImpl::AlgoQuint8K4x8x8::get_workspace(
        const KernSizeParam& kern_size_param) const {
    MIDOUT_BEGIN(megdnn_armv7_matmul_kern,
                 midout_iv("AlgoQuint8K4x8x8::get_workspace"_hash)) {
        auto M = kern_size_param.M, N = kern_size_param.N,
             K = kern_size_param.K;
        auto A_type = kern_size_param.A_type, B_type = kern_size_param.B_type,
             C_type = kern_size_param.C_type;
        auto trA = kern_size_param.trA, trB = kern_size_param.trB;
        matmul::gemm_u8_4x8 strategy(M, N, K, A_type, B_type, C_type);
        return megdnn::matmul::GemmInterleaved<matmul::gemm_u8_4x8>(
                       M, N, K, trA, trB, strategy)
                .get_workspace_size();
    }
    MIDOUT_END();
398
    return 0;
399 400 401 402 403 404 405 406 407 408
}

MatrixMulImpl::kern_t MatrixMulImpl::AlgoQuint8K4x8x8::get_kern(
        const KernSizeParam&) const {
    return kern_quint8_k4x8x8;
}

MEGDNN_REG_GEMM_FUNC_FOR_IM2COL_IMPL(AlgoQuint8K4x8x8, megdnn_armv7_matmul_kern,
                                     "AlgoQuint8K4x8x8"_hash,
                                     armv7::matmul::gemm_u8_4x8, uint8_t,
409 410
                                     int32_t, AlgoDataType::QUINT8X8X32,
                                     DEFAULT);
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
/* ===================== Int8x8x16 Kernel 2x4x16 algo ===================== */

namespace {
void kern_int8x8x16_k2x4x16(const MatrixMulImpl::KernParam& kern_param) {
    MIDOUT_BEGIN(megdnn_armv7_matmul_kern,
                 midout_iv("kern_int8x8x16_k2x4x16"_hash)) {
        auto M = kern_param.M, N = kern_param.N, K = kern_param.K;
        auto Aptr = kern_param.A<dt_int8>(), Bptr = kern_param.B<dt_int8>();
        auto Cptr = kern_param.C<dt_int16>();
        auto LDA = kern_param.LDA, LDB = kern_param.LDB, LDC = kern_param.LDC;
        auto trA = kern_param.trA, trB = kern_param.trB;

        armv7::matmul::gemm_s8x8x16_4x2 strategy(M, N, K, kern_param.A_type,
                                                 kern_param.B_type,
                                                 kern_param.C_type);
        megdnn::matmul::GemmInterleaved<armv7::matmul::gemm_s8x8x16_4x2>(
                M, N, K, trA, trB, strategy)
                .execute(Aptr, LDA, Bptr, LDB, Cptr, LDC,
                         kern_param.workspace_ptr);
    }
    MIDOUT_END();
}
}  // anonymous namespace

bool MatrixMulImpl::AlgoInt8x8x16K4x2x16::usable(
        const KernSizeParam& kern_size_param) const {
    return kern_size_param.A_type == kern_size_param.B_type &&
           kern_size_param.A_type == dtype::Int8() &&
           kern_size_param.C_type == dtype::Int16() &&
           kern_size_param.format == param::MatrixMul::Format::DEFAULT &&
           kern_size_param.compute_mode == Param::ComputeMode::DEFAULT;
}

size_t MatrixMulImpl::AlgoInt8x8x16K4x2x16::get_workspace(
        const KernSizeParam& kern_size_param) const {
    MIDOUT_BEGIN(megdnn_armv7_matmul_kern,
                 midout_iv("AlgoInt8x8x16K4x2x16::get_workspace"_hash)) {
        auto M = kern_size_param.M, N = kern_size_param.N,
             K = kern_size_param.K;
        auto A_type = kern_size_param.A_type, B_type = kern_size_param.B_type,
             C_type = kern_size_param.C_type;
        auto trA = kern_size_param.trA, trB = kern_size_param.trB;
        matmul::gemm_s8x8x16_4x2 strategy(M, N, K, A_type, B_type, C_type);
        return megdnn::matmul::GemmInterleaved<matmul::gemm_s8x8x16_4x2>(
                       M, N, K, trA, trB, strategy)
                .get_workspace_size();
    }
    MIDOUT_END();
459
    return 0;
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
}

MatrixMulImpl::kern_t MatrixMulImpl::AlgoInt8x8x16K4x2x16::get_kern(
        const KernSizeParam&) const {
    return kern_int8x8x16_k2x4x16;
}

bool MatrixMulImpl::AlgoInt8x8x16K4x2x16::preferred(
        const KernSizeParam& kern_size_param) const {
    return kern_size_param.K > 128;
}

MEGDNN_REG_GEMM_FUNC_FOR_IM2COL_IMPL(AlgoInt8x8x16K4x2x16,
                                     megdnn_armv7_matmul_kern,
                                     "AlgoInt8x8x16K4x2x16"_hash,
                                     armv7::matmul::gemm_s8x8x16_4x2, int8_t,
476
                                     int16_t, AlgoDataType::INT8X8X16, DEFAULT);
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
/* ===================== Int8x8x16 Kernel 4x8x8 algo ===================== */

namespace {
void kern_int8x8x16_k4x8x8(const MatrixMulImpl::KernParam& kern_param) {
    MIDOUT_BEGIN(megdnn_armv7_matmul_kern,
                 midout_iv("kern_int8x8x16_k4x8x8"_hash)) {
        auto M = kern_param.M, N = kern_param.N, K = kern_param.K;
        auto Aptr = kern_param.A<dt_int8>(), Bptr = kern_param.B<dt_int8>();
        auto Cptr = kern_param.C<dt_int16>();
        auto LDA = kern_param.LDA, LDB = kern_param.LDB, LDC = kern_param.LDC;
        auto trA = kern_param.trA, trB = kern_param.trB;

        armv7::matmul::gemm_s8x8x16_4x8 strategy(M, N, K, kern_param.A_type,
                                                 kern_param.B_type,
                                                 kern_param.C_type);
        megdnn::matmul::GemmInterleaved<armv7::matmul::gemm_s8x8x16_4x8>(
                M, N, K, trA, trB, strategy)
                .execute(Aptr, LDA, Bptr, LDB, Cptr, LDC,
                         kern_param.workspace_ptr);
    }
    MIDOUT_END();
}
}  // anonymous namespace

bool MatrixMulImpl::AlgoInt8x8x16K4x8x8::usable(
        const KernSizeParam& kern_size_param) const {
    return kern_size_param.A_type == kern_size_param.B_type &&
           kern_size_param.A_type == dtype::Int8() &&
           kern_size_param.C_type == dtype::Int16() &&
           kern_size_param.format == param::MatrixMul::Format::DEFAULT &&
           kern_size_param.compute_mode == Param::ComputeMode::DEFAULT;
}

size_t MatrixMulImpl::AlgoInt8x8x16K4x8x8::get_workspace(
        const KernSizeParam& kern_size_param) const {
    MIDOUT_BEGIN(megdnn_armv7_matmul_kern,
                 midout_iv("AlgoInt8x8x16K4x8x8::get_workspace"_hash)) {
        auto M = kern_size_param.M, N = kern_size_param.N,
             K = kern_size_param.K;
        auto A_type = kern_size_param.A_type, B_type = kern_size_param.B_type,
             C_type = kern_size_param.C_type;
        auto trA = kern_size_param.trA, trB = kern_size_param.trB;
        matmul::gemm_s8x8x16_4x8 strategy(M, N, K, A_type, B_type, C_type);
        return megdnn::matmul::GemmInterleaved<matmul::gemm_s8x8x16_4x8>(
                       M, N, K, trA, trB, strategy)
                .get_workspace_size();
    }
    MIDOUT_END();
525
    return 0;
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
}

MatrixMulImpl::kern_t MatrixMulImpl::AlgoInt8x8x16K4x8x8::get_kern(
        const KernSizeParam&) const {
    return kern_int8x8x16_k4x8x8;
}

bool MatrixMulImpl::AlgoInt8x8x16K4x8x8::preferred(
        const KernSizeParam& kern_size_param) const {
    return kern_size_param.K >= 8 && kern_size_param.K <= 128;
}

MEGDNN_REG_GEMM_FUNC_FOR_IM2COL_IMPL(AlgoInt8x8x16K4x8x8,
                                     megdnn_armv7_matmul_kern,
                                     "AlgoInt8x8x16K4x8x8"_hash,
                                     armv7::matmul::gemm_s8x8x16_4x8, int8_t,
542
                                     int16_t, AlgoDataType::INT8X8X16, DEFAULT);
543

544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
/* ===================== Int8x8x16 Kernel 8x8x4 algo ===================== */

namespace {
void kern_int8x8x16_k8x8x4(const MatrixMulImpl::KernParam& kern_param) {
    MIDOUT_BEGIN(megdnn_armv7_matmul_kern,
                 midout_iv("kern_int8x8x16_k8x8x4"_hash)) {
        auto M = kern_param.M, N = kern_param.N, K = kern_param.K;
        auto Aptr = kern_param.A<dt_int8>(), Bptr = kern_param.B<dt_int8>();
        auto Cptr = kern_param.C<dt_int16>();
        auto LDA = kern_param.LDA, LDB = kern_param.LDB, LDC = kern_param.LDC;
        auto trA = kern_param.trA, trB = kern_param.trB;

        armv7::matmul::gemm_s8x8x16_8x8 strategy(M, N, K, kern_param.A_type,
                                                 kern_param.B_type,
                                                 kern_param.C_type);
        megdnn::matmul::GemmInterleaved<armv7::matmul::gemm_s8x8x16_8x8>(
                M, N, K, trA, trB, strategy)
                .execute(Aptr, LDA, Bptr, LDB, Cptr, LDC,
                         kern_param.workspace_ptr);
    }
    MIDOUT_END();
}
}  // anonymous namespace

bool MatrixMulImpl::AlgoInt8x8x16K8x8x4::usable(
        const KernSizeParam& kern_size_param) const {
    return kern_size_param.A_type == kern_size_param.B_type &&
           kern_size_param.A_type == dtype::Int8() &&
           kern_size_param.C_type == dtype::Int16() &&
           kern_size_param.format == param::MatrixMul::Format::DEFAULT &&
           kern_size_param.compute_mode == Param::ComputeMode::DEFAULT;
}

size_t MatrixMulImpl::AlgoInt8x8x16K8x8x4::get_workspace(
        const KernSizeParam& kern_size_param) const {
    MIDOUT_BEGIN(megdnn_armv7_matmul_kern,
                 midout_iv("AlgoInt8x8x16K8x8x4::get_workspace"_hash)) {
        auto M = kern_size_param.M, N = kern_size_param.N,
             K = kern_size_param.K;
        auto A_type = kern_size_param.A_type, B_type = kern_size_param.B_type,
             C_type = kern_size_param.C_type;
        auto trA = kern_size_param.trA, trB = kern_size_param.trB;
        matmul::gemm_s8x8x16_8x8 strategy(M, N, K, A_type, B_type, C_type);
        return megdnn::matmul::GemmInterleaved<matmul::gemm_s8x8x16_8x8>(
                       M, N, K, trA, trB, strategy)
                .get_workspace_size();
    }
    MIDOUT_END();
    return 0;
}

MatrixMulImpl::kern_t MatrixMulImpl::AlgoInt8x8x16K8x8x4::get_kern(
        const KernSizeParam&) const {
    return kern_int8x8x16_k8x8x4;
}

bool MatrixMulImpl::AlgoInt8x8x16K8x8x4::preferred(
        const KernSizeParam& kern_size_param) const {
    return kern_size_param.K >= 8 && kern_size_param.K <= 128;
}

MEGDNN_REG_GEMM_FUNC_FOR_IM2COL_IMPL(AlgoInt8x8x16K8x8x4,
                                     megdnn_armv7_matmul_kern,
                                     "AlgoInt8x8x16K8x8x4"_hash,
                                     armv7::matmul::gemm_s8x8x16_8x8, int8_t,
                                     int16_t, AlgoDataType::INT8X8X16, DEFAULT);


612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
/* =================== Int8x8x16 Kernel MK4 8x8x4 algo ===================*/

namespace {
void kern_int8x8x16_mk4_k8x8x4(const MatrixMulImpl::KernParam& kern_param) {
    MIDOUT_BEGIN(megdnn_armv7_matmul_kern,
                 midout_iv("kern_int8x8x16_mk4_k8x8x4"_hash)) {
        auto M = kern_param.M, N = kern_param.N, K = kern_param.K;
        auto Aptr = kern_param.A<dt_int8>(), Bptr = kern_param.B<dt_int8>();
        auto Cptr = kern_param.C<dt_int16>();
        auto LDA = kern_param.LDA, LDB = kern_param.LDB, LDC = kern_param.LDC;
        auto trA = kern_param.trA, trB = kern_param.trB;

        armv7::matmul::gemm_s8x8x16_mk4_8x8 strategy(M, N, K, kern_param.A_type,
                                                     kern_param.B_type,
                                                     kern_param.C_type);
        megdnn::matmul::GemmInterleaved<armv7::matmul::gemm_s8x8x16_mk4_8x8>(
                M, N, K, trA, trB, strategy)
                .execute(Aptr, LDA, Bptr, LDB, Cptr, LDC,
                         kern_param.workspace_ptr);
    }
    MIDOUT_END();
}
}  // anonymous namespace

bool MatrixMulImpl::AlgoInt8x8x16MK4_8x8x4::usable(
        const KernSizeParam& kern_size_param) const {
    bool type_ok = can_be_treated_as_int8x8x16(kern_size_param);

    return type_ok && kern_size_param.format == param::MatrixMul::Format::MK4 &&
           kern_size_param.compute_mode == Param::ComputeMode::DEFAULT &&
           !kern_size_param.trA && !kern_size_param.trB &&
           kern_size_param.M % 4 == 0 && kern_size_param.K % 4 == 0;
}

size_t MatrixMulImpl::AlgoInt8x8x16MK4_8x8x4::get_workspace(
        const KernSizeParam& kern_size_param) const {
    MIDOUT_BEGIN(megdnn_armv7_matmul_kern,
                 midout_iv("AlgoInt8x8x16K8x8x4::get_workspace"_hash)) {
        auto M = kern_size_param.M, N = kern_size_param.N,
             K = kern_size_param.K;
        auto A_type = kern_size_param.A_type, B_type = kern_size_param.B_type,
             C_type = kern_size_param.C_type;
        auto trA = kern_size_param.trA, trB = kern_size_param.trB;
        matmul::gemm_s8x8x16_mk4_8x8 strategy(M, N, K, A_type, B_type, C_type);
        return megdnn::matmul::GemmInterleaved<matmul::gemm_s8x8x16_mk4_8x8>(
                       M, N, K, trA, trB, strategy)
                .get_workspace_size();
    }
    MIDOUT_END();
661
    return 0;
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
}

MatrixMulImpl::kern_t MatrixMulImpl::AlgoInt8x8x16MK4_8x8x4::get_kern(
        const KernSizeParam&) const {
    return kern_int8x8x16_mk4_k8x8x4;
}

bool MatrixMulImpl::AlgoInt8x8x16MK4_8x8x4::preferred(
        const KernSizeParam& kern_size_param) const {
    return kern_size_param.K >= 4;
}

MEGDNN_REG_GEMM_FUNC_FOR_IM2COL_IMPL_DETAIL(AlgoInt8x8x16MK4_8x8x4,
                                            megdnn_armv7_matmul_kern,
                                            "AlgoInt8x8x16MK4_8x8x4"_hash,
                                            armv7::matmul::gemm_s8x8x16_mk4_8x8,
678 679
                                            int8_t, int16_t, int16_t,
                                            AlgoDataType::INT8X8X16, MK4);
680

681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
/* ===================== Int16x16x32 Kernel 12x4x1 algo ===================== */

namespace {
void kern_int16x16x32K12x4x1(const MatrixMulImpl::KernParam& kern_param) {
    MIDOUT_BEGIN(megdnn_armv7_matmul_kern,
                 midout_iv("kern_int16x16x32K12x4x1"_hash)) {
        auto M = kern_param.M, N = kern_param.N, K = kern_param.K;
        auto Aptr = kern_param.A<dt_int16>(), Bptr = kern_param.B<dt_int16>();
        auto Cptr = kern_param.C<dt_int32>();
        auto LDA = kern_param.LDA, LDB = kern_param.LDB, LDC = kern_param.LDC;
        auto trA = kern_param.trA, trB = kern_param.trB;

        armv7::matmul::gemm_s16x16x32_12x4 strategy(M, N, K, kern_param.A_type,
                                                    kern_param.B_type,
                                                    kern_param.C_type);
        megdnn::matmul::GemmInterleaved<armv7::matmul::gemm_s16x16x32_12x4>(
                M, N, K, trA, trB, strategy)
                .execute(Aptr, LDA, Bptr, LDB, Cptr, LDC,
                         kern_param.workspace_ptr);
    }
    MIDOUT_END();
}
}  // anonymous namespace
bool MatrixMulImpl::AlgoInt16x16x32K12x4x1::usable(
        const KernSizeParam& kern_size_param) const {
    return kern_size_param.A_type == kern_size_param.B_type &&
           kern_size_param.A_type == dtype::Int16() &&
           kern_size_param.C_type == dtype::Int32() &&
           kern_size_param.format == param::MatrixMul::Format::DEFAULT &&
           kern_size_param.compute_mode == Param::ComputeMode::DEFAULT;
}

size_t MatrixMulImpl::AlgoInt16x16x32K12x4x1::get_workspace(
        const KernSizeParam& kern_size_param) const {
    MIDOUT_BEGIN(megdnn_armv7_matmul_kern,
                 midout_iv("AlgoInt16x16x32K12x4x1::get_workspace"_hash)) {
        auto M = kern_size_param.M, N = kern_size_param.N,
             K = kern_size_param.K;
        auto A_type = kern_size_param.A_type, B_type = kern_size_param.B_type,
             C_type = kern_size_param.C_type;
        auto trA = kern_size_param.trA, trB = kern_size_param.trB;
        matmul::gemm_s16x16x32_12x4 strategy(M, N, K, A_type, B_type, C_type);
        return megdnn::matmul::GemmInterleaved<matmul::gemm_s16x16x32_12x4>(
                       M, N, K, trA, trB, strategy)
                .get_workspace_size();
    }
    MIDOUT_END();
728
    return 0;
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
}

MatrixMulImpl::kern_t MatrixMulImpl::AlgoInt16x16x32K12x4x1::get_kern(
        const KernSizeParam&) const {
    return kern_int16x16x32K12x4x1;
}

bool MatrixMulImpl::AlgoInt16x16x32K12x4x1::preferred(
        const KernSizeParam& /*kern_size_param*/) const {
    return true;
}

MEGDNN_REG_GEMM_FUNC_FOR_IM2COL_IMPL(AlgoInt16x16x32K12x4x1,
                                     megdnn_armv7_matmul_kern,
                                     "AlgoInt16x16x32K12x4x1"_hash,
                                     armv7::matmul::gemm_s16x16x32_12x4,
745 746
                                     int16_t, int32_t,
                                     AlgoDataType::INT16X16X32, DEFAULT);
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
#if __ARM_FEATURE_DOTPROD
/* ===================== Int8 K6x8x4 algo ===================== */
namespace {
void int8_k6x8x4_kern(const MatrixMulImpl::KernParam& kern_param) {
    MIDOUT_BEGIN(megdnn_armv7_matmul_kern, midout_iv("int8_k6x8x4_kern"_hash)) {
        auto M = kern_param.M, N = kern_param.N, K = kern_param.K;
        auto trA = kern_param.trA, trB = kern_param.trB;
        auto LDA = kern_param.LDA, LDB = kern_param.LDB, LDC = kern_param.LDC;
        auto A_type = kern_param.A_type, B_type = kern_param.B_type,
             C_type = kern_param.C_type;
        const auto Aptr = kern_param.A<dt_int8>(),
                   Bptr = kern_param.B<dt_int8>();
        auto Cptr = kern_param.C<dt_int32>();
        armv7::matmul::gemm_dots8_6x8 strategy(M, N, K, A_type, B_type, C_type);
        megdnn::matmul::GemmInterleaved<armv7::matmul::gemm_dots8_6x8>(
                M, N, K, trA, trB, strategy)
                .execute(Aptr, LDA, Bptr, LDB, Cptr, LDC,
                         kern_param.workspace_ptr);
    }
    MIDOUT_END();
}
}  // namespace

bool MatrixMulImpl::AlgoInt8x8x32K6x8x4::usable(
        const KernSizeParam& kern_size_param) const {
    return can_be_treated_as_int8x8x32(kern_size_param);
}

size_t MatrixMulImpl::AlgoInt8x8x32K6x8x4::get_workspace(
        const KernSizeParam& kern_size_param) const {
    MIDOUT_BEGIN(megdnn_armv7_matmul_kern,
                 midout_iv("AlgoInt8x8x32K6x8x4::get_workspace"_hash)) {
        auto M = kern_size_param.M, N = kern_size_param.N,
             K = kern_size_param.K;
        auto trA = kern_size_param.trA, trB = kern_size_param.trB;
        auto A_type = kern_size_param.A_type, B_type = kern_size_param.B_type,
             C_type = kern_size_param.C_type;
        armv7::matmul::gemm_dots8_6x8 strategy(M, N, K, A_type, B_type, C_type);
        return megdnn::matmul::GemmInterleaved<armv7::matmul::gemm_dots8_6x8>(
                       M, N, K, trA, trB, strategy)
                .get_workspace_size();
    }
    MIDOUT_END();
790
    return 0;
791 792 793 794 795 796 797 798 799 800 801
}

MatrixMulImpl::kern_t MatrixMulImpl::AlgoInt8x8x32K6x8x4::get_kern(
        const KernSizeParam&) const {
    return int8_k6x8x4_kern;
}

MEGDNN_REG_GEMM_FUNC_FOR_IM2COL_IMPL(AlgoInt8x8x32K6x8x4,
                                     megdnn_armv7_matmul_kern,
                                     "AlgoInt8x8x32K6x8x4"_hash,
                                     armv7::matmul::gemm_dots8_6x8, int8_t,
802 803
                                     int32_t, AlgoDataType::QINT8X8X32,
                                     DEFAULT);
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
/* ===================== Quint8 K4x8x4 algo ===================== */
namespace {
void quint8_dot_k4x8x4_kern(const MatrixMulImpl::KernParam& kern_param) {
    MIDOUT_BEGIN(megdnn_armv7_matmul_kern,
                 midout_iv("quint8_dot_k4x8x4_kern"_hash)) {
        auto M = kern_param.M, N = kern_param.N, K = kern_param.K;
        auto trA = kern_param.trA, trB = kern_param.trB;
        auto LDA = kern_param.LDA, LDB = kern_param.LDB, LDC = kern_param.LDC;
        auto A_type = kern_param.A_type, B_type = kern_param.B_type,
             C_type = kern_param.C_type;
        const auto Aptr = kern_param.A<dt_uint8>(),
                   Bptr = kern_param.B<dt_uint8>();
        auto Cptr = kern_param.C<dt_int32>();
        armv7::matmul::gemm_dot_quint8_4x8 strategy(M, N, K, A_type, B_type,
                                                    C_type);
        megdnn::matmul::GemmInterleaved<armv7::matmul::gemm_dot_quint8_4x8>(
                M, N, K, trA, trB, strategy)
                .execute(Aptr, LDA, Bptr, LDB, Cptr, LDC,
                         kern_param.workspace_ptr);
    }
    MIDOUT_END();
}
}  // namespace

bool MatrixMulImpl::AlgoQuint8DotK4x8x4::usable(
        const KernSizeParam& kern_size_param) const {
    return kern_size_param.A_type.enumv() == DTypeEnum::Quantized8Asymm &&
           kern_size_param.B_type.enumv() == DTypeEnum::Quantized8Asymm &&
           kern_size_param.C_type.enumv() == DTypeEnum::QuantizedS32 &&
           kern_size_param.format == param::MatrixMul::Format::DEFAULT &&
           kern_size_param.compute_mode == Param::ComputeMode::DEFAULT;
}

size_t MatrixMulImpl::AlgoQuint8DotK4x8x4::get_workspace(
        const KernSizeParam& kern_size_param) const {
    MIDOUT_BEGIN(megdnn_armv7_matmul_kern,
                 midout_iv("AlgoQuint8DotK4x8x4::get_workspace"_hash)) {
        auto M = kern_size_param.M, N = kern_size_param.N,
             K = kern_size_param.K;
        auto trA = kern_size_param.trA, trB = kern_size_param.trB;
        auto A_type = kern_size_param.A_type, B_type = kern_size_param.B_type,
             C_type = kern_size_param.C_type;
        armv7::matmul::gemm_dot_quint8_4x8 strategy(M, N, K, A_type, B_type,
                                                    C_type);
        return megdnn::matmul::GemmInterleaved<
                       armv7::matmul::gemm_dot_quint8_4x8>(M, N, K, trA, trB,
                                                           strategy)
                .get_workspace_size();
    }
    MIDOUT_END();
854
    return 0;
855 856 857 858 859 860 861 862 863 864
}

MatrixMulImpl::kern_t MatrixMulImpl::AlgoQuint8DotK4x8x4::get_kern(
        const KernSizeParam&) const {
    return quint8_dot_k4x8x4_kern;
}
MEGDNN_REG_GEMM_FUNC_FOR_IM2COL_IMPL(AlgoQuint8DotK4x8x4,
                                     megdnn_armv7_matmul_kern,
                                     "AlgoQuint8DotK4x8x4"_hash,
                                     armv7::matmul::gemm_dot_quint8_4x8,
865 866
                                     uint8_t, int32_t,
                                     AlgoDataType::QUINT8X8X32, DEFAULT);
867

868
/* ======================== Int8 MK4 8x4x4 dot algo ======================== */
869
namespace {
870
void int8_mk4_8x4x4_dotprod_kern(const MatrixMulImpl::KernParam& kern_param) {
871
    MIDOUT_BEGIN(megdnn_armv7_matmul_kern,
872
                 midout_iv("int8_mk4_8x4x4_dotprod_kern"_hash)) {
873 874 875 876 877 878 879 880
        auto M = kern_param.M, N = kern_param.N, K = kern_param.K;
        auto trA = kern_param.trA, trB = kern_param.trB;
        auto LDA = kern_param.LDA, LDB = kern_param.LDB, LDC = kern_param.LDC;
        auto A_type = kern_param.A_type, B_type = kern_param.B_type,
             C_type = kern_param.C_type;
        const auto Aptr = kern_param.A<dt_int8>(),
                   Bptr = kern_param.B<dt_int8>();
        auto Cptr = kern_param.C<dt_int32>();
881
        armv7::matmul::gemm_mk4_dots8_8x4 strategy(M, N, K, A_type, B_type,
882
                                                   C_type);
883
        megdnn::matmul::GemmInterleaved<armv7::matmul::gemm_mk4_dots8_8x4>(
884 885 886 887 888 889 890 891
                M, N, K, trA, trB, strategy)
                .execute(Aptr, LDA, Bptr, LDB, Cptr, LDC,
                         kern_param.workspace_ptr);
    }
    MIDOUT_END();
}
}  // namespace

892
bool MatrixMulImpl::AlgoInt8x8x32MK4_8x4x4DotProd::usable(
893 894 895 896 897 898 899 900 901 902 903
        const KernSizeParam& kern_size_param) const {
    return kern_size_param.A_type.enumv() == kern_size_param.B_type.enumv() &&
           (kern_size_param.A_type.enumv() == DTypeEnum::Int8 ||
            kern_size_param.A_type.enumv() == DTypeEnum::QuantizedS8) &&
           (kern_size_param.C_type.enumv() == DTypeEnum::Int32 ||
            kern_size_param.C_type.enumv() == DTypeEnum::QuantizedS32) &&
           kern_size_param.compute_mode == Param::ComputeMode::DEFAULT &&
           kern_size_param.format == param::MatrixMul::Format::MK4_DOT &&
           !kern_size_param.trA && !kern_size_param.trB;
}

904
size_t MatrixMulImpl::AlgoInt8x8x32MK4_8x4x4DotProd::get_workspace(
905 906 907
        const KernSizeParam& kern_size_param) const {
    MIDOUT_BEGIN(
            megdnn_armv7_matmul_kern,
908
            midout_iv("AlgoInt8x8x32MK4_8x4x4DotProd::get_workspace"_hash)) {
909 910 911 912 913
        auto M = kern_size_param.M, N = kern_size_param.N,
             K = kern_size_param.K;
        auto trA = kern_size_param.trA, trB = kern_size_param.trB;
        auto A_type = kern_size_param.A_type, B_type = kern_size_param.B_type,
             C_type = kern_size_param.C_type;
914
        armv7::matmul::gemm_mk4_dots8_8x4 strategy(M, N, K, A_type, B_type,
915 916
                                                   C_type);
        return megdnn::matmul::GemmInterleaved<
917
                       armv7::matmul::gemm_mk4_dots8_8x4>(M, N, K, trA, trB,
918 919 920 921
                                                          strategy)
                .get_workspace_size();
    }
    MIDOUT_END();
922
    return 0;
923 924
}

925
MatrixMulImpl::kern_t MatrixMulImpl::AlgoInt8x8x32MK4_8x4x4DotProd::get_kern(
926
        const KernSizeParam&) const {
927
    return int8_mk4_8x4x4_dotprod_kern;
928 929
}

930
MEGDNN_REG_GEMM_FUNC_FOR_IM2COL_IMPL(AlgoInt8x8x32MK4_8x4x4DotProd,
931
                                     megdnn_armv7_matmul_kern,
932 933
                                     "AlgoInt8x8x32MK4_8x4x4DotProd"_hash,
                                     armv7::matmul::gemm_mk4_dots8_8x4, int8_t,
934
                                     int32_t, AlgoDataType::QINT8X8X32, MK4_DOT);
935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
#endif

/* ===================== F32 algo K4x8 ===================== */

namespace {
void f32_mk4_4x8_kern(const MatrixMulImpl::KernParam& kern_param) {
    MIDOUT_BEGIN(megdnn_armv7_matmul_kern, midout_iv("f32_mk4_4x8_kern"_hash)) {
        auto M = kern_param.M, N = kern_param.N, K = kern_param.K;
        auto trA = kern_param.trA, trB = kern_param.trB;
        auto LDA = kern_param.LDA, LDB = kern_param.LDB, LDC = kern_param.LDC;
        auto A_type = kern_param.A_type, B_type = kern_param.B_type,
             C_type = kern_param.C_type;
        const auto Aptr = kern_param.A<float>(), Bptr = kern_param.B<float>();
        auto Cptr = kern_param.C<float>();

        armv7::matmul::sgemm_nopack_4x8 strategy(A_type, B_type, C_type);
        megdnn::matmul::GemmInterleaved<armv7::matmul::sgemm_nopack_4x8, false>(
                M, N, K, trA, trB, strategy)
                .execute(Aptr, LDA, Bptr, LDB, Cptr, LDC,
                         kern_param.workspace_ptr);
    }
    MIDOUT_END();
}

}  // anonymous namespace

bool MatrixMulImpl::AlgoF32MK4_4x8::usable(
        const KernSizeParam& kern_size_param) const {
    return kern_size_param.compute_mode == Param::ComputeMode::DEFAULT &&
           kern_size_param.format == param::MatrixMul::Format::MK4 &&
           kern_size_param.B_type == kern_size_param.A_type &&
           kern_size_param.C_type == kern_size_param.A_type &&
           kern_size_param.A_type == dtype::Float32() &&
968
           !kern_size_param.trA && !kern_size_param.trB;
969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
}

size_t MatrixMulImpl::AlgoF32MK4_4x8::get_workspace(
        const KernSizeParam& kern_size_param) const {
    MIDOUT_BEGIN(megdnn_armv7_matmul_kern,
                 midout_iv("AlgoF32MK4_4x8::get_workspace"_hash)) {
        auto M = kern_size_param.M, N = kern_size_param.N,
             K = kern_size_param.K;
        auto trA = kern_size_param.trA, trB = kern_size_param.trB;
        auto A_type = kern_size_param.A_type, B_type = kern_size_param.B_type,
             C_type = kern_size_param.C_type;
        armv7::matmul::sgemm_nopack_4x8 strategy(A_type, B_type, C_type);
        return megdnn::matmul::GemmInterleaved<armv7::matmul::sgemm_nopack_4x8,
                                               false>(M, N, K, trA, trB,
                                                      strategy)
                .get_workspace_size();
    }
    MIDOUT_END();
987
    return 0;
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
}

MatrixMulImpl::kern_t MatrixMulImpl::AlgoF32MK4_4x8::get_kern(
        const KernSizeParam&) const {
    return f32_mk4_4x8_kern;
}

/* ===================== Int16x16x32 MK8 4x8 algo ===================== */

bool MatrixMulImpl::AlgoInt16x16x32MK8_4x8::usable(
        const KernSizeParam& kern_size_param) const {
    return kern_size_param.compute_mode == Param::ComputeMode::DEFAULT &&
           kern_size_param.format == param::MatrixMul::Format::MK8 &&
           kern_size_param.A_type == dtype::Int16() &&
           kern_size_param.B_type == dtype::Int16() &&
           kern_size_param.C_type == dtype::Int32() &&
1004
           !kern_size_param.trA && !kern_size_param.trB;
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
}

size_t MatrixMulImpl::AlgoInt16x16x32MK8_4x8::get_workspace(
        const KernSizeParam& kern_size_param) const {
    MIDOUT_BEGIN(megdnn_armv7_matmul_kern,
                 midout_iv("AlgoInt16x16x32MK8_4x8::get_workspace"_hash)) {
        auto M = kern_size_param.M, N = kern_size_param.N,
             K = kern_size_param.K;
        auto trA = kern_size_param.trA, trB = kern_size_param.trB;
        auto A_type = kern_size_param.A_type, B_type = kern_size_param.B_type,
             C_type = kern_size_param.C_type;
        armv7::matmul::gemm_nopack_s16_4x8 strategy(A_type, B_type, C_type);
        return megdnn::matmul::GemmInterleaved<
                       armv7::matmul::gemm_nopack_s16_4x8, false>(M, N, K, trA,
                                                                  trB, strategy)
                .get_workspace_size();
    }
    MIDOUT_END();
1023
    return 0;
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
}

MatrixMulImpl::kern_t MatrixMulImpl::AlgoInt16x16x32MK8_4x8::get_kern(
        const KernSizeParam&) const {
    auto kern_mk8_4x8 = [](const MatrixMulImpl::KernParam& kern_param) {
        MIDOUT_BEGIN(megdnn_armv7_matmul_kern,
                     midout_iv("AlgoInt16x16x32MK8_4x8::get_kern"_hash)) {
            auto M = kern_param.M, N = kern_param.N, K = kern_param.K;
            auto trA = kern_param.trA, trB = kern_param.trB;
            auto LDA = kern_param.LDA, LDB = kern_param.LDB,
                 LDC = kern_param.LDC;
            auto A_type = kern_param.A_type, B_type = kern_param.B_type,
                 C_type = kern_param.C_type;
            const auto Aptr = kern_param.A<dt_int16>(),
                       Bptr = kern_param.B<dt_int16>();
            auto Cptr = kern_param.C<dt_int32>();

            armv7::matmul::gemm_nopack_s16_4x8 strategy(A_type, B_type, C_type);
            megdnn::matmul::GemmInterleaved<armv7::matmul::gemm_nopack_s16_4x8,
                                            false>(M, N, K, trA, trB, strategy)
                    .execute(Aptr, LDA, Bptr, LDB, Cptr, LDC,
                             kern_param.workspace_ptr);
        }
        MIDOUT_END();
    };
    return kern_mk8_4x8;
}

#if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
/* ===================== F16_MK8_4x8 algo ===================== */

bool MatrixMulImpl::AlgoF16MK8_4x8::usable(
        const KernSizeParam& kern_size_param) const {
    return kern_size_param.compute_mode == Param::ComputeMode::DEFAULT &&
           kern_size_param.C_type == kern_size_param.A_type &&
           kern_size_param.B_type == kern_size_param.A_type &&
           kern_size_param.A_type == dtype::Float16() &&
           kern_size_param.format == param::MatrixMul::Format::MK8 &&
1062
           !kern_size_param.trA && !kern_size_param.trB;
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
}

size_t MatrixMulImpl::AlgoF16MK8_4x8::get_workspace(
        const KernSizeParam& kern_size_param) const {
    MIDOUT_BEGIN(megdnn_armv7_matmul_kern,
                 midout_iv("AlgoF16MK8_4x8::get_workspace"_hash)) {
        auto M = kern_size_param.M, N = kern_size_param.N,
             K = kern_size_param.K;
        auto trA = kern_size_param.trA, trB = kern_size_param.trB;
        auto A_type = kern_size_param.A_type, B_type = kern_size_param.B_type,
             C_type = kern_size_param.C_type;
        armv7::matmul::gemm_nopack_f16_4x8 strategy(A_type, B_type, C_type);
        return megdnn::matmul::GemmInterleaved<
                       armv7::matmul::gemm_nopack_f16_4x8, false>(M, N, K, trA,
                                                                  trB, strategy)
                .get_workspace_size();
    }
    MIDOUT_END();
1081
    return 0;
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
}

MatrixMulImpl::kern_t MatrixMulImpl::AlgoF16MK8_4x8::get_kern(
        const KernSizeParam&) const {
    auto kern_mk8_4x8 = [](const MatrixMulImpl::KernParam& kern_param) {
        MIDOUT_BEGIN(megdnn_armv7_matmul_kern,
                     midout_iv("AlgoF16MK8_4x8::get_kern"_hash)) {
            auto M = kern_param.M, N = kern_param.N, K = kern_param.K;
            auto trA = kern_param.trA, trB = kern_param.trB;
            auto LDA = kern_param.LDA, LDB = kern_param.LDB,
                 LDC = kern_param.LDC;
            auto A_type = kern_param.A_type, B_type = kern_param.B_type,
                 C_type = kern_param.C_type;
            const auto Aptr = kern_param.A<dt_float16>(),
                       Bptr = kern_param.B<dt_float16>();
            auto Cptr = kern_param.C<dt_float16>();

1099 1100 1101
            armv7::matmul::gemm_nopack_f16_4x8 strategy(A_type, B_type, C_type);
            megdnn::matmul::GemmInterleaved<armv7::matmul::gemm_nopack_f16_4x8,
                                            false>(M, N, K, trA, trB, strategy)
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
                    .execute(Aptr, LDA, Bptr, LDB, Cptr, LDC,
                             kern_param.workspace_ptr);
        }
        MIDOUT_END();
    };
    return kern_mk8_4x8;
}
#endif

/* ===================== Int8x8x16 Kernel 2x4x16 algo ===================== */

namespace {
void kern_int8x8x32_mk4_4x2x16(const MatrixMulImpl::KernParam& kern_param) {
    MIDOUT_BEGIN(megdnn_armv7_matmul_kern,
                 midout_iv("kern_int8x8x32_mk4_4x2x16"_hash)) {
        auto M = kern_param.M, N = kern_param.N, K = kern_param.K;
        auto Aptr = kern_param.A<dt_int8>(), Bptr = kern_param.B<dt_int8>();
        auto Cptr = kern_param.C<dt_int32>();
        auto LDA = kern_param.LDA, LDB = kern_param.LDB, LDC = kern_param.LDC;
        auto trA = kern_param.trA, trB = kern_param.trB;

        armv7::matmul::gemm_mk4_s8_4x2 strategy(M, N, K, kern_param.A_type,
                                                kern_param.B_type,
                                                kern_param.C_type);
        megdnn::matmul::GemmInterleaved<armv7::matmul::gemm_mk4_s8_4x2>(
                M, N, K, trA, trB, strategy)
                .execute(Aptr, LDA, Bptr, LDB, Cptr, LDC,
                         kern_param.workspace_ptr);
    }
    MIDOUT_END();
}
}  // anonymous namespace

bool MatrixMulImpl::AlgoInt8x8x32MK4_4x2x16::usable(
        const KernSizeParam& param) const {
    return param.A_type.enumv() == param.B_type.enumv() &&
           (param.A_type.enumv() == DTypeEnum::Int8 ||
            param.A_type.enumv() == DTypeEnum::QuantizedS8) &&
           (param.C_type.enumv() == DTypeEnum::Int32 ||
            param.C_type.enumv() == DTypeEnum::QuantizedS32) &&
           param.compute_mode == Param::ComputeMode::DEFAULT &&
           param.format == param::MatrixMul::Format::MK4 && param.M % 4 == 0 &&
           param.K % 4 == 0 && !param.trA && !param.trB;
}

size_t MatrixMulImpl::AlgoInt8x8x32MK4_4x2x16::get_workspace(
        const KernSizeParam& kern_size_param) const {
    MIDOUT_BEGIN(megdnn_armv7_matmul_kern,
                 midout_iv("AlgoInt8x8x32MK4_4x2x16::get_workspace"_hash)) {
        auto M = kern_size_param.M, N = kern_size_param.N,
             K = kern_size_param.K;
        auto A_type = kern_size_param.A_type, B_type = kern_size_param.B_type,
             C_type = kern_size_param.C_type;
        auto trA = kern_size_param.trA, trB = kern_size_param.trB;
        matmul::gemm_mk4_s8_4x2 strategy(M, N, K, A_type, B_type, C_type);
        return megdnn::matmul::GemmInterleaved<matmul::gemm_mk4_s8_4x2>(
                       M, N, K, trA, trB, strategy)
                .get_workspace_size();
    }
    MIDOUT_END();
1162
    return 0;
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
}

MatrixMulImpl::kern_t MatrixMulImpl::AlgoInt8x8x32MK4_4x2x16::get_kern(
        const KernSizeParam&) const {
    return kern_int8x8x32_mk4_4x2x16;
}

bool MatrixMulImpl::AlgoInt8x8x32MK4_4x2x16::preferred(
        const KernSizeParam& kern_size_param) const {
    return kern_size_param.K > 16;
}

MEGDNN_REG_GEMM_FUNC_FOR_IM2COL_IMPL(AlgoInt8x8x32MK4_4x2x16,
                                     megdnn_armv7_matmul_kern,
                                     "AlgoInt8x8x32MK4_4x2x16"_hash,
                                     armv7::matmul::gemm_mk4_s8_4x2, int8_t,
1179
                                     int32_t, AlgoDataType::QINT8X8X32, MK4);
1180 1181

// vim: syntax=cpp.doxygen