test_module_stats.py 11.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
import math
from copy import deepcopy

import numpy as np
import pytest

import megengine as mge
import megengine.functional as F
import megengine.hub as hub
import megengine.module as M
from megengine.core._trace_option import use_symbolic_shape
from megengine.utils.module_stats import module_stats


@pytest.mark.skipif(
    use_symbolic_shape(), reason="This test do not support symbolic shape.",
)
def test_module_stats():
    net = ResNet(BasicBlock, [2, 2, 2, 2])
    input_shape = (1, 3, 224, 224)
21 22 23 24 25 26 27
    total_stats, stats_details = module_stats(net, input_shapes=input_shape)
    x1 = np.random.random((1, 3, 224, 224)).astype("float32")
    gt_flops, gt_acts = net.get_stats(mge.tensor(x1))
    assert (total_stats.flops, stats_details.activations[-1]["act_dim"]) == (
        gt_flops,
        gt_acts,
    )
28

29
    total_stats, stats_details = module_stats(net, inputs=x1)
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
    assert (total_stats.flops, stats_details.activations[-1]["act_dim"]) == (
        gt_flops,
        gt_acts,
    )


class BasicBlock(M.Module):
    expansion = 1

    def __init__(
        self,
        in_channels,
        channels,
        stride=1,
        groups=1,
        base_width=64,
        dilation=1,
        norm=M.BatchNorm2d,
    ):
        super().__init__()

        self.tmp_in_channels = in_channels
        self.tmp_channels = channels
        self.stride = stride

        if groups != 1 or base_width != 64:
            raise ValueError("BasicBlock only supports groups=1 and base_width=64")
        if dilation > 1:
            raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
        self.conv1 = M.Conv2d(
            in_channels, channels, 3, stride, padding=dilation, bias=False
        )
        self.bn1 = norm(channels)
        self.conv2 = M.Conv2d(channels, channels, 3, 1, padding=1, bias=False)
        self.bn2 = norm(channels)

        self.downsample_id = M.Identity()
        self.downsample_conv = M.Conv2d(in_channels, channels, 1, stride, bias=False)
        self.downsample_norm = norm(channels)

    def forward(self, x):
        identity = x
        x = self.conv1(x)
        x = self.bn1(x)
        x = F.relu(x)
        x = self.conv2(x)
        x = self.bn2(x)
        if self.tmp_in_channels == self.tmp_channels and self.stride == 1:
            identity = self.downsample_id(identity)
        else:
            identity = self.downsample_conv(identity)
            identity = self.downsample_norm(identity)
        x += identity
        x = F.relu(x)
        return x

    def get_stats(self, x):
        activations, flops = 0, 0

        identity = x

        in_x = deepcopy(x)
        x = self.conv1(x)
        tmp_flops, tmp_acts = cal_conv_stats(self.conv1, in_x, x)
        activations += tmp_acts
        flops += tmp_flops

        in_x = deepcopy(x)
        x = self.bn1(x)
        tmp_flops, tmp_acts = cal_norm_stats(self.bn1, in_x, x)
        activations += tmp_acts
        flops += tmp_flops

        x = F.relu(x)

        in_x = deepcopy(x)
        x = self.conv2(x)
        tmp_flops, tmp_acts = cal_conv_stats(self.conv2, in_x, x)
        activations += tmp_acts
        flops += tmp_flops

        in_x = deepcopy(x)
        x = self.bn2(x)
        tmp_flops, tmp_acts = cal_norm_stats(self.bn2, in_x, x)
        activations += tmp_acts
        flops += tmp_flops

        if self.tmp_in_channels == self.tmp_channels and self.stride == 1:
            identity = self.downsample_id(identity)
        else:
            in_x = deepcopy(identity)
            identity = self.downsample_conv(identity)
            tmp_flops, tmp_acts = cal_conv_stats(self.downsample_conv, in_x, identity)
            activations += tmp_acts
            flops += tmp_flops

            in_x = deepcopy(identity)
            identity = self.downsample_norm(identity)
            tmp_flops, tmp_acts = cal_norm_stats(self.downsample_norm, in_x, identity)
            activations += tmp_acts
            flops += tmp_flops

        x += identity
        x = F.relu(x)

        return x, flops, activations


class ResNet(M.Module):
    def __init__(
        self,
        block,
        layers=[2, 2, 2, 2],
        num_classes=1000,
        zero_init_residual=False,
        groups=1,
        width_per_group=64,
        replace_stride_with_dilation=None,
        norm=M.BatchNorm2d,
    ):
        super().__init__()
        self.in_channels = 64
        self.dilation = 1
        if replace_stride_with_dilation is None:
            # each element in the tuple indicates if we should replace
            # the 2x2 stride with a dilated convolution instead
            replace_stride_with_dilation = [False, False, False]
        if len(replace_stride_with_dilation) != 3:
            raise ValueError(
                "replace_stride_with_dilation should be None "
                "or a 3-element tuple, got {}".format(replace_stride_with_dilation)
            )
        self.groups = groups
        self.base_width = width_per_group
        self.conv1 = M.Conv2d(
            3, self.in_channels, kernel_size=7, stride=2, padding=3, bias=False
        )
        self.bn1 = norm(self.in_channels)
        self.maxpool = M.MaxPool2d(kernel_size=3, stride=2, padding=1)

        self.layer1_0 = BasicBlock(
            self.in_channels,
            64,
            stride=1,
            groups=self.groups,
            base_width=self.base_width,
            dilation=self.dilation,
            norm=M.BatchNorm2d,
        )
        self.layer1_1 = BasicBlock(
            self.in_channels,
            64,
            stride=1,
            groups=self.groups,
            base_width=self.base_width,
            dilation=self.dilation,
            norm=M.BatchNorm2d,
        )
        self.layer2_0 = BasicBlock(64, 128, stride=2)
        self.layer2_1 = BasicBlock(128, 128)
        self.layer3_0 = BasicBlock(128, 256, stride=2)
        self.layer3_1 = BasicBlock(256, 256)
        self.layer4_0 = BasicBlock(256, 512, stride=2)
        self.layer4_1 = BasicBlock(512, 512)

        self.layer1 = self._make_layer(block, 64, layers[0], norm=norm)
        self.layer2 = self._make_layer(
            block, 128, 2, stride=2, dilate=replace_stride_with_dilation[0], norm=norm
        )
        self.layer3 = self._make_layer(
            block, 256, 2, stride=2, dilate=replace_stride_with_dilation[1], norm=norm
        )
        self.layer4 = self._make_layer(
            block, 512, 2, stride=2, dilate=replace_stride_with_dilation[2], norm=norm
        )
        self.fc = M.Linear(512, num_classes)

        for m in self.modules():
            if isinstance(m, M.Conv2d):
                M.init.msra_normal_(m.weight, mode="fan_out", nonlinearity="relu")
                if m.bias is not None:
                    fan_in, _ = M.init.calculate_fan_in_and_fan_out(m.weight)
                    bound = 1 / math.sqrt(fan_in)
                    M.init.uniform_(m.bias, -bound, bound)
            elif isinstance(m, M.BatchNorm2d):
                M.init.ones_(m.weight)
                M.init.zeros_(m.bias)
            elif isinstance(m, M.Linear):
                M.init.msra_uniform_(m.weight, a=math.sqrt(5))
                if m.bias is not None:
                    fan_in, _ = M.init.calculate_fan_in_and_fan_out(m.weight)
                    bound = 1 / math.sqrt(fan_in)
                    M.init.uniform_(m.bias, -bound, bound)
        if zero_init_residual:
            for m in self.modules():
                M.init.zeros_(m.bn2.weight)

    def _make_layer(
        self, block, channels, blocks, stride=1, dilate=False, norm=M.BatchNorm2d
    ):
        previous_dilation = self.dilation
        if dilate:
            self.dilation *= stride
            stride = 1

        layers = []
        layers.append(
            block(
                self.in_channels,
                channels,
                stride,
                groups=self.groups,
                base_width=self.base_width,
                dilation=previous_dilation,
                norm=norm,
            )
        )
        self.in_channels = channels * block.expansion
        for _ in range(1, blocks):
            layers.append(
                block(
                    self.in_channels,
                    channels,
                    groups=self.groups,
                    base_width=self.base_width,
                    dilation=self.dilation,
                    norm=norm,
                )
            )

        return M.Sequential(*layers)

    def extract_features(self, x):
        outputs = {}
        x = self.conv1(x)
        x = self.bn1(x)
        x = F.relu(x)
        x = self.maxpool(x)
        outputs["stem"] = x

        x = self.layer1(x)
        outputs["res2"] = x
        x = self.layer2(x)
        outputs["res3"] = x
        x = self.layer3(x)
        outputs["res4"] = x
        x = self.layer4(x)
        outputs["res5"] = x
        return outputs

    def forward(self, x):
        x = self.extract_features(x)["res5"]

        x = F.avg_pool2d(x, 7)
        x = F.flatten(x, 1)
        x = self.fc(x)

        return x

    def get_stats(self, x):
        flops, activations = 0, 0
        in_x = deepcopy(x)
        x = self.conv1(x)
        tmp_flops, tmp_acts = cal_conv_stats(self.conv1, in_x, x)
        activations += tmp_acts
        flops += tmp_flops

        in_x = deepcopy(x)
        x = self.bn1(x)
        tmp_flops, tmp_acts = cal_norm_stats(self.bn1, in_x, x)
        activations += tmp_acts
        flops += tmp_flops

        x = F.relu(x)

        in_x = deepcopy(x)
        x = self.maxpool(x)
        tmp_flops, tmp_acts = cal_pool_stats(self.maxpool, in_x, x)
        activations += tmp_acts
        flops += tmp_flops

        x, tmp_flops, tmp_acts = self.layer1_0.get_stats(x)
        activations += tmp_acts
        flops += tmp_flops

        x, tmp_flops, tmp_acts = self.layer1_1.get_stats(x)
        activations += tmp_acts
        flops += tmp_flops

        x, tmp_flops, tmp_acts = self.layer2_0.get_stats(x)
        activations += tmp_acts
        flops += tmp_flops

        x, tmp_flops, tmp_acts = self.layer2_1.get_stats(x)
        activations += tmp_acts
        flops += tmp_flops

        x, tmp_flops, tmp_acts = self.layer3_0.get_stats(x)
        activations += tmp_acts
        flops += tmp_flops

        x, tmp_flops, tmp_acts = self.layer3_1.get_stats(x)
        activations += tmp_acts
        flops += tmp_flops

        x, tmp_flops, tmp_acts = self.layer4_0.get_stats(x)
        activations += tmp_acts
        flops += tmp_flops

        x, tmp_flops, tmp_acts = self.layer4_1.get_stats(x)
        activations += tmp_acts
        flops += tmp_flops

        x = F.avg_pool2d(x, 7)

        x = F.flatten(x, 1)

        in_x = deepcopy(x)
        x = self.fc(x)
        tmp_flops, tmp_acts = cal_linear_stats(self.fc, in_x, x)
        activations += tmp_acts
        flops += tmp_flops

        return flops, activations


def cal_conv_stats(module, input, output):
    bias = 1 if module.bias is not None else 0
    flops = np.prod(output[0].shape) * (
        module.in_channels // module.groups * np.prod(module.kernel_size) + bias
    )
    acts = np.prod(output[0].shape)
    return flops, acts


def cal_norm_stats(module, input, output):
    return np.prod(input[0].shape) * 7, np.prod(output[0].shape)


def cal_linear_stats(module, inputs, outputs):
    bias = module.out_features if module.bias is not None else 0
    return (
        np.prod(outputs[0].shape) * module.in_features + bias,
        np.prod(outputs[0].shape),
    )


def cal_pool_stats(module, inputs, outputs):
    return (
        np.prod(outputs[0].shape) * (module.kernel_size ** 2),
        np.prod(outputs[0].shape),
    )