提交 5bc6d1f4 编写于 作者: M Mr.doob

Merge branch 'triangulation' of https://github.com/jahting/three.js into dev

......@@ -424,11 +424,13 @@ THREE.FontUtils.generateShapes = function( text, parameters ) {
for ( p = 0; p < n; p++ ) {
if( (p === u) || (p === v) || (p === w) ) continue;
px = contour[ verts[ p ] ].x
py = contour[ verts[ p ] ].y
if ( ( (px === ax) && (py === ay) ) ||
( (px === bx) && (py === by) ) ||
( (px === cx) && (py === cy) ) ) continue;
apx = px - ax; apy = py - ay;
bpx = px - bx; bpy = py - by;
cpx = px - cx; cpy = py - cy;
......
......@@ -316,7 +316,7 @@ THREE.Shape.Utils = {
},
triangulateShape: function ( contour, holes ) {
triangulateShape_OLD: function ( contour, holes ) {
var shapeWithoutHoles = THREE.Shape.Utils.removeHoles( contour, holes );
......@@ -400,6 +400,374 @@ THREE.Shape.Utils = {
}, // end triangulate shapes
/*
* Modified Triangulation.
*
* basically rewritten 'removeHoles':
* - doesn't cut out an area anymore, but slices from shape to hole by adding two edges
* - ATTENTION: this requires small change to 'THREE.FontUtils.snip' to account for duplicate coordinates
* - checks whether such a cut line lies inside the shape doesn't intersect any other edge (shape and holes)
*/
triangulateShape: function ( contour, holes ) {
function point_in_segment_2D( inSegPt1, inSegPt2, inOtherPt ) {
// inOtherPt needs to be colinear to the inSegment
if ( inSegPt1.x != inSegPt2.x ) {
if ( inSegPt1.x < inSegPt2.x ) {
return ( ( inSegPt1.x <= inOtherPt.x ) && ( inOtherPt.x <= inSegPt2.x ) );
} else {
return ( ( inSegPt2.x <= inOtherPt.x ) && ( inOtherPt.x <= inSegPt1.x ) );
}
} else {
if ( inSegPt1.y < inSegPt2.y ) {
return ( ( inSegPt1.y <= inOtherPt.y ) && ( inOtherPt.y <= inSegPt2.y ) );
} else {
return ( ( inSegPt2.y <= inOtherPt.y ) && ( inOtherPt.y <= inSegPt1.y ) );
}
}
}
function intersect_segments_2D( inSeg1Pt1, inSeg1Pt2, inSeg2Pt1, inSeg2Pt2, inExcludeAdjacentSegs ) {
var EPSILON = 0.0000000001;
var seg1dx = inSeg1Pt2.x - inSeg1Pt1.x, seg1dy = inSeg1Pt2.y - inSeg1Pt1.y;
var seg2dx = inSeg2Pt2.x - inSeg2Pt1.x, seg2dy = inSeg2Pt2.y - inSeg2Pt1.y;
var seg1seg2dx = inSeg1Pt1.x - inSeg2Pt1.x;
var seg1seg2dy = inSeg1Pt1.y - inSeg2Pt1.y;
var limit = seg1dy * seg2dx - seg1dx * seg2dy;
var perpSeg1 = seg1dy * seg1seg2dx - seg1dx * seg1seg2dy;
if ( Math.abs(limit) > EPSILON ) { // not parallel
var perpSeg2;
if ( limit > 0 ) {
if ( ( perpSeg1 < 0 ) || ( perpSeg1 > limit ) ) return [];
perpSeg2 = seg2dy * seg1seg2dx - seg2dx * seg1seg2dy;
if ( ( perpSeg2 < 0 ) || ( perpSeg2 > limit ) ) return [];
} else {
if ( ( perpSeg1 > 0 ) || ( perpSeg1 < limit ) ) return [];
perpSeg2 = seg2dy * seg1seg2dx - seg2dx * seg1seg2dy;
if ( ( perpSeg2 > 0 ) || ( perpSeg2 < limit ) ) return [];
}
// intersection at endpoint ?
if ( perpSeg2 == 0 ) {
if ( ( inExcludeAdjacentSegs ) &&
( ( perpSeg1 == 0 ) || ( perpSeg1 == limit ) ) ) return [];
return [ inSeg1Pt1 ];
}
if ( perpSeg2 == limit ) {
if ( ( inExcludeAdjacentSegs ) &&
( ( perpSeg1 == 0 ) || ( perpSeg1 == limit ) ) ) return [];
return [ inSeg1Pt2 ];
}
// return real intersection point
var factorSeg1 = perpSeg2 / limit;
return [ { x: inSeg1Pt1.x + factorSeg1 * seg1dx,
y: inSeg1Pt1.y + factorSeg1 * seg1dy } ];
} else { // parallel or colinear
if ( perpSeg1 != 0 ) return [];
// they are collinear or degenerate
var seg1Pt = ( (seg1dx == 0) && (seg1dy == 0) ); // segment1 ist just a point?
var seg2Pt = ( (seg2dx == 0) && (seg2dy == 0) ); // segment2 ist just a point?
// both segments are points
if ( seg1Pt && seg2Pt ) {
if ( (inSeg1Pt1.x != inSeg2Pt1.x) ||
(inSeg1Pt1.y != inSeg2Pt1.y) ) return []; // they are distinct points
return [ inSeg1Pt1 ]; // they are the same point
}
// segment#1 is a single point
if ( seg1Pt ) {
if (! point_in_segment_2D( inSeg2Pt1, inSeg2Pt2, inSeg1Pt1 ) ) return []; // but not in segment#2
return [ inSeg1Pt1 ];
}
// segment#2 is a single point
if ( seg2Pt ) {
if (! point_in_segment_2D( inSeg1Pt1, inSeg1Pt2, inSeg2Pt1 ) ) return []; // but not in segment#1
return [ inSeg2Pt1 ];
}
// they are collinear segments, which might overlap
var seg1min, seg1max, seg1minVal, seg1maxVal;
var seg2min, seg2max, seg2minVal, seg2maxVal;
if (seg1dx != 0) { // the segments are NOT on a vertical line
if ( inSeg1Pt1.x < inSeg1Pt2.x ) {
seg1min = inSeg1Pt1; seg1minVal = inSeg1Pt1.x;
seg1max = inSeg1Pt2; seg1maxVal = inSeg1Pt2.x;
} else {
seg1min = inSeg1Pt2; seg1minVal = inSeg1Pt2.x;
seg1max = inSeg1Pt1; seg1maxVal = inSeg1Pt1.x;
}
if ( inSeg2Pt1.x < inSeg2Pt2.x ) {
seg2min = inSeg2Pt1; seg2minVal = inSeg2Pt1.x;
seg2max = inSeg2Pt2; seg2maxVal = inSeg2Pt2.x;
} else {
seg2min = inSeg2Pt2; seg2minVal = inSeg2Pt2.x;
seg2max = inSeg2Pt1; seg2maxVal = inSeg2Pt1.x;
}
} else { // the segments are on a vertical line
if ( inSeg1Pt1.y < inSeg1Pt2.y ) {
seg1min = inSeg1Pt1; seg1minVal = inSeg1Pt1.y;
seg1max = inSeg1Pt2; seg1maxVal = inSeg1Pt2.y;
} else {
seg1min = inSeg1Pt2; seg1minVal = inSeg1Pt2.y;
seg1max = inSeg1Pt1; seg1maxVal = inSeg1Pt1.y;
}
if ( inSeg2Pt1.y < inSeg2Pt2.y ) {
seg2min = inSeg2Pt1; seg2minVal = inSeg2Pt1.y;
seg2max = inSeg2Pt2; seg2maxVal = inSeg2Pt2.y;
} else {
seg2min = inSeg2Pt2; seg2minVal = inSeg2Pt2.y;
seg2max = inSeg2Pt1; seg2maxVal = inSeg2Pt1.y;
}
}
if ( seg1minVal <= seg2minVal ) {
if ( seg1maxVal < seg2minVal ) return [];
if ( seg1maxVal == seg2minVal ) {
if ( inExcludeAdjacentSegs ) return [];
return [ seg2min ];
}
if ( seg1maxVal <= seg2maxVal ) return [ seg2min, seg1max ];
return [ seg2min, seg2max ];
} else {
if ( seg1minVal > seg2maxVal ) return [];
if ( seg1minVal == seg2maxVal ) {
if ( inExcludeAdjacentSegs ) return [];
return [ seg1min ];
}
if ( seg1maxVal <= seg2maxVal ) return [ seg1min, seg1max ];
return [ seg1min, seg2max ];
}
}
}
function isPointInsideAngle( inVertex, inLegFromPt, inLegToPt, inOtherPt ) {
// The order of legs is important
var EPSILON = 0.0000000001;
// translation of all points, so that Vertex is at (0,0)
var legFromPtX = inLegFromPt.x - inVertex.x, legFromPtY = inLegFromPt.y - inVertex.y;
var legToPtX = inLegToPt.x - inVertex.x, legToPtY = inLegToPt.y - inVertex.y;
var otherPtX = inOtherPt.x - inVertex.x, otherPtY = inOtherPt.y - inVertex.y;
// main angle >0: < 180 deg.; 0: 180 deg.; <0: > 180 deg.
var from2toAngle = legFromPtX * legToPtY - legFromPtY * legToPtX;
var from2otherAngle = legFromPtX * otherPtY - legFromPtY * otherPtX;
if ( Math.abs(from2toAngle) > EPSILON ) { // angle != 180 deg.
var other2toAngle = otherPtX * legToPtY - otherPtY * legToPtX;
// console.log( "from2to: " + from2toAngle + ", from2other: " + from2otherAngle + ", other2to: " + other2toAngle );
if ( from2toAngle > 0 ) { // main angle < 180 deg.
return ( ( from2otherAngle >= 0 ) && ( other2toAngle >= 0 ) );
} else { // main angle > 180 deg.
return ( ( from2otherAngle >= 0 ) || ( other2toAngle >= 0 ) );
}
} else { // angle == 180 deg.
// console.log( "from2to: 180 deg., from2other: " + from2otherAngle );
return ( from2otherAngle > 0 );
}
}
function removeHoles( contour, holes ) {
var shape = contour.concat(); // work on this shape
var hole;
function isCutLineInsideAngles( inShapeIdx, inHoleIdx ) {
// Check if hole point lies within angle around shape point
var lastShapeIdx = shape.length - 1;
var prevShapeIdx = inShapeIdx - 1;
if ( prevShapeIdx < 0 ) prevShapeIdx = lastShapeIdx;
var nextShapeIdx = inShapeIdx + 1;
if ( nextShapeIdx > lastShapeIdx ) nextShapeIdx = 0;
var insideAngle = isPointInsideAngle( shape[inShapeIdx], shape[ prevShapeIdx ], shape[ nextShapeIdx ], hole[inHoleIdx] );
if (! insideAngle ) {
// console.log( "Vertex (Shape): " + inShapeIdx + ", Point: " + hole[inHoleIdx].x + "/" + hole[inHoleIdx].y );
return false;
}
// Check if shape point lies within angle around hole point
var lastHoleIdx = hole.length - 1;
var prevHoleIdx = inHoleIdx - 1;
if ( prevHoleIdx < 0 ) prevHoleIdx = lastHoleIdx;
var nextHoleIdx = inHoleIdx + 1;
if ( nextHoleIdx > lastHoleIdx ) nextHoleIdx = 0;
insideAngle = isPointInsideAngle( hole[inHoleIdx], hole[ prevHoleIdx ], hole[ nextHoleIdx ], shape[inShapeIdx] );
if (! insideAngle ) {
// console.log( "Vertex (Hole): " + inHoleIdx + ", Point: " + shape[inShapeIdx].x + "/" + shape[inShapeIdx].y );
return false;
}
return true;
}
function intersectsShapeEdge( inShapePt, inHolePt ) {
// checks for intersections with shape edges
var sIdx, nextIdx, intersection;
for ( sIdx = 0; sIdx < shape.length; sIdx++ ) {
nextIdx = sIdx+1; nextIdx %= shape.length;
intersection = intersect_segments_2D( inShapePt, inHolePt, shape[sIdx], shape[nextIdx], true );
if ( intersection.length > 0 ) return true;
}
return false;
}
var indepHoles = [];
function intersectsHoleEdge( inShapePt, inHolePt ) {
// checks for intersections with hole edges
var ihIdx, chkHole,
hIdx, nextIdx, intersection;
for ( ihIdx = 0; ihIdx < indepHoles.length; ihIdx++ ) {
chkHole = holes[indepHoles[ihIdx]];
for ( hIdx = 0; hIdx < chkHole.length; hIdx++ ) {
nextIdx = hIdx+1; nextIdx %= chkHole.length;
intersection = intersect_segments_2D( inShapePt, inHolePt, chkHole[hIdx], chkHole[nextIdx], true );
if ( intersection.length > 0 ) return true;
}
}
return false;
}
var holeIndex, shapeIndex,
shapePt, h, h2, holePt,
holeIdx, cutKey, failedCuts = [],
tmpShape1, tmpShape2,
tmpHole1, tmpHole2;
for (h in holes) { indepHoles.push( h ); }
var counter = indepHoles.length * 2;
while ( indepHoles.length > 0 ) {
counter --;
if ( counter < 0 ) {
console.log( "Infinite Loop! Holes left:" + indepHoles.length + ", Probably Hole outside Shape!" );
break;
}
// search for shape-vertex and hole-vertex,
// which can be connected without intersections
for ( shapeIndex = 0; shapeIndex < shape.length; shapeIndex++ ) {
shapePt = shape[ shapeIndex ];
holeIndex = -1;
// search for hole which can be reached without intersections
for ( h = 0; h < indepHoles.length; h++ ) {
holeIdx = indepHoles[h];
// prevent multiple checks
cutKey = shapePt.x + ":" + shapePt.y + ":" + holeIdx;
if ( failedCuts[cutKey] !== undefined ) continue;
hole = holes[holeIdx];
for ( h2 = 0; h2 < hole.length; h2 ++ ) {
holePt = hole[ h2 ];
if (! isCutLineInsideAngles( shapeIndex, h2 ) ) continue;
if ( intersectsShapeEdge( shapePt, holePt ) ) continue;
if ( intersectsHoleEdge( shapePt, holePt ) ) continue;
holeIndex = h2;
indepHoles.splice(h,1);
tmpShape1 = shape.slice( 0, shapeIndex+1 );
tmpShape2 = shape.slice( shapeIndex );
tmpHole1 = hole.slice( holeIndex );
tmpHole2 = hole.slice( 0, holeIndex+1 );
shape = tmpShape1.concat( tmpHole1 ).concat( tmpHole2 ).concat( tmpShape2 );
// Debug only, to show the selected cuts
// glob_CutLines.push( [ shapePt, holePt ] );
break;
}
if ( holeIndex >= 0 ) break; // hole-vertex found
failedCuts[cutKey] = true; // remember failure
}
if ( holeIndex >= 0 ) break; // hole-vertex found
}
}
return shape; /* shape with no holes */
}
var i, il, f, face,
key, index,
allPointsMap = {};
// To maintain reference to old shape, one must match coordinates, or offset the indices from original arrays. It's probably easier to do the first.
var allpoints = contour.concat();
for (var h in holes) { Array.prototype.push.apply( allpoints, holes[h] ); }
//console.log( "allpoints",allpoints, allpoints.length );
// prepare all points map
for ( i = 0, il = allpoints.length; i < il; i ++ ) {
key = allpoints[ i ].x + ":" + allpoints[ i ].y;
if ( allPointsMap[ key ] !== undefined ) {
console.log( "Duplicate point", key );
}
allPointsMap[ key ] = i;
}
// remove holes by cutting paths to holes and adding them to the shape
var shapeWithoutHoles = removeHoles( contour, holes );
var triangles = THREE.FontUtils.Triangulate( shapeWithoutHoles, false ); // True returns indices for points of spooled shape
//console.log( "triangles",triangles, triangles.length );
// check all face vertices against all points map
for ( i = 0, il = triangles.length; i < il; i ++ ) {
face = triangles[ i ];
for ( f = 0; f < 3; f ++ ) {
key = face[ f ].x + ":" + face[ f ].y;
index = allPointsMap[ key ];
if ( index !== undefined ) {
face[ f ] = index;
}
}
}
return triangles.concat();
}, // end triangulate shapes
/*
triangulate2 : function( pts, holes ) {
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册