notest_dist_label_semantic_roles.py 7.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
import math

import numpy as np
import paddle.v2 as paddle
import paddle.v2.dataset.conll05 as conll05
import paddle.v2.fluid as fluid
import time
import os

word_dict, verb_dict, label_dict = conll05.get_dict()
word_dict_len = len(word_dict)
label_dict_len = len(label_dict)
pred_len = len(verb_dict)

mark_dict_len = 2
word_dim = 32
mark_dim = 5
hidden_dim = 512
depth = 8
mix_hidden_lr = 1e-3

IS_SPARSE = True
PASS_NUM = 10
BATCH_SIZE = 20

embedding_name = 'emb'


def load_parameter(file_name, h, w):
    with open(file_name, 'rb') as f:
        f.read(16)  # skip header.
        return np.fromfile(f, dtype=np.float32).reshape(h, w)


def db_lstm(word, predicate, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, mark,
            **ignored):
    # 8 features
    predicate_embedding = fluid.layers.embedding(
        input=predicate,
        size=[pred_len, word_dim],
        dtype='float32',
        is_sparse=IS_SPARSE,
        param_attr='vemb')

    mark_embedding = fluid.layers.embedding(
        input=mark,
        size=[mark_dict_len, mark_dim],
        dtype='float32',
        is_sparse=IS_SPARSE)

    word_input = [word, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2]
    emb_layers = [
        fluid.layers.embedding(
            size=[word_dict_len, word_dim],
            input=x,
            param_attr=fluid.ParamAttr(
                name=embedding_name, trainable=False)) for x in word_input
    ]
    emb_layers.append(predicate_embedding)
    emb_layers.append(mark_embedding)

    hidden_0_layers = [
        fluid.layers.fc(input=emb, size=hidden_dim) for emb in emb_layers
    ]

    hidden_0 = fluid.layers.sums(input=hidden_0_layers)

    lstm_0 = fluid.layers.dynamic_lstm(
        input=hidden_0,
        size=hidden_dim,
        candidate_activation='relu',
        gate_activation='sigmoid',
        cell_activation='sigmoid')

    # stack L-LSTM and R-LSTM with direct edges
    input_tmp = [hidden_0, lstm_0]

    for i in range(1, depth):
        mix_hidden = fluid.layers.sums(input=[
            fluid.layers.fc(input=input_tmp[0], size=hidden_dim),
            fluid.layers.fc(input=input_tmp[1], size=hidden_dim)
        ])

        lstm = fluid.layers.dynamic_lstm(
            input=mix_hidden,
            size=hidden_dim,
            candidate_activation='relu',
            gate_activation='sigmoid',
            cell_activation='sigmoid',
            is_reverse=((i % 2) == 1))

        input_tmp = [mix_hidden, lstm]

    feature_out = fluid.layers.sums(input=[
        fluid.layers.fc(input=input_tmp[0], size=label_dict_len),
        fluid.layers.fc(input=input_tmp[1], size=label_dict_len)
    ])

    return feature_out


def to_lodtensor(data, place):
    seq_lens = [len(seq) for seq in data]
    cur_len = 0
    lod = [cur_len]
    for l in seq_lens:
        cur_len += l
        lod.append(cur_len)
    flattened_data = np.concatenate(data, axis=0).astype("int64")
    flattened_data = flattened_data.reshape([len(flattened_data), 1])
    res = fluid.LoDTensor()
    res.set(flattened_data, place)
    res.set_lod([lod])
    return res


def main():
    # define network topology
    word = fluid.layers.data(
        name='word_data', shape=[1], dtype='int64', lod_level=1)
    predicate = fluid.layers.data(
        name='verb_data', shape=[1], dtype='int64', lod_level=1)
    ctx_n2 = fluid.layers.data(
        name='ctx_n2_data', shape=[1], dtype='int64', lod_level=1)
    ctx_n1 = fluid.layers.data(
        name='ctx_n1_data', shape=[1], dtype='int64', lod_level=1)
    ctx_0 = fluid.layers.data(
        name='ctx_0_data', shape=[1], dtype='int64', lod_level=1)
    ctx_p1 = fluid.layers.data(
        name='ctx_p1_data', shape=[1], dtype='int64', lod_level=1)
    ctx_p2 = fluid.layers.data(
        name='ctx_p2_data', shape=[1], dtype='int64', lod_level=1)
    mark = fluid.layers.data(
        name='mark_data', shape=[1], dtype='int64', lod_level=1)
    feature_out = db_lstm(**locals())
    target = fluid.layers.data(
        name='target', shape=[1], dtype='int64', lod_level=1)
    crf_cost = fluid.layers.linear_chain_crf(
        input=feature_out,
        label=target,
        param_attr=fluid.ParamAttr(
            name='crfw', learning_rate=mix_hidden_lr))
    avg_cost = fluid.layers.mean(x=crf_cost)

    # TODO(qiao)
    # check other optimizers and check why out will be NAN
    sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.0001)
    optimize_ops, params_grads = sgd_optimizer.minimize(avg_cost)

    # TODO(qiao)
    # add dependency track and move this config before optimizer
    crf_decode = fluid.layers.crf_decoding(
        input=feature_out, param_attr=fluid.ParamAttr(name='crfw'))

    chunk_evaluator = fluid.evaluator.ChunkEvaluator(
        input=crf_decode,
        label=target,
        chunk_scheme="IOB",
        num_chunk_types=int(math.ceil((label_dict_len - 1) / 2.0)))

    train_data = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.conll05.test(), buf_size=8192),
        batch_size=BATCH_SIZE)
    place = fluid.CPUPlace()
    feeder = fluid.DataFeeder(
        feed_list=[
            word, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, predicate, mark, target
        ],
        place=place)
    exe = fluid.Executor(place)

    t = fluid.DistributeTranspiler()
    pserver_endpoints = os.getenv("PSERVERS")
    # server endpoint for current node
    current_endpoint = os.getenv("SERVER_ENDPOINT")
    # run as trainer or parameter server
    training_role = os.getenv(
        "TRAINING_ROLE", "TRAINER")  # get the training role: trainer/pserver
    t.transpile(
        optimize_ops, params_grads, pservers=pserver_endpoints, trainers=2)

    if training_role == "PSERVER":
        if not current_endpoint:
            print("need env SERVER_ENDPOINT")
            exit(1)
        pserver_prog = t.get_pserver_program(current_endpoint, optimize_ops)
        exe.run(fluid.default_startup_program())
        exe.run(pserver_prog)
    elif training_role == "TRAINER":
        trainer_prog = t.get_trainer_program()
        start_time = time.time()
        batch_id = 0
        exe.run(fluid.default_startup_program())
        embedding_param = fluid.global_scope().find_var(
            embedding_name).get_tensor()
        embedding_param.set(
            load_parameter(conll05.get_embedding(), word_dict_len, word_dim),
            place)
        for pass_id in xrange(PASS_NUM):
            chunk_evaluator.reset(exe)
            for data in train_data():
                cost, precision, recall, f1_score = exe.run(
                    trainer_prog,
                    feed=feeder.feed(data),
                    fetch_list=[avg_cost] + chunk_evaluator.metrics)
                pass_precision, pass_recall, pass_f1_score = chunk_evaluator.eval(
                    exe)

                if batch_id % 10 == 0:
                    print("avg_cost:" + str(cost) + " precision:" + str(
                        precision) + " recall:" + str(recall) + " f1_score:" +
                          str(f1_score) + " pass_precision:" + str(
                              pass_precision) + " pass_recall:" + str(
                                  pass_recall) + " pass_f1_score:" + str(
                                      pass_f1_score))
                    if batch_id != 0:
                        print("second per batch: " + str((time.time(
                        ) - start_time) / batch_id))

                batch_id = batch_id + 1


if __name__ == '__main__':
    main()