tensor_reformat.cpp 146.2 KB
Newer Older
1 2 3 4
/**
 * \file src/gopt/impl/tensor_reformat.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
9 10
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
11 12 13
 */

#include "megbrain/gopt/basic_arith.h"
M
Megvii Engine Team 已提交
14 15
#include "megbrain/gopt/gtrans.h"
#include "megbrain/gopt/inference.h"
16 17 18
#include "megbrain/graph/event.h"
#include "megbrain/opr/basic_arith.h"
#include "megbrain/opr/blas.h"
M
Megvii Engine Team 已提交
19 20 21
#include "megbrain/opr/dnn/batch_norm.h"
#include "megbrain/opr/dnn/convolution.h"
#include "megbrain/opr/dnn/local.h"
22 23
#include "megbrain/opr/dnn/pooling.h"
#include "megbrain/opr/imgproc.h"
M
Megvii Engine Team 已提交
24
#include "megbrain/opr/misc.h"
25
#include "megbrain/opr/nn_int.h"
M
Megvii Engine Team 已提交
26 27 28 29
#include "megbrain/opr/tensor_manip.h"
#include "megbrain/opr/utility.h"
#include "megbrain/serialization/opr_shallow_copy.h"
#include "megbrain/utils/shared_set.h"
30

31
#include "megdnn/opr_param_defs.h"
32 33
#include "megdnn/tensor_format.h"

34 35
#include "megbrain/opr/internal/megdnn_opr_wrapper.h"

36 37 38 39 40
#if MGB_ENABLE_TENSOR_RT
#include "megbrain/tensorrt/tensorrt_opr.h"
#endif

#include "megbrain/gopt/misc.h"
41 42 43 44
#include "megbrain/utils/hash_ct.h"

#include "midout.h"

45 46 47 48
#include "megbrain/gopt/reformat_manager.h"

#include "./global_layout_transform/utils.h"

49 50 51 52 53 54
MIDOUT_DECL(megbrain_tensor_reformat)
#define MIDOUT_B(tag) \
    MIDOUT_BEGIN(megbrain_tensor_reformat, midout_iv(MGB_HASH_STR(tag))) {
#define MIDOUT_E \
    }            \
    MIDOUT_END();
55 56 57

using namespace mgb;
using namespace gopt;
58
using ReformatKey = ReformatManager::ReformatKey;
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

/* ================ TensorReformatPass =============== */
/*!
 * \brief relayout placeholder opr
 *
 * RelayoutPlaceholder oprs act as the placeholders of the ComputingGraph
 * during graph opt pass `TensorReformatPass`. These oprs are introduced
 * into a ComputingGraph for conveniently discovering further optimize
 * opportunities (such as fuse consecutive relayouts, translate into
 * optimized implementations). They are canonized to have a shape infer, so
 * the ouput's shape can be correctly deduced during the opt pass.
 *
 * Note that the oprs in the ComputingGraph are only used as intermediate
 * representations before being translated to MegBrain oprs, so the
 * oprs should not get involved in any actual computing.
 */
75
// clang-format off
76
MGB_DEFINE_OPR_CLASS(TensorReformatPass::RelayoutPlaceholder,
77
                           cg::SingleCNOperatorNodeBase) // {
78
public:
79

80
    RelayoutPlaceholder(VarNode* src_var, const ReformatKey& key);
M
Megvii Engine Team 已提交
81

82 83 84 85 86 87 88 89 90
    /*!
     * \param src_var the input var
     * \param layout_type tensor layout transform type of this relayout
     * placeholder as described in LayoutType
     */
    static SymbolVar make(VarNode* src_var, const ReformatKey& key);
    const ReformatKey& key() const {
        return m_key;
    }
91 92

private:
93 94 95 96 97 98
    void init_output_static_infer_desc() override;
    void scn_do_execute() override;
    void init_output_comp_node() override;
    const ReformatKey m_key;
    VarNode* m_output;
};
99
MGB_DYN_TYPE_OBJ_FINAL_IMPL(TensorReformatPass::RelayoutPlaceholder);
100
// clang-format on
101 102

TensorReformatPass::RelayoutPlaceholder::RelayoutPlaceholder(
103
        VarNode* src_var, const ReformatKey& key)
104
        : Super(src_var->owner_graph(), {}, "RelayoutPlaceholder", {src_var}),
105
          m_key{key} {
106
    add_input({src_var});
107 108
    add_equivalence_component<PODHash<ReformatKey>>(&m_key);
    m_output = ReformatManager::instance().get(m_key)({src_var});
109 110 111 112 113 114 115 116 117 118 119 120 121 122
    add_output(None)->dtype(src_var->dtype());
}

void TensorReformatPass::RelayoutPlaceholder::scn_do_execute() {
    mgb_throw(InternalError, "RelayoutPlaceholder opr can not be executed");
}

void TensorReformatPass::RelayoutPlaceholder::init_output_comp_node() {
    output(0)->comp_node(input(0)->comp_node());
}

void TensorReformatPass::RelayoutPlaceholder::init_output_static_infer_desc() {
    using namespace cg::static_infer;
    auto&& mgr = owner_graph()->static_infer_manager();
123
    mgr.register_shape_infer(output(0), ShapeInferDesc::make_identity(m_output));
124 125 126
}

SymbolVar TensorReformatPass::RelayoutPlaceholder::make(
127
        VarNode* src_var, const ReformatKey& key) {
128
    return src_var->owner_graph()
129
            ->insert_opr(std::make_unique<RelayoutPlaceholder>(src_var, key))
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
            ->output(0);
}

void TensorReformatPass::insert_pass(OptState& opt) const {
    opt.set_var_replace_check_flag(m_var_replace_check_flag);
    auto rewriter = opt.graph().make_rewriter();
    VarNodeArray new_inp_cache;
    auto on_opr = [this, &opt, &rewriter,
                   &new_inp_cache](OperatorNodeBase* opr) {
        auto it = m_opr_replace_func.find(opr->dyn_typeinfo());
        if (it != m_opr_replace_func.end()) {
            auto& new_inp = new_inp_cache;
            new_inp.clear();
            new_inp.reserve(opr->input().size());
            for (auto&& inp : opr->input()) {
                new_inp.push_back(rewriter.get_var(inp));
            }
            auto new_opr = (it->second)(opr, new_inp);
            auto &&out0 = opr->output(), &&out1 = new_opr->output();
            mgb_assert(out0.size() == out1.size(),
150 151
                       "bad opr replace: src=%s{%s} dst=%s{%s}, "
                       "src.size=%zu "
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
                       "dst.size=%zu",
                       opr->cname(), opr->dyn_typeinfo()->name,
                       new_opr->cname(), new_opr->dyn_typeinfo()->name,
                       out0.size(), out1.size());
            for (size_t i = 0; i < out0.size(); ++i) {
                if (!out0[i]->contain_flag(VarNode::Flag::VOLATILE_CONTENT)) {
                    mgb_assert(!out1[i]->contain_flag(
                            VarNode::Flag::VOLATILE_CONTENT));
                    auto src = out0[i];
                    auto dst = out1[i];
                    if (opt.graph().endpoint_contain(src)) {
                        // additional process on endpoint var node
                        dst = on_graph_endpoint_var(dst, src);
                    }
                    rewriter.replace_var(src, dst, nullptr);
                }
            }
        } else {
            rewriter.auto_replace_outputs(opr);
        }
    };
    opt.graph().iter(on_opr);
    rewriter.apply_inplace();
}

void TensorReformatPass::translate_pass(OptState& opt) const {
    auto rewriter = opt.graph().make_rewriter();
179
    auto on_opr = [&rewriter](OperatorNodeBase* opr) {
180 181 182
        if (opr->same_type<RelayoutPlaceholder>()) {
            auto ph = try_cast_as_op<RelayoutPlaceholder>(opr);
            auto new_inp = rewriter.get_var(opr->input(0));
183 184
            auto new_var =
                    ReformatManager::instance().get(ph->key())({new_inp});
185 186 187 188 189 190 191 192 193 194 195
            rewriter.replace_var(opr->output(0), new_var,
                                 mgb_cstr_log("replace relayout placeholder"));
            return;
        }
        rewriter.auto_replace_outputs(opr);
    };
    opt.graph().iter(on_opr);
    rewriter.apply_inplace();
}

void TensorReformatPass::apply(OptState& opt) const {
196
    MIDOUT_B("TensorReformatPass::apply")
197 198
    insert_pass(opt);
    translate_pass(opt);
199
    MIDOUT_E
200 201 202 203 204 205
}

/* ================ EnableTensorCorePass =============== */
VarNode* EnableTensorCorePass::on_graph_endpoint_var(VarNode* new_var,
                                                     VarNode* orig_var) const {
    if (!orig_var->shape().eq_shape(new_var->shape())) {
206 207 208
        return RelayoutPlaceholder::make(new_var,
                                         ReformatKey{TensorFormats::NCHWc32,
                                                     TensorFormats::NCHWc4})
209 210 211 212 213 214 215
                .node();
    }
    return new_var;
}

std::unique_ptr<EnableTensorCorePass>
EnableTensorCorePass::make_tensorcore_converter() {
216
    MIDOUT_B("EnableTensorCorePass::make")
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
    // replace rule for conv bias opr
    auto replace_conv_bias_opr = [](OperatorNodeBase* opr,
                                    const VarNodeArray& new_inp) {
        using Param = megdnn::param::ConvBias;
        using Format = Param::Format;
        using Sparse = Param::Sparse;
        mgb_assert(opr->input().size() == new_inp.size());
        auto& conv_bias = opr->cast_final_safe<opr::ConvBiasForward>();
        if (conv_bias.param().format != Format::NCHW4 ||
            conv_bias.output(0)->dtype().enumv() != DTypeEnum::QuantizedS8) {
            size_t nr_inps = opr->input().size();
            bool shape_has_changed = false;
            for (size_t i = 0; i < nr_inps; ++i) {
                if (!opr->input(i)->shape().eq_shape(new_inp[i]->shape())) {
                    shape_has_changed = true;
                }
            }
            MGB_MARK_USED_VAR(shape_has_changed);
            mgb_assert(
                    !shape_has_changed,
                    "EnableTensorCorePass assumes that the shape of inputs of"
                    "ConvBias operators whose output dtype is not QuantizedS8 "
                    "can not be changed in this opt pass");
            return serialization::copy_opr_shallow(*opr, new_inp,
                                                   opr->config());
        }
        mgb_assert(opr->input(1)->shape().eq_shape(new_inp[1]->shape()),
                   "EnableTensorCorePass assumes that filter tensor of "
                   "conv_bias operator can not be changed by other operators");
        VarNode* orig_filter = opr->input(1);
        auto is_nchw4 = [](TensorShape shape) -> bool {
            return shape.ndim == 5 && shape[4] == 4;
        };
        auto is_nchw32 = [](TensorShape shape) -> bool {
            return shape.ndim == 5 && shape[4] == 32;
        };
        bool can_replace_nchw32 = false;
        VarNode *src = nullptr, *weight = nullptr, *bias = nullptr,
                *z_inp = nullptr;
        // process src tensor
        if (is_nchw4(new_inp[0]->shape())) {  // new input is NCHW4 layout
            size_t group = 1, icpg, ocpg;
            if (conv_bias.param().sparse == Sparse::DENSE) {
                icpg = orig_filter->shape()[1] * 4;
                ocpg = orig_filter->shape()[0];
            } else {
                mgb_assert(conv_bias.param().sparse == Sparse::GROUP);
                group = orig_filter->shape()[0];
                icpg = orig_filter->shape()[2];
                ocpg = orig_filter->shape()[1];
                if (icpg == 1 && ocpg == 1) {  // channel wise conv
                    group *= 4;
                } else {
                    icpg *= 4;
                }
            }
            // nchw32 layout need that input width and height are larger than 3
            size_t ih = new_inp[0]->shape()[2], iw = new_inp[0]->shape()[3];
            if (group == 1 && ocpg % 32 == 0 && icpg % 32 == 0 && ih >= 3 &&
                iw >= 3) {
                auto symvar = RelayoutPlaceholder::make(
278 279
                        new_inp[0], ReformatKey{TensorFormats::NCHWc4,
                                                TensorFormats::NCHWc32});
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
                src = symvar.node();
                can_replace_nchw32 = true;
            } else {
                src = new_inp[0];
            }
        } else {  // new input is NCHW32 layout
            mgb_assert(is_nchw32(new_inp[0]->shape()));
            size_t group = 1, ocpg;
            if (conv_bias.param().sparse == Sparse::DENSE) {
                ocpg = orig_filter->shape()[0];
            } else {
                mgb_assert(conv_bias.param().sparse == Sparse::GROUP);
                size_t icpg = orig_filter->shape()[2];
                ocpg = orig_filter->shape()[1];
                if (icpg == 1 && ocpg == 1) {
                    group *= 4;
                } else {
                    icpg *= 4;
                }
            }
            size_t ih = new_inp[0]->shape()[2], iw = new_inp[0]->shape()[3];
            if (group == 1 && ocpg % 32 == 0 && ih >= 3 && iw >= 3) {
                can_replace_nchw32 = true;
                src = new_inp[0];
            } else {
                auto symvar = RelayoutPlaceholder::make(
306 307
                        new_inp[0], ReformatKey{TensorFormats::NCHWc32,
                                                TensorFormats::NCHWc4});
308 309 310 311 312 313 314
                src = symvar.node();
            }
        }
        // process filter tensor
        if (can_replace_nchw32) {
            auto symvar = RelayoutPlaceholder::make(
                    new_inp[1],
315
                    ReformatKey{TensorFormats::NCHWc4, TensorFormats::NCHWc32});
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
            weight = symvar.node();
        } else {
            weight = new_inp[1];
        }
        if (new_inp.size() == 2) {
            if (can_replace_nchw32) {
                auto param = conv_bias.param();
                param.format = Format::NCHW32;
                auto new_opr = opr::ConvBiasForward::make(
                        src, weight, param, conv_bias.execution_policy(),
                        conv_bias.config());
                return new_opr.node()->owner_opr();
            } else {
                VarNodeArray inps{src, weight};
                auto new_opr = serialization::copy_opr_shallow(*opr, inps,
                                                               opr->config());
                return new_opr;
            }
        }
        auto process_inp = [&](VarNode* inp) -> VarNode* {
            if (can_replace_nchw32) {
                if (is_nchw4(inp->shape())) {
                    auto symvar = RelayoutPlaceholder::make(
339 340
                            inp, ReformatKey{TensorFormats::NCHWc4,
                                             TensorFormats::NCHWc32});
341 342 343 344 345 346 347 348 349 350 351
                    return symvar.node();
                } else {
                    mgb_assert(is_nchw32(inp->shape()));
                    return inp;
                }
            } else {
                if (is_nchw4(inp->shape())) {
                    return inp;
                } else {
                    mgb_assert(is_nchw32(inp->shape()));
                    auto symvar = RelayoutPlaceholder::make(
352 353
                            inp, ReformatKey{TensorFormats::NCHWc32,
                                             TensorFormats::NCHWc4});
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
                    return symvar.node();
                }
            }
        };
        // process bias tensor
        bias = process_inp(new_inp[2]);
        if (new_inp.size() == 3) {
            if (can_replace_nchw32) {
                auto param = conv_bias.param();
                param.format = Format::NCHW32;
                auto new_opr = opr::ConvBiasForward::make(
                        src, weight, bias, param, conv_bias.execution_policy(),
                        conv_bias.config());
                return new_opr.node()->owner_opr();
            } else {
                VarNodeArray inps{src, weight, bias};
                auto new_opr = serialization::copy_opr_shallow(*opr, inps,
                                                               opr->config());
                return new_opr;
            }
        }
        // process z_inp tensor
        z_inp = process_inp(new_inp[3]);
        if (can_replace_nchw32) {
            auto param = conv_bias.param();
            param.format = Format::NCHW32;
            auto new_opr = opr::ConvBiasForward::make(
                    src, weight, bias, z_inp, param,
                    conv_bias.execution_policy(), conv_bias.config());
            return new_opr.node()->owner_opr();
        }
        VarNodeArray inps{src, weight, bias, z_inp};
        auto new_opr =
                serialization::copy_opr_shallow(*opr, inps, opr->config());
        return new_opr;
    };
    // replace rule for elemwise like opr
    // for oprs support NCHW4 and NCHW32 layout
    auto replace_elemwise_like_opr = [](OperatorNodeBase* opr,
                                        const VarNodeArray new_inp) {
        mgb_assert(opr->input().size() == new_inp.size());
        size_t nr_inps = new_inp.size();
        size_t nr_shape_changed = 0;
        for (size_t i = 0; i < nr_inps; ++i) {
            if (!opr->input(i)->shape().eq_shape(new_inp[i]->shape())) {
                nr_shape_changed++;
            }
        }
        if (nr_shape_changed) {
            auto inps = new_inp;
            if (nr_shape_changed >=
                nr_inps / 2) {  // NCHW32 > NCHW4 -> use NCHW32
                for (size_t i = 0; i < nr_inps; ++i) {
                    if (opr->input(i)->shape().eq_shape(new_inp[i]->shape())) {
                        auto symvar = RelayoutPlaceholder::make(
409 410 411
                                new_inp[i],
                                ReformatKey{TensorFormats::NCHWc4,
                                            TensorFormats::NCHWc32});
412 413 414 415 416 417 418
                        inps[i] = symvar.node();
                    }
                }
            } else {  // NCHW32 < NCHW4 -> use NCHW4
                for (size_t i = 0; i < nr_inps; ++i) {
                    if (!opr->input(i)->shape().eq_shape(new_inp[i]->shape())) {
                        auto symvar = RelayoutPlaceholder::make(
419 420
                                new_inp[i], ReformatKey{TensorFormats::NCHWc32,
                                                        TensorFormats::NCHWc4});
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
                        inps[i] = symvar.node();
                    }
                }
            }
            return serialization::copy_opr_shallow(*opr, inps, opr->config());
        }
        return serialization::copy_opr_shallow(*opr, new_inp, opr->config());
    };
    // for oprs only supports NCHW4 layout
    auto replace_inps_to_nchw4 = [](OperatorNodeBase* opr,
                                    const VarNodeArray new_inp) {
        mgb_assert(opr->input().size() == new_inp.size());
        VarNodeArray inps = new_inp;
        for (size_t i = 0; i < opr->input().size(); ++i) {
            if (!opr->input(i)->shape().eq_shape(new_inp[i]->shape())) {
                mgb_assert(opr->input(i)->shape().ndim == 5 &&
                           opr->input(i)->shape()[4] == 4);
                mgb_assert(new_inp[i]->shape().ndim == 5 &&
                           new_inp[i]->shape()[4] == 32);
                auto symvar = RelayoutPlaceholder::make(
441 442
                        new_inp[i], ReformatKey{TensorFormats::NCHWc32,
                                                TensorFormats::NCHWc4});
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
                inps[i] = symvar.node();
            }
        }
        auto new_opr =
                serialization::copy_opr_shallow(*opr, inps, opr->config());
        return new_opr;
    };
    auto replace_non_nchw4_opr = [](OperatorNodeBase* opr,
                                    const VarNodeArray new_inp) {
        size_t nr_inps = opr->input().size();
        bool shape_has_changed = false;
        for (size_t i = 0; i < nr_inps; ++i) {
            if (!opr->input(i)->shape().eq_shape(new_inp[i]->shape())) {
                shape_has_changed = true;
            }
        }
        mgb_assert(!shape_has_changed,
                   "EnableTensorCorePass assumes that inputs' shape of "
                   "non-nchw4 operators "
                   "can not be changed in this opt "
                   "pass");
        return serialization::copy_opr_shallow(*opr, new_inp, opr->config());
    };
    auto replace_warp_affine_opr =
            [replace_inps_to_nchw4, replace_non_nchw4_opr](
                    OperatorNodeBase* opr, const VarNodeArray new_inp) {
                using Param = opr::WarpAffineForward::Param;
                using Format = Param::Format;
                mgb_assert(opr->input().size() == new_inp.size());
                auto& warp = opr->cast_final_safe<opr::WarpAffineForward>();
                if (warp.param().format != Format::NCHW4) {
                    return replace_non_nchw4_opr(opr, new_inp);
                }
                return replace_inps_to_nchw4(opr, new_inp);
            };
    auto replace_warp_perspective_opr =
            [replace_inps_to_nchw4, replace_non_nchw4_opr](
                    OperatorNodeBase* opr, const VarNodeArray new_inp) {
                using Param = opr::WarpPerspectiveForward::Param;
                using Format = Param::Format;
                mgb_assert(opr->input().size() == new_inp.size());
                auto& warp =
                        opr->cast_final_safe<opr::WarpPerspectiveForward>();
                if (warp.param().format != Format::NCHW4) {
                    return replace_non_nchw4_opr(opr, new_inp);
                }
                return replace_inps_to_nchw4(opr, new_inp);
            };
    auto replace_resize_opr = [replace_inps_to_nchw4, replace_non_nchw4_opr](
                                      OperatorNodeBase* opr,
                                      const VarNodeArray new_inp) {
        using Param = opr::ResizeForward::Param;
        using Format = Param::Format;
        mgb_assert(opr->input().size() == new_inp.size());
        auto& resize = opr->cast_final_safe<opr::ResizeForward>();
        if (resize.param().format != Format::NCHW4) {
            return replace_non_nchw4_opr(opr, new_inp);
        }
        return replace_inps_to_nchw4(opr, new_inp);
    };
    auto replace_pooling_opr = [replace_non_nchw4_opr](
                                       OperatorNodeBase* opr,
                                       const VarNodeArray new_inp) {
        using Param = opr::PoolingForward::Param;
        using Format = Param::Format;
        mgb_assert(opr->input().size() == new_inp.size());
        auto& pooling = opr->cast_final_safe<opr::PoolingForward>();
        if (pooling.param().format != Format::NCHW4) {
            return replace_non_nchw4_opr(opr, new_inp);
        }
        size_t nr_inps = opr->input().size();
        MGB_MARK_USED_VAR(nr_inps);
        mgb_assert(nr_inps == 1);
516 517 518 519 520 521
        size_t nr_channels = opr->input(0)->shape()[1] * 4;
        if (nr_channels % 32 == 0) {  // use nchw32 format
            VarNode* new_inp_var = new_inp[0];
            if (opr->input(0)->shape().eq_shape(new_inp[0]->shape())) {
                new_inp_var =
                        RelayoutPlaceholder::make(
522 523
                                new_inp[0], ReformatKey{TensorFormats::NCHWc4,
                                                        TensorFormats::NCHWc32})
524 525 526 527 528 529 530
                                .node();
            } else {
                mgb_assert(opr->input(0)->shape().ndim == 5 &&
                           opr->input(0)->shape()[4] == 4);
                mgb_assert(new_inp[0]->shape().ndim == 5 &&
                           new_inp[0]->shape()[4] == 32);
            }
531 532
            auto new_param = pooling.param();
            new_param.format = Format::NCHW32;
533
            auto new_pooling = opr::PoolingForward::make(new_inp_var, new_param,
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
                                                         opr->config());
            return new_pooling.node()->owner_opr();
        }
        return serialization::copy_opr_shallow(*opr, new_inp, opr->config());
    };
    auto ret = std::make_unique<EnableTensorCorePass>();
    ret->set_var_replace_check_flag(VarReplaceCheckFlag::NOCHECK);
    auto&& replace_func = ret->m_opr_replace_func;
    replace_func[opr::ConvBiasForward::typeinfo()] = replace_conv_bias_opr;

    // elemwise like
    replace_func[opr::Elemwise::typeinfo()] = replace_elemwise_like_opr;
    replace_func[opr::TypeCvt::typeinfo()] = replace_elemwise_like_opr;
    replace_func[opr::ElemwiseMultiType::typeinfo()] =
            replace_elemwise_like_opr;
    replace_func[opr::PowC::typeinfo()] = replace_elemwise_like_opr;

    // format aware
    replace_func[opr::PoolingForward::typeinfo()] = replace_pooling_opr;
    replace_func[opr::WarpAffineForward::typeinfo()] = replace_warp_affine_opr;
    replace_func[opr::WarpPerspectiveForward::typeinfo()] =
            replace_warp_perspective_opr;
    replace_func[opr::ResizeForward::typeinfo()] = replace_resize_opr;

    // to nchw4
    replace_func[opr::Reduce::typeinfo()] = replace_inps_to_nchw4;
    replace_func[opr::Concat::typeinfo()] = replace_inps_to_nchw4;
    replace_func[opr::Reshape::typeinfo()] = replace_inps_to_nchw4;
    replace_func[opr::GetVarShape::typeinfo()] = replace_inps_to_nchw4;
    replace_func[opr::Dimshuffle::typeinfo()] = replace_inps_to_nchw4;
    return ret;
565
    MIDOUT_E
566 567 568 569 570 571
}

/* ================ EnableCHWN4Pass =============== */
VarNode* EnableCHWN4Pass::on_graph_endpoint_var(VarNode* new_var,
                                                VarNode* /* orig_var */) const {
    if (m_varshape_changed.count(new_var)) {
572 573 574
        return RelayoutPlaceholder::make(new_var,
                                         ReformatKey{TensorFormats::CHWNc4,
                                                     TensorFormats::NCHWc4})
575 576 577 578 579 580
                .node();
    }
    return new_var;
}

std::unique_ptr<EnableCHWN4Pass> EnableCHWN4Pass::make_chwn4_converter() {
581
    MIDOUT_B("EnableCHWN4Pass::make")
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
    auto ret = std::make_unique<EnableCHWN4Pass>();
    ret->set_var_replace_check_flag(VarReplaceCheckFlag::NOCHECK);
    auto&& replace_func = ret->m_opr_replace_func;
    auto&& varshape_changed = ret->m_varshape_changed;
    // replace rule for conv bias opr
    auto replace_conv_bias_opr = [&varshape_changed](
                                         OperatorNodeBase* opr,
                                         const VarNodeArray& new_inp) {
        using Param = megdnn::param::ConvBias;
        using Format = Param::Format;
        mgb_assert(opr->input().size() == new_inp.size());
        auto& conv_bias = opr->cast_final_safe<opr::ConvBiasForward>();
        if (conv_bias.param().format != Format::NCHW4 ||
            conv_bias.output(0)->dtype().enumv() != DTypeEnum::QuantizedS8) {
            size_t nr_inps = new_inp.size();
            bool shape_has_changed = false;
            for (size_t i = 0; i < nr_inps; ++i) {
                if (varshape_changed.count(new_inp[i])) {
                    shape_has_changed = true;
                    break;
                }
            }
            mgb_assert(
                    !shape_has_changed,
                    "EnableCHWN4Pass assumes that the shape of inputs of"
                    "ConvBias operators whose output dtype is not QuantizedS8 "
                    "can not be changed in this opt pass");
            return serialization::copy_opr_shallow(*opr, new_inp,
                                                   opr->config());
        }
        mgb_assert(varshape_changed.count(new_inp[1]) == 0,
                   "EnableCHWN4Pass assumes that filter tensor of "
                   "conv_bias operator can not be changed by other operators");
        VarNode *src = nullptr, *weight = nullptr, *bias = nullptr,
                *z_inp = nullptr;
        // process src tensor
        if (varshape_changed.count(new_inp[0]) ==
            0) {  // new input is NCHW4 layout
            // currently not support group conv
            auto symvar = RelayoutPlaceholder::make(
                    new_inp[0],
623
                    ReformatKey{TensorFormats::NCHWc4, TensorFormats::CHWNc4});
624 625 626 627 628 629 630 631
            src = symvar.node();
        } else {  // new input is NCHW32 layout
            src = new_inp[0];
        }
        // process weight tensor
        {
            auto symvar = RelayoutPlaceholder::make(
                    new_inp[1],
632
                    ReformatKey{TensorFormats::NCHWc4, TensorFormats::CHWNc4});
633 634 635 636 637 638 639 640 641 642 643 644 645 646
            weight = symvar.node();
        }
        if (new_inp.size() == 2) {
            auto param = conv_bias.param();
            param.format = Format::CHWN4;
            auto new_opr = opr::ConvBiasForward::make(
                    src, weight, param, conv_bias.execution_policy(),
                    conv_bias.config());
            varshape_changed.insert(new_opr.node());
            return new_opr.node()->owner_opr();
        }
        auto process_inp = [&](VarNode* inp) -> VarNode* {
            if (varshape_changed.count(inp) == 0) {
                auto symvar = RelayoutPlaceholder::make(
647 648
                        inp, ReformatKey{TensorFormats::NCHWc4,
                                         TensorFormats::CHWNc4});
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
                return symvar.node();
            } else {
                return inp;
            }
        };
        // process bias tensor
        bias = process_inp(new_inp[2]);
        if (new_inp.size() == 3) {
            auto param = conv_bias.param();
            param.format = Format::CHWN4;
            auto new_opr = opr::ConvBiasForward::make(
                    src, weight, bias, param, conv_bias.execution_policy(),
                    conv_bias.config());
            varshape_changed.insert(new_opr.node());
            return new_opr.node()->owner_opr();
        }
        // process z_inp tensor
        z_inp = process_inp(new_inp[3]);
        auto param = conv_bias.param();
        param.format = Format::CHWN4;
        auto new_opr = opr::ConvBiasForward::make(
                src, weight, bias, z_inp, param, conv_bias.execution_policy(),
                conv_bias.config());
        varshape_changed.insert(new_opr.node());
        return new_opr.node()->owner_opr();
    };
    // replace rule for elemwise like opr
    // for oprs support NCHW4 and CHWN4 layout
    auto replace_elemwise_like_opr = [&varshape_changed](
                                             OperatorNodeBase* opr,
                                             const VarNodeArray new_inp) {
        mgb_assert(opr->input().size() == new_inp.size());
        size_t nr_inps = new_inp.size();
        size_t nr_shape_changed = 0;
        for (size_t i = 0; i < nr_inps; ++i) {
            if (varshape_changed.count(new_inp[i])) {
                nr_shape_changed++;
            }
        }
        if (nr_shape_changed) {
            auto inps = new_inp;
M
Megvii Engine Team 已提交
690 691
            if (nr_shape_changed >=
                nr_inps / 2) {  // CHWN4 > NCHW4 -> use CHWN4
692 693 694
                for (size_t i = 0; i < nr_inps; ++i) {
                    if (varshape_changed.count(new_inp[i]) == 0) {
                        auto symvar = RelayoutPlaceholder::make(
695 696
                                new_inp[i], ReformatKey{TensorFormats::NCHWc4,
                                                        TensorFormats::CHWNc4});
697 698 699 700 701 702 703 704 705 706 707
                        inps[i] = symvar.node();
                    }
                }
                auto new_opr = serialization::copy_opr_shallow(*opr, inps,
                                                               opr->config());
                varshape_changed.insert(new_opr->output(0));
                return new_opr;
            } else {  // CHWN4 < NCHW4 -> use NCHW4
                for (size_t i = 0; i < nr_inps; ++i) {
                    if (varshape_changed.count(new_inp[i])) {
                        auto symvar = RelayoutPlaceholder::make(
708 709
                                new_inp[i], ReformatKey{TensorFormats::CHWNc4,
                                                        TensorFormats::NCHWc4});
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
                        inps[i] = symvar.node();
                    }
                }
                return serialization::copy_opr_shallow(*opr, inps,
                                                       opr->config());
            }
        }
        return serialization::copy_opr_shallow(*opr, new_inp, opr->config());
    };
    // for oprs only supports NCHW4 layout
    auto replace_inps_to_nchw4 = [&varshape_changed](
                                         OperatorNodeBase* opr,
                                         const VarNodeArray new_inp) {
        mgb_assert(opr->input().size() == new_inp.size());
        VarNodeArray inps = new_inp;
        for (size_t i = 0; i < opr->input().size(); ++i) {
            if (varshape_changed.count(new_inp[i])) {
                auto symvar = RelayoutPlaceholder::make(
728 729
                        new_inp[i], ReformatKey{TensorFormats::CHWNc4,
                                                TensorFormats::NCHWc4});
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
                inps[i] = symvar.node();
            }
        }
        auto new_opr =
                serialization::copy_opr_shallow(*opr, inps, opr->config());
        return new_opr;
    };
    auto replace_non_nchw4_opr = [&varshape_changed](
                                         OperatorNodeBase* opr,
                                         const VarNodeArray new_inp) {
        size_t nr_inps = opr->input().size();
        bool shape_has_changed = false;
        for (size_t i = 0; i < nr_inps; ++i) {
            if (varshape_changed.count(new_inp[i])) {
                shape_has_changed = true;
            }
        }
        mgb_assert(!shape_has_changed,
                   "EnableCHWN4Pass assumes that inputs' shape of "
                   "non-nchw4 operators "
                   "can not be changed in this opt "
                   "pass");
        return serialization::copy_opr_shallow(*opr, new_inp, opr->config());
    };
    // capture by copy to avoid use after return
    auto replace_warp_affine_opr =
            [replace_inps_to_nchw4, replace_non_nchw4_opr](
                    OperatorNodeBase* opr, const VarNodeArray new_inp) {
                using Param = opr::WarpAffineForward::Param;
                using Format = Param::Format;
                mgb_assert(opr->input().size() == new_inp.size());
                auto& warp = opr->cast_final_safe<opr::WarpAffineForward>();
                if (warp.param().format != Format::NCHW4) {
                    return replace_non_nchw4_opr(opr, new_inp);
                }
                return replace_inps_to_nchw4(opr, new_inp);
            };
    auto replace_warp_perspective_opr =
            [replace_inps_to_nchw4, replace_non_nchw4_opr](
                    OperatorNodeBase* opr, const VarNodeArray new_inp) {
                using Param = opr::WarpPerspectiveForward::Param;
                using Format = Param::Format;
                mgb_assert(opr->input().size() == new_inp.size());
                auto& warp =
                        opr->cast_final_safe<opr::WarpPerspectiveForward>();
                if (warp.param().format != Format::NCHW4) {
                    return replace_non_nchw4_opr(opr, new_inp);
                }
                return replace_inps_to_nchw4(opr, new_inp);
            };
    auto replace_resize_opr = [replace_inps_to_nchw4, replace_non_nchw4_opr](
                                      OperatorNodeBase* opr,
                                      const VarNodeArray new_inp) {
        using Param = opr::ResizeForward::Param;
        using Format = Param::Format;
        mgb_assert(opr->input().size() == new_inp.size());
        auto& resize = opr->cast_final_safe<opr::ResizeForward>();
        if (resize.param().format != Format::NCHW4) {
            return replace_non_nchw4_opr(opr, new_inp);
        }
        return replace_inps_to_nchw4(opr, new_inp);
    };
    auto replace_pooling_opr = [&varshape_changed, replace_non_nchw4_opr](
                                       OperatorNodeBase* opr,
                                       const VarNodeArray new_inp) {
        using Param = opr::PoolingForward::Param;
        using Format = Param::Format;
        mgb_assert(opr->input().size() == new_inp.size());
        auto& pooling = opr->cast_final_safe<opr::PoolingForward>();
        if (pooling.param().format != Format::NCHW4) {
            return replace_non_nchw4_opr(opr, new_inp);
        }
        size_t nr_inps = opr->input().size();
        MGB_MARK_USED_VAR(nr_inps);
        mgb_assert(nr_inps == 1);
        if (varshape_changed.count(new_inp[0])) {
            auto new_param = pooling.param();
            new_param.format = Format::CHWN4;
            auto new_pooling = opr::PoolingForward::make(new_inp[0], new_param,
                                                         opr->config());
            varshape_changed.insert(new_pooling.node());
            return new_pooling.node()->owner_opr();
        }
        return serialization::copy_opr_shallow(*opr, new_inp, opr->config());
    };
    replace_func[opr::ConvBiasForward::typeinfo()] = replace_conv_bias_opr;

    // elemwise like
    replace_func[opr::Elemwise::typeinfo()] = replace_elemwise_like_opr;
    replace_func[opr::TypeCvt::typeinfo()] = replace_elemwise_like_opr;
    replace_func[opr::ElemwiseMultiType::typeinfo()] =
            replace_elemwise_like_opr;
    replace_func[opr::PowC::typeinfo()] = replace_elemwise_like_opr;

    // format aware
    replace_func[opr::PoolingForward::typeinfo()] = replace_pooling_opr;
    replace_func[opr::WarpAffineForward::typeinfo()] = replace_warp_affine_opr;
    replace_func[opr::WarpPerspectiveForward::typeinfo()] =
            replace_warp_perspective_opr;
    replace_func[opr::ResizeForward::typeinfo()] = replace_resize_opr;

    // to nchw4
    replace_func[opr::Reduce::typeinfo()] = replace_inps_to_nchw4;
    replace_func[opr::Concat::typeinfo()] = replace_inps_to_nchw4;
    replace_func[opr::Reshape::typeinfo()] = replace_inps_to_nchw4;
    replace_func[opr::GetVarShape::typeinfo()] = replace_inps_to_nchw4;
    replace_func[opr::Dimshuffle::typeinfo()] = replace_inps_to_nchw4;
    replace_func[opr::BatchConvBias::typeinfo()] = replace_inps_to_nchw4;
    return ret;
839
    MIDOUT_E
840 841
}

842 843 844 845 846
/* ================ EnableNCHW4Pass ================ */
VarNode* EnableNCHW4Pass::on_graph_endpoint_var(VarNode* new_var,
                                                VarNode* orig_var) const {
    if (!orig_var->shape().eq_shape(new_var->shape())) {
        return RelayoutPlaceholder::make(
847 848
                       new_var,
                       ReformatKey{TensorFormats::NCHWc4, TensorFormats::NCHW})
849 850 851 852 853
                .node();
    }
    return new_var;
}

854
//! FIXME: All float oprs do not support NCHW4. Supports it in the future plz.
M
Megvii Engine Team 已提交
855
std::unique_ptr<EnableNCHW4Pass> EnableNCHW4Pass::make_nchw4_converter() {
856
    MIDOUT_B("EnableNCHW4Pass::make")
857 858 859 860
    auto ret = std::make_unique<EnableNCHW4Pass>();
    ret->set_var_replace_check_flag(VarReplaceCheckFlag::NOCHECK);
    megdnn::param::Convolution::Format conv_format =
            megdnn::param::Convolution::Format::NCHW4;
861
    megdnn::param::ConvBias::Format conv_bias_format =
862
            megdnn::param::ConvBias::Format::NCHW4;
863 864
    megdnn::param::ConvBias::Format conv_bias_format_nchw4_nchw =
            megdnn::param::ConvBias::Format::NCHW4_NCHW;
865 866
    megdnn::param::BatchConvBias::Format batch_conv_bias_format =
            megdnn::param::BatchConvBias::Format::NCHW4;
867 868 869 870 871 872
    ReformatKey src_to_nchw4_mode{TensorFormats::NCHW, TensorFormats::NCHWc4};
    ReformatKey src_to_nchw_mode{TensorFormats::NCHWc4, TensorFormats::NCHW};
    ReformatKey weight_to_nchw4_mode_dense{TensorFormats::KCRS,
                                           TensorFormats::KCRSc4};
    ReformatKey weight_to_nchw4_mode_group{TensorFormats::GKCRS,
                                           TensorFormats::GKCRSc4};
873

874
    struct ConvMode {
875 876
        ReformatKey weight;
        ReformatKey src;
877 878 879 880 881
    };

    auto trans_nchw4 =
            [weight_to_nchw4_mode_dense, weight_to_nchw4_mode_group,
             src_to_nchw4_mode](
882
                    const megdnn::param::Convolution::Sparse conv_mode,
883
                    const VarNode* filter) -> ConvMode {
884 885 886 887
        if (conv_mode == megdnn::param::Convolution::Sparse::DENSE) {
            mgb_assert(filter->shape().ndim == 4,
                       "The origin filter is not NCHW mode");
            size_t IC = filter->shape()[1];
888
            if (IC < 4) {
889 890 891 892 893
                ReformatKey weight{TensorFormats::KCRS, TensorFormats::KCRSc4,
                                   ReformatKey::Attribute::IC_SMALL};
                ReformatKey src{TensorFormats::NCHW, TensorFormats::NCHWc4,
                                ReformatKey::Attribute::IC_SMALL};
                return {weight, src};
894 895 896
            } else {
                return {weight_to_nchw4_mode_dense, src_to_nchw4_mode};
            }
897
        } else {
898 899
            mgb_throw_if(conv_mode != megdnn::param::Convolution::Sparse::GROUP,
                         MegBrainError, "mode error");
900 901 902 903
            mgb_assert(filter->shape().ndim == 5,
                       "The origin filter if not NCHW mode");
            size_t IC = filter->shape()[2];
            mgb_assert(IC % 4 == 0,
904 905 906
                       "The input channel should be divisible by 4 for group "
                       "conv");
            return {weight_to_nchw4_mode_group, src_to_nchw4_mode};
907 908
        }
    };
909 910 911
    auto replace_conv_opr = [trans_nchw4, conv_format](
                                    OperatorNodeBase* opr,
                                    const VarNodeArray& new_inp) {
912 913 914 915
        if (new_inp[0]->dtype().enumv() == DTypeEnum::Float32) {
            return serialization::copy_opr_shallow(*opr, new_inp,
                                                   opr->config());
        }
916 917
        mgb_assert(opr->input().size() == new_inp.size());
        auto& conv_opr = opr->cast_final_safe<opr::ConvolutionForward>();
918 919 920 921 922
        if (conv_opr.param().format !=
            megdnn::param::Convolution::Format::NCHW) {
            return serialization::copy_opr_shallow(*opr, new_inp,
                                                   opr->config());
        }
M
Megvii Engine Team 已提交
923
        auto conv_mode = trans_nchw4(conv_opr.param().sparse, new_inp[1]);
924 925 926 927
        VarNode *conv_src = new_inp[0], *conv_filter = new_inp[1];
        // src: NCHW --> NCWH4
        if (new_inp[0]->shape().ndim != 5) {
            mgb_assert(new_inp[0]->shape().ndim == 4);
M
Megvii Engine Team 已提交
928
            auto new_src = RelayoutPlaceholder::make(new_inp[0], conv_mode.src);
929 930 931
            conv_src = new_src.node();
        }
        // weight: NCHW --> NCHW4
932 933
        auto new_filter =
                RelayoutPlaceholder::make(new_inp[1], conv_mode.weight);
934 935 936 937 938 939
        conv_filter = new_filter.node();
        // format: NCHW --> NCHW4
        auto new_param = conv_opr.param();
        new_param.format = conv_format;
        // dst
        auto new_conv_opr = opr::Convolution::make(
M
Megvii Engine Team 已提交
940 941
                conv_src, conv_filter, new_param, conv_opr.execution_policy(),
                conv_opr.config());
942 943
        OperatorNodeBase* new_opr = new_conv_opr.node()->owner_opr();
        mgb_assert(new_conv_opr.shape().ndim == 5,
M
Megvii Engine Team 已提交
944
                   "The conv dst dim is not trans to nchw4");
945 946 947
        return new_opr;
    };

948
    auto replace_deconv_opr = [trans_nchw4, conv_format](
949 950
                                    OperatorNodeBase* opr,
                                    const VarNodeArray& new_inp) {
951 952 953 954 955 956 957 958 959 960 961 962 963 964
        if (new_inp[1]->dtype().enumv() == DTypeEnum::Float32) {
            return serialization::copy_opr_shallow(*opr, new_inp,
                                                   opr->config());
        }
        mgb_assert(opr->input().size() == new_inp.size());
        auto& deconv_opr = opr->cast_final_safe<opr::ConvolutionBackwardData>();
        if ((deconv_opr.param().format !=
             megdnn::param::Convolution::Format::NCHW) ||
            (deconv_opr.param().sparse !=
             megdnn::param::Convolution::Sparse::DENSE)) {
            return serialization::copy_opr_shallow(*opr, new_inp,
                                                   opr->config());
        }
        VarNode *deconv_src = new_inp[1], *deconv_filter = new_inp[0];
965
        auto deconv_mode = trans_nchw4(deconv_opr.param().sparse, deconv_filter);
966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
        // src: NCHW --> NCWH4
        if (deconv_src->shape().ndim != 5) {
            mgb_assert(deconv_src->shape().ndim == 4);
            auto new_src =
                    RelayoutPlaceholder::make(deconv_src, deconv_mode.src);
            deconv_src = new_src.node();
        }
        // weight: NCHW --> NCHW4
        auto new_filter =
                RelayoutPlaceholder::make(deconv_filter, deconv_mode.weight);
        deconv_filter = new_filter.node();
        // format: NCHW --> NCHW4
        auto new_param = deconv_opr.param();
        new_param.format = conv_format;
        // dst
        auto new_deconv_opr = opr::ConvolutionBackwardData::make_deconv(
                deconv_src, deconv_filter, new_param,
                deconv_opr.execution_policy(), deconv_opr.config());
        OperatorNodeBase* new_opr = new_deconv_opr.node()->owner_opr();
        return new_opr;
    };

988
    auto replace_batch_conv_bias_opr = [batch_conv_bias_format,
M
Megvii Engine Team 已提交
989 990 991
                                        src_to_nchw4_mode](
                                               OperatorNodeBase* opr,
                                               const VarNodeArray& new_inp) {
992 993 994 995
        if (new_inp[0]->dtype().enumv() == DTypeEnum::Float32) {
            return serialization::copy_opr_shallow(*opr, new_inp,
                                                   opr->config());
        }
996 997
        mgb_assert(opr->input().size() == new_inp.size());
        auto& batch_conv_bias_opr =
M
Megvii Engine Team 已提交
998
                opr->cast_final_safe<opr::BatchConvBiasForward>();
999 1000 1001 1002 1003 1004 1005
        if (batch_conv_bias_opr.param().format !=
            megdnn::param::BatchConvBias::Format::NCHW) {
            return serialization::copy_opr_shallow(*opr, new_inp,
                                                   opr->config());
        }

        mgb_assert(batch_conv_bias_opr.param().format ==
1006 1007 1008 1009 1010
                           megdnn::param::BatchConvBias::Format::NCHW,
                   "ConvertFormat Pass only support converting NCHW to NCHW4");
        // what should be converted: src, weight
        VarNode *src = new_inp[0], *filter = new_inp[1];
        // src: NCHW --> NCHW4
M
Megvii Engine Team 已提交
1011
        if (new_inp[0]->shape().ndim != 5) {
1012
            mgb_assert(new_inp[0]->shape().ndim == 4);
M
Megvii Engine Team 已提交
1013 1014
            auto new_src =
                    RelayoutPlaceholder::make(new_inp[0], src_to_nchw4_mode);
1015 1016 1017 1018
            src = new_src.node();
        }
        // weight: BNCHW --> BNCHW4
        // only support dense mode, which is similar with conv->group.
1019
        ReformatKey weight_mode{TensorFormats::GKCRS, TensorFormats::GKCRSc4};
1020 1021 1022 1023 1024 1025
        auto new_filter = RelayoutPlaceholder::make(new_inp[1], weight_mode);
        filter = new_filter.node();
        // format: NCHW --> NCHW4
        auto new_param = batch_conv_bias_opr.param();
        new_param.format = batch_conv_bias_format;
        if (new_inp.size() == 2) {
M
Megvii Engine Team 已提交
1026 1027 1028 1029
            auto dst = opr::BatchConvBias::make(
                    src, filter, new_param,
                    batch_conv_bias_opr.execution_policy(),
                    batch_conv_bias_opr.config());
1030 1031 1032 1033 1034 1035 1036 1037
            OperatorNodeBase* new_opr = dst.node()->owner_opr();
            mgb_assert(dst.shape().ndim == 5,
                       "The conv_bias dst dim is not trans to nchw4");
            return new_opr;
        }
        // bias: NCHW --> NCHW4
        VarNode* bias = new_inp[2];
        if (new_inp[2]->shape().ndim == 4) {
M
Megvii Engine Team 已提交
1038 1039
            auto new_bias =
                    RelayoutPlaceholder::make(new_inp[2], src_to_nchw4_mode);
1040 1041 1042
            bias = new_bias.node();
        }
        if (new_inp.size() == 3) {
M
Megvii Engine Team 已提交
1043 1044 1045 1046
            auto dst = opr::BatchConvBias::make(
                    src, filter, bias, new_param,
                    batch_conv_bias_opr.execution_policy(),
                    batch_conv_bias_opr.config());
1047 1048 1049 1050 1051 1052 1053 1054
            OperatorNodeBase* new_opr = dst.node()->owner_opr();
            mgb_assert(dst.shape().ndim == 5,
                       "The conv_bias dst dim is not trans to nchw4");
            return new_opr;
        }
        // z_inp: NCHW --> NCHW4
        VarNode* z_inp = new_inp[3];
        if (new_inp[3]->shape().ndim == 4) {
M
Megvii Engine Team 已提交
1055 1056
            auto new_z =
                    RelayoutPlaceholder::make(new_inp[3], src_to_nchw4_mode);
1057 1058
            z_inp = new_z.node();
        }
M
Megvii Engine Team 已提交
1059 1060 1061 1062
        auto dst =
                opr::BatchConvBias::make(src, filter, bias, z_inp, new_param,
                                         batch_conv_bias_opr.execution_policy(),
                                         batch_conv_bias_opr.config());
1063 1064 1065 1066 1067 1068
        OperatorNodeBase* new_opr = dst.node()->owner_opr();
        mgb_assert(dst.shape().ndim == 5,
                   "The conv_bias dst dim is not trans to nchw4");
        return new_opr;
    };
    auto replace_conv_bias_opr = [trans_nchw4, conv_bias_format,
1069
                                  conv_bias_format_nchw4_nchw,
1070
                                  src_to_nchw4_mode](
1071 1072
                                         OperatorNodeBase* opr,
                                         const VarNodeArray& new_inp) {
1073 1074 1075 1076
        if (new_inp[0]->dtype().enumv() == DTypeEnum::Float32) {
            return serialization::copy_opr_shallow(*opr, new_inp,
                                                   opr->config());
        }
1077 1078
        mgb_assert(opr->input().size() == new_inp.size());
        auto& conv_bias_opr = opr->cast_final_safe<opr::ConvBiasForward>();
1079 1080 1081 1082 1083 1084
        if (conv_bias_opr.param().format !=
            megdnn::param::Convolution::Format::NCHW) {
            return serialization::copy_opr_shallow(*opr, new_inp,
                                                   opr->config());
        }

1085 1086
        // what should be converted: src, weight
        VarNode *conv_bias_src = new_inp[0], *conv_bias_filter = new_inp[1];
M
Megvii Engine Team 已提交
1087
        auto conv_mode = trans_nchw4(conv_bias_opr.param().sparse, new_inp[1]);
1088
        // src: NCHW --> NCHW4
1089
        if (new_inp[0]->shape().ndim != 5) {
1090
            mgb_assert(new_inp[0]->shape().ndim == 4);
M
Megvii Engine Team 已提交
1091
            auto new_src = RelayoutPlaceholder::make(new_inp[0], conv_mode.src);
1092 1093 1094
            conv_bias_src = new_src.node();
        }
        // weight: NCHW --> NCHW4 or GNCHW --> GNCHW4
1095 1096
        auto new_filter =
                RelayoutPlaceholder::make(new_inp[1], conv_mode.weight);
1097 1098 1099
        conv_bias_filter = new_filter.node();
        // format: NCHW --> NCHW4
        auto new_param = conv_bias_opr.param();
1100 1101 1102 1103 1104 1105
        if (conv_bias_opr.output().size() > 0 &&
            conv_bias_opr.output(0)->dtype().enumv() == DTypeEnum::Float32) {
            new_param.format = conv_bias_format_nchw4_nchw;
        } else {
            new_param.format = conv_bias_format;
        }
1106 1107
        if (new_inp.size() == 2) {
            auto new_conv_bias_opr = opr::ConvBias::make(
M
Megvii Engine Team 已提交
1108 1109
                    conv_bias_src, conv_bias_filter, new_param,
                    conv_bias_opr.execution_policy(), conv_bias_opr.config());
1110
            OperatorNodeBase* new_opr = new_conv_bias_opr.node()->owner_opr();
1111 1112 1113 1114
            mgb_assert(
                new_conv_bias_opr.node()->dtype().enumv() == DTypeEnum::Float32 ||
                new_conv_bias_opr.shape().ndim == 5,
                "The conv_bias dst dim is not trans to nchw4");
1115 1116
            return new_opr;
        }
1117
        // bias: NCHW --> NCHW4 when bias_dtype is not Float32
1118
        VarNode* conv_bias_bias = new_inp[2];
1119 1120
        if (new_inp[2]->dtype().enumv() != DTypeEnum::Float32 &&
            new_inp[2]->shape().ndim == 4) {
1121 1122
            auto new_bias =
                    RelayoutPlaceholder::make(new_inp[2], src_to_nchw4_mode);
1123 1124 1125 1126
            conv_bias_bias = new_bias.node();
        }
        if (new_inp.size() == 3) {
            auto new_conv_bias_opr = opr::ConvBias::make(
M
Megvii Engine Team 已提交
1127 1128
                    conv_bias_src, conv_bias_filter, conv_bias_bias, new_param,
                    conv_bias_opr.execution_policy(), conv_bias_opr.config());
1129
            OperatorNodeBase* new_opr = new_conv_bias_opr.node()->owner_opr();
1130 1131 1132 1133
            mgb_assert(
                new_conv_bias_opr.node()->dtype().enumv() == DTypeEnum::Float32 ||
                new_conv_bias_opr.shape().ndim == 5,
                "The conv_bias dst dim is not trans to nchw4");
1134 1135
            return new_opr;
        }
1136
        // z_inp: NCHW --> NCHW4 when bias_dtype is not Float32
1137
        VarNode* z_inp = new_inp[3];
1138 1139
        if (new_inp[3]->dtype().enumv() != DTypeEnum::Float32 &&
            new_inp[3]->shape().ndim == 4) {
1140 1141
            auto new_z =
                    RelayoutPlaceholder::make(new_inp[3], src_to_nchw4_mode);
1142 1143
            z_inp = new_z.node();
        }
M
Megvii Engine Team 已提交
1144 1145 1146 1147
        auto new_conv_bias_opr = opr::ConvBias::make(
                conv_bias_src, conv_bias_filter, conv_bias_bias, z_inp,
                new_param, conv_bias_opr.execution_policy(),
                conv_bias_opr.config());
1148
        OperatorNodeBase* new_opr = new_conv_bias_opr.node()->owner_opr();
1149 1150 1151 1152
        mgb_assert(
            new_conv_bias_opr.node()->dtype().enumv() == DTypeEnum::Float32 ||
            new_conv_bias_opr.shape().ndim == 5,
            "The conv_bias dst dim is not trans to nchw4");
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
        return new_opr;
    };
    auto replace_elemwise_opr = [=](OperatorNodeBase* opr,
                                    const VarNodeArray& new_inp) {
        mgb_assert(opr->input().size() == new_inp.size());
        bool has_inp_changed = false;
        for (size_t i = 0; i < opr->input().size(); i++) {
            if (new_inp[i]->shape().ndim == 5) {
                has_inp_changed = true;
                break;
            }
        }
        if (has_inp_changed) {
            auto temp_inp = new_inp;
            for (size_t i = 0; i < opr->input().size(); i++) {
                if (new_inp[i]->shape().ndim == 4) {
M
Megvii Engine Team 已提交
1169 1170
                    auto new_var = RelayoutPlaceholder::make(new_inp[i],
                                                             src_to_nchw4_mode);
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
                    temp_inp[i] = new_var.node();
                } else {
                    mgb_assert((new_inp[i]->shape().ndim == 5) ||
                               new_inp[i]->shape().is_scalar());
                }
            }
            return serialization::copy_opr_shallow(*opr, temp_inp,
                                                   opr->config());
        } else {
            return serialization::copy_opr_shallow(*opr, new_inp,
                                                   opr->config());
        }
    };
    auto relayout_inp_to_nchw = [=](OperatorNodeBase* opr,
M
Megvii Engine Team 已提交
1185
                                    const VarNodeArray& new_inp) {
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
        mgb_assert(opr->input().size() == new_inp.size());
        VarNodeArray temp_inp = new_inp;
        for (size_t i = 0; i < opr->input().size(); i++) {
            if (!opr->input(i)->shape().eq_shape(new_inp[i]->shape())) {
                mgb_assert(opr->input(i)->shape().ndim == 4);
                mgb_assert(new_inp[i]->shape().ndim == 5);
                auto new_var =
                        RelayoutPlaceholder::make(new_inp[i], src_to_nchw_mode);
                temp_inp[i] = new_var.node();
            }
        }
        return serialization::copy_opr_shallow(*opr, temp_inp, opr->config());
    };
1199 1200
    auto replace_pooling_opr = [](OperatorNodeBase* opr,
                                  const VarNodeArray& new_inp) {
1201 1202 1203 1204
        if (new_inp[0]->dtype().enumv() == DTypeEnum::Float32) {
            return serialization::copy_opr_shallow(*opr, new_inp,
                                                   opr->config());
        }
1205 1206 1207 1208
        using Param = opr::PoolingForward::Param;
        using Format = Param::Format;
        mgb_assert(opr->input().size() == new_inp.size());
        auto& pooling = opr->cast_final_safe<opr::PoolingForward>();
1209 1210 1211
        if (pooling.param().format != Format::NCHW) {
            return opr;
        }
1212 1213 1214 1215
        if (new_inp[0]->shape().ndim == 5) {
            mgb_assert(new_inp[0]->dtype().enumv() == DTypeEnum::QuantizedS8);
            auto new_param = pooling.param();
            new_param.format = Format::NCHW4;
M
Megvii Engine Team 已提交
1216 1217
            auto new_pooling = opr::PoolingForward::make(new_inp[0], new_param,
                                                         opr->config());
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
            mgb_assert(new_pooling.shape().ndim == 5,
                       "out var of Pooling opr after transform must be 5 (got: "
                       "%zu).",
                       new_pooling.shape().ndim);
            return new_pooling.node()->owner_opr();
        }
        auto new_opr =
                serialization::copy_opr_shallow(*opr, new_inp, opr->config());
        return new_opr;
    };
    auto replace_resize_opr = [](OperatorNodeBase* opr,
                                 const VarNodeArray& new_inp) {
1230 1231 1232 1233
        if (new_inp[0]->dtype().enumv() == DTypeEnum::Float32) {
            return serialization::copy_opr_shallow(*opr, new_inp,
                                                   opr->config());
        }
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
        using Param = opr::ResizeForward::Param;
        using Format = Param::Format;
        mgb_assert(opr->input().size() == new_inp.size());
        auto& resize = opr->cast_final_safe<opr::ResizeForward>();
        if (new_inp[0]->shape().ndim == 5) {
            mgb_assert(new_inp[0]->dtype().enumv() == DTypeEnum::QuantizedS8);
            auto new_param = resize.param();
            new_param.format = Format::NCHW4;
            auto new_resize = opr::ResizeForward::make(
                    new_inp[0], new_inp[1], new_param, opr->config());
            mgb_assert(new_resize.shape().ndim == 5,
                       "out var of Resize opr after transform must be 5 (got: "
                       "%zu).",
                       new_resize.shape().ndim);
            return new_resize.node()->owner_opr();
        }
        auto new_opr =
                serialization::copy_opr_shallow(*opr, new_inp, opr->config());
        return new_opr;
    };
    auto replace_warp_perspective_opr = [](OperatorNodeBase* opr,
                                           const VarNodeArray& new_inp) {
1256 1257 1258 1259
        if (new_inp[0]->dtype().enumv() == DTypeEnum::Float32) {
            return serialization::copy_opr_shallow(*opr, new_inp,
                                                   opr->config());
        }
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
        using Param = opr::WarpPerspective::Param;
        using Format = Param::Format;
        mgb_assert(opr->input().size() == new_inp.size());
        auto& warp = opr->cast_final_safe<opr::WarpPerspectiveForward>();
        if (new_inp[0]->shape().ndim == 5) {
            mgb_assert(new_inp[0]->dtype().enumv() == DTypeEnum::QuantizedS8);
            auto new_param = warp.param();
            new_param.format = Format::NCHW4;
            SymbolVar new_warp;
            if (new_inp.size() == 3) {
                new_warp = opr::WarpPerspectiveForward::make(
                        new_inp[0], new_inp[1], nullptr, new_inp[2], new_param,
                        opr->config());
            } else {
                mgb_assert(new_inp.size() == 4);
                new_warp = opr::WarpPerspectiveForward::make(
                        new_inp[0], new_inp[1], new_inp[2], new_inp[3],
                        new_param, opr->config());
            }
            mgb_assert(new_warp.shape().ndim == 5,
                       "out var of WarpPerspective opr after transform must be "
                       "5 (got: "
                       "%zu).",
                       new_warp.shape().ndim);
            return new_warp.node()->owner_opr();
        }
        auto new_opr =
                serialization::copy_opr_shallow(*opr, new_inp, opr->config());
        return new_opr;
    };
1290 1291 1292
    auto&& replace_func = ret->m_opr_replace_func;
    //! supportted nchw4
    replace_func[opr::Convolution::typeinfo()] = replace_conv_opr;
1293 1294
    replace_func[opr::ConvolutionBackwardData::typeinfo()] =
            replace_deconv_opr;
1295
    replace_func[opr::ConvBias::typeinfo()] = replace_conv_bias_opr;
M
Megvii Engine Team 已提交
1296
    replace_func[opr::BatchConvBias::typeinfo()] = replace_batch_conv_bias_opr;
1297 1298 1299 1300
    replace_func[opr::PoolingForward::typeinfo()] = replace_pooling_opr;
    replace_func[opr::ResizeForward::typeinfo()] = replace_resize_opr;
    replace_func[opr::WarpPerspectiveForward::typeinfo()] =
            replace_warp_perspective_opr;
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
    replace_func[opr::Elemwise::typeinfo()] = replace_elemwise_opr;
    replace_func[opr::TypeCvt::typeinfo()] = replace_elemwise_opr;
    replace_func[opr::ElemwiseMultiType::typeinfo()] = replace_elemwise_opr;
    replace_func[opr::PowC::typeinfo()] = replace_elemwise_opr;
    //! not supported nchw4
    replace_func[opr::Concat::typeinfo()] = relayout_inp_to_nchw;
    replace_func[opr::Subtensor::typeinfo()] = relayout_inp_to_nchw;
    replace_func[opr::GetVarShape::typeinfo()] = relayout_inp_to_nchw;
    replace_func[opr::Dimshuffle::typeinfo()] = relayout_inp_to_nchw;
    replace_func[opr::Reduce::typeinfo()] = relayout_inp_to_nchw;
    replace_func[opr::AssertEqual::typeinfo()] = relayout_inp_to_nchw;
    replace_func[opr::IncrSubtensor::typeinfo()] = relayout_inp_to_nchw;
    replace_func[opr::WarpAffineForward::typeinfo()] = relayout_inp_to_nchw;
    return ret;
1315
    MIDOUT_E
1316 1317
}

1318 1319 1320 1321
/* ================ EnableNchwxxPass =============== */
VarNode* EnableNchwxxPass::on_graph_endpoint_var(VarNode* new_var,
                                                 VarNode* orig_var) const {
    if (!orig_var->shape().eq_shape(new_var->shape())) {
1322
        if (m_pack_c_size == 8) {
1323 1324 1325
            return RelayoutPlaceholder::make(new_var,
                                             ReformatKey{TensorFormats::NCHWc8,
                                                         TensorFormats::NCHW})
1326 1327
                    .node();
        } else if (m_pack_c_size == 4) {
1328 1329 1330
            return RelayoutPlaceholder::make(new_var,
                                             ReformatKey{TensorFormats::NCHWc4,
                                                         TensorFormats::NCHW})
1331 1332
                    .node();
        }
1333 1334 1335
    }
    return new_var;
}
1336

1337 1338 1339 1340 1341 1342 1343 1344 1345
static inline TensorShape nchwxx_shape_2_nchw_shape(
        const TensorShape& origin_shape) {
    mgb_assert(origin_shape.ndim == 5);
    TensorShape result = origin_shape;
    result[1] *= result[4];
    result.ndim = 4;
    return result;
}

1346
template <typename OprType>
1347 1348 1349 1350 1351 1352 1353 1354
static inline bool nchw_nchwxx_valid(
        const OprType& opr, const VarNodeArray& new_inp, const size_t pack_size,
        megdnn::param::ConvBias::NonlineMode nonline_mode =
                megdnn::param::ConvBias::NonlineMode::IDENTITY,
        bool is_dot = false) {
    auto& src_node = new_inp[0];
    auto& filter_node = new_inp[1];
    auto dst_node = opr.output(0);
1355 1356
    //! already transformed or have fuse Z
    if (filter_node->shape().ndim != 4 || new_inp.size() == 4) {
1357 1358
        return false;
    }
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
    megdnn::ConvolutionBase<megdnn::param::Convolution>::CanonizedFilterMeta fm;
    fm.format = megdnn::param::Convolution::Format::NCHW;
    fm.should_flip =
            opr.param().mode == megdnn::ConvBiasForward::Mode::CONVOLUTION;
    fm.group = 1;
    fm.spatial_ndim = 2;
    fm.ocpg = filter_node->shape()[0];
    fm.icpg = filter_node->shape()[1];
    fm.spatial[0] = filter_node->shape()[2];
    fm.spatial[1] = filter_node->shape()[3];
    fm.stride[0] = opr.param().stride_h;
    fm.stride[1] = opr.param().stride_w;
    fm.padding[0] = opr.param().pad_h;
    fm.padding[1] = opr.param().pad_w;
    fm.dilation[0] = opr.param().dilate_h;
    fm.dilation[1] = opr.param().dilate_w;

    megdnn::ConvBiasForward::BiasMode bias_mode =
            megdnn::ConvBiasForward::BiasMode::NO_BIAS;
1378 1379
    if (std::is_same<OprType, opr::ConvBiasForward>::value &&
        new_inp.size() > 2) {
1380 1381 1382 1383
        TensorShape bias_shape = new_inp[2]->shape();
        if (bias_shape.ndim == 5) {
            bias_shape = nchwxx_shape_2_nchw_shape(bias_shape);
        }
1384 1385 1386 1387 1388 1389 1390 1391 1392
        if (bias_shape.ndim == 0) {
            bias_mode = megdnn::ConvBiasForward::BiasMode::NO_BIAS;
        } else if (bias_shape.eq_shape(dst_node->shape())) {
            bias_mode = megdnn::ConvBiasForward::BiasMode::BIAS;
        } else {
            //! just check the ndim, the detail shape check is in check_exec
            mgb_assert(bias_shape.ndim == dst_node->shape().ndim);
            bias_mode =
                    megdnn::ConvBiasForward::BiasMode::BROADCAST_CHANNEL_BIAS;
1393 1394 1395
        }
    }

1396 1397 1398 1399 1400
    if (pack_size == 4) {
        if (is_dot && filter_node->dtype().enumv() == DTypeEnum::QuantizedS8) {
            fm.format = megdnn::param::Convolution::Format::NCHW44_DOT;
        } else {
            fm.format = megdnn::param::Convolution::Format::NCHW44;
1401
        }
1402 1403 1404 1405
    } else if (pack_size == 8) {
        fm.format = megdnn::param::Convolution::Format::NCHW88;
    } else {
        mgb_assert(0, "only support nchw44 nchw88");
1406 1407
    }

1408 1409 1410
    return megdnn::ConvBiasForward::is_nchw_nchwxx_optimized(
            src_node->dtype().enumv(), filter_node->dtype().enumv(),
            dst_node->dtype().enumv(), fm, bias_mode, nonline_mode);
1411
}
1412

M
Megvii Engine Team 已提交
1413
void EnableNchwxxPass::fill_opr_convert_fun(size_t pack_c_size) {
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
    using TestFilterResult = std::pair<TransType, ReformatKey>;
    ReformatKey weight_to_nchwxx_mode_dense{TensorFormats::KCRS,
                                            TensorFormats::KCRSc8k8};
    ReformatKey weight_to_nchwxx_mode_group{TensorFormats::GKCRS,
                                            TensorFormats::GKCRSc8k8};
    ReformatKey weight_to_nchwxx_mode_chan{TensorFormats::C11RS,
                                           TensorFormats::C11RSc8};
    ReformatKey hybrid_nchw_nchwxx{TensorFormats::KCRS, TensorFormats::KRSCk8};
    ReformatKey src_to_nchwxx_mode{TensorFormats::NCHW, TensorFormats::NCHWc8};
    ReformatKey src_to_nchw_mode{TensorFormats::NCHWc8, TensorFormats::NCHW};
1424 1425 1426
    megdnn::param::ConvBias::Format conv_bias_format =
            megdnn::param::ConvBias::Format::NCHW88;
    megdnn::param::Convolution::Format conv_format =
1427
            megdnn::param::Convolution::Format::NCHW88;
1428 1429
    megdnn::param::Pooling::Format pooling_format =
            megdnn::param::Pooling::Format::NCHW88;
1430 1431
    megdnn::param::Resize::Format resize_format =
            megdnn::param::Resize::Format::NCHW88;
1432
    std::string convter_pass_name = "conv_format_nchw88";
1433

1434
    if (pack_c_size == 4) {
1435 1436 1437 1438 1439 1440
        weight_to_nchwxx_mode_dense.output_format = TensorFormats::KCRSc4k4;
        weight_to_nchwxx_mode_group.output_format = TensorFormats::GKCRSc4k4;
        weight_to_nchwxx_mode_chan.output_format = TensorFormats::C11RSc4;
        hybrid_nchw_nchwxx.output_format = TensorFormats::KRSCk4;
        src_to_nchwxx_mode.output_format = TensorFormats::NCHWc4;
        src_to_nchw_mode.input_format = TensorFormats::NCHWc4;
1441
        conv_bias_format = megdnn::param::ConvBias::Format::NCHW44;
1442
        conv_format = megdnn::param::Convolution::Format::NCHW44;
1443
        pooling_format = megdnn::param::Pooling::Format::NCHW44;
1444
        resize_format = megdnn::param::Resize::Format::NCHW44;
1445 1446
        convter_pass_name = "conv_format_nchw44";
    }
1447 1448 1449 1450 1451
    auto test_trans_nchwxx =
            [pack_c_size, weight_to_nchwxx_mode_dense,
             weight_to_nchwxx_mode_group, weight_to_nchwxx_mode_chan,
             hybrid_nchw_nchwxx](
                    const megdnn::param::Convolution::Sparse conv_mode,
1452
                    const VarNode* filter, const size_t stride_h,
1453 1454
                    const size_t stride_w,
                    bool valid_nchw_nchw44) -> TestFilterResult {
1455 1456 1457
        TestFilterResult ret{TransType::TRANS_NONE, {}};
        if (conv_mode == megdnn::param::Convolution::Sparse::DENSE) {
            size_t OC = filter->shape()[0];
1458
            size_t IC = filter->shape()[1];
1459 1460 1461
            if ((IC % pack_c_size == 0) && (OC % pack_c_size == 0)) {
                ret.first = TransType::TRANS_PURE_NCHWXX;
                ret.second = weight_to_nchwxx_mode_dense;
1462
            } else if (valid_nchw_nchw44) {
1463 1464 1465 1466
                ret.first = TransType::TRANS_HYBIRD_NCHWXX;
                ret.second = hybrid_nchw_nchwxx;
            }
        } else {
1467 1468
            mgb_throw_if(conv_mode != megdnn::param::Convolution::Sparse::GROUP,
                         MegBrainError, "mode error");
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
            size_t group = filter->shape()[0];
            size_t ocpg = filter->shape()[1];
            size_t icpg = filter->shape()[2];
            if (icpg == 1 && ocpg == 1 && (group % pack_c_size == 0)) {
                ret.first = TransType::TRANS_PURE_NCHWXX;
                ret.second = weight_to_nchwxx_mode_chan;
            } else if ((icpg % pack_c_size == 0) && (ocpg % pack_c_size == 0)) {
                ret.first = TransType::TRANS_PURE_NCHWXX;
                ret.second = weight_to_nchwxx_mode_group;
            }
        }
        return ret;
    };
    auto replace_conv_opr = [test_trans_nchwxx, conv_format, src_to_nchwxx_mode,
1483 1484 1485
                             src_to_nchw_mode,
                             pack_c_size](OperatorNodeBase* opr,
                                          const VarNodeArray& new_inp) {
1486 1487
        mgb_assert(opr->input().size() == new_inp.size());
        auto& conv_opr = opr->cast_final_safe<opr::ConvolutionForward>();
1488 1489 1490 1491 1492
        mgb_throw_if(
                conv_opr.param().format !=
                        megdnn::param::Convolution::Format::NCHW,
                MegBrainError,
                "ConvertFormat Pass only support converting NCHW to NCHWXX");
1493
        bool valid_nchw_nchw44 =
1494
                nchw_nchwxx_valid(conv_opr, new_inp, pack_c_size);
1495 1496 1497
        auto is_trans = test_trans_nchwxx(
                conv_opr.param().sparse, new_inp[1], conv_opr.param().stride_h,
                conv_opr.param().stride_w, valid_nchw_nchw44);
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
        //! can not trans to nchwxx
        if (is_trans.first == TransType::TRANS_NONE) {
            mgb_assert(new_inp[1]->shape().ndim == 4 ||
                               new_inp[1]->shape().ndim == 5,
                       "The origin filter is not NCHW mode");
            VarNodeArray temp_inp = new_inp;
            //! if src is nchwxx, should RelayoutPlaceholder to nchw
            if (temp_inp[0]->shape().ndim == 5) {
                auto new_src =
                        RelayoutPlaceholder::make(new_inp[0], src_to_nchw_mode);
                temp_inp[0] = new_src.node();
            }
            auto new_opr = serialization::copy_opr_shallow(*opr, temp_inp,
                                                           opr->config());
            return new_opr;
        } else if (is_trans.first == TransType::TRANS_PURE_NCHWXX) {
            //! filter trans to nchwxx mode
            mgb_assert(new_inp[1]->shape().ndim == 4 ||
                               new_inp[1]->shape().ndim == 5,
                       "The origin filter is not NCHW mode");
            VarNode *conv_src = new_inp[0], *conv_filter = new_inp[1];
            auto new_filter =
                    RelayoutPlaceholder::make(new_inp[1], is_trans.second);
            conv_filter = new_filter.node();
            //! src trans to nchwxx mode
            if (new_inp[0]->shape().ndim != 5) {
                mgb_assert(new_inp[0]->shape().ndim == 4);
                auto new_src = RelayoutPlaceholder::make(new_inp[0],
                                                         src_to_nchwxx_mode);
                conv_src = new_src.node();
            }
            auto new_param = conv_opr.param();
            new_param.format = conv_format;
            mgb_assert(conv_src->shape().ndim == 5 &&
                               conv_filter->shape().ndim >= 6,
                       "The conv src dim is not trans to nchwxx");
            auto new_conv_opr = opr::Convolution::make(
                    conv_src, conv_filter, new_param,
                    conv_opr.execution_policy(), conv_opr.config());
            OperatorNodeBase* new_opr = new_conv_opr.node()->owner_opr();
            mgb_assert(new_conv_opr.shape().ndim == 5,
                       "The conv dst dim is not trans to nchwxx");
            return new_opr;
        } else {
            mgb_assert(is_trans.first == TransType::TRANS_HYBIRD_NCHWXX);
            VarNode *conv_src = new_inp[0], *conv_filter = new_inp[1];
            auto new_filter =
                    RelayoutPlaceholder::make(new_inp[1], is_trans.second);
            conv_filter = new_filter.node();
            mgb_assert(conv_src->shape().ndim == 4 &&
                               conv_filter->shape().ndim == 5,
                       "The src and filter is OK");
            auto new_param = conv_opr.param();
            new_param.format = conv_format;
            auto new_conv_opr = opr::Convolution::make(
                    conv_src, conv_filter, new_param,
                    conv_opr.execution_policy(), conv_opr.config());
            OperatorNodeBase* new_opr = new_conv_opr.node()->owner_opr();
            mgb_assert(new_conv_opr.shape().ndim == 5,
                       "The conv dst dim is not trans to nchwxx");
            return new_opr;
        }
    };

    auto replace_conv_bias_opr = [test_trans_nchwxx, conv_bias_format,
1563 1564 1565
                                  src_to_nchwxx_mode, src_to_nchw_mode,
                                  pack_c_size](OperatorNodeBase* opr,
                                               const VarNodeArray& new_inp) {
1566
        mgb_assert(opr->input().size() == new_inp.size());
1567 1568
        mgb_assert(opr->input().size() <= 3,
                   "nchwxx does not support conv_bias fuse Z right now");
1569
        auto& conv_bias_opr = opr->cast_final_safe<opr::ConvBiasForward>();
1570 1571 1572 1573 1574
        mgb_throw_if(
                conv_bias_opr.param().format !=
                        megdnn::param::ConvBias::Format::NCHW,
                MegBrainError,
                "ConvertFormat Pass only support converting NCHW to NCHWXX");
1575 1576 1577
        bool valid_nchw_nchw44 =
                nchw_nchwxx_valid(conv_bias_opr, new_inp, pack_c_size,
                                  conv_bias_opr.param().nonlineMode);
1578 1579
        auto is_trans = test_trans_nchwxx(
                conv_bias_opr.param().sparse, new_inp[1],
1580 1581 1582
                conv_bias_opr.param().stride_h, conv_bias_opr.param().stride_w,
                valid_nchw_nchw44);

1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
        //! can not trans to nchwxx
        if (is_trans.first == TransType::TRANS_NONE) {
            mgb_assert(new_inp[1]->shape().ndim == 4 ||
                               new_inp[1]->shape().ndim == 5,
                       "The origin filter is not NCHW mode");
            VarNodeArray temp_inp = new_inp;
            //! if src is nchwxx, should RelayoutPlaceholder to nchw
            if (temp_inp[0]->shape().ndim == 5) {
                auto new_src =
                        RelayoutPlaceholder::make(new_inp[0], src_to_nchw_mode);
                temp_inp[0] = new_src.node();
            }
            //! the bias is nchwxx
1596
            if (new_inp.size() > 2 && temp_inp[2]->shape().ndim == 5) {
1597 1598 1599 1600 1601 1602 1603 1604 1605
                auto new_bias =
                        RelayoutPlaceholder::make(new_inp[2], src_to_nchw_mode);
                temp_inp[2] = new_bias.node();
            }
            auto new_opr = serialization::copy_opr_shallow(*opr, temp_inp,
                                                           opr->config());
            return new_opr;
        } else if (is_trans.first == TransType::TRANS_PURE_NCHWXX) {
            VarNode *conv_bias_src = new_inp[0], *conv_bias_filter = new_inp[1],
1606
                    *conv_bias_bias = nullptr;
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
            //! filter trans to nchwxx mode
            mgb_assert(new_inp[1]->shape().ndim == 4 ||
                               new_inp[1]->shape().ndim == 5,
                       "The origin filter is not NCHW mode");
            auto new_filter =
                    RelayoutPlaceholder::make(new_inp[1], is_trans.second);
            conv_bias_filter = new_filter.node();
            //! src trans to nchwxx mode
            if (new_inp[0]->shape().ndim != 5) {
                mgb_assert(new_inp[0]->shape().ndim == 4);
                auto new_src = RelayoutPlaceholder::make(new_inp[0],
                                                         src_to_nchwxx_mode);
                conv_bias_src = new_src.node();
            }
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
            //! bias trans to nchwxx mode
            if (new_inp.size() > 2) {
                if (new_inp[2]->shape().ndim == 4) {
                    auto new_bias = RelayoutPlaceholder::make(
                            new_inp[2], src_to_nchwxx_mode);
                    conv_bias_bias = new_bias.node();
                } else {
                    mgb_assert(new_inp[2]->shape().ndim == 5);
                    conv_bias_bias = new_inp[2];
                }
1631 1632 1633 1634 1635 1636
            }
            auto new_param = conv_bias_opr.param();
            new_param.format = conv_bias_format;
            mgb_assert(conv_bias_src->shape().ndim == 5 &&
                               conv_bias_filter->shape().ndim >= 6,
                       "The conv_bias src dim is not trans to nchwxx");
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
            SymbolVar new_conv_bias_opr;
            if (conv_bias_bias) {
                new_conv_bias_opr = opr::ConvBias::make(
                        conv_bias_src, conv_bias_filter, conv_bias_bias,
                        new_param, conv_bias_opr.execution_policy(),
                        conv_bias_opr.config());
            } else {
                new_conv_bias_opr = opr::ConvBias::make(
                        conv_bias_src, conv_bias_filter, new_param,
                        conv_bias_opr.execution_policy(),
                        conv_bias_opr.config());
            }
1649 1650 1651 1652 1653 1654 1655
            OperatorNodeBase* new_opr = new_conv_bias_opr.node()->owner_opr();
            mgb_assert(new_conv_bias_opr.shape().ndim == 5,
                       "The conv_bias dst dim is not trans to nchwxx");
            return new_opr;
        } else {
            mgb_assert(is_trans.first == TransType::TRANS_HYBIRD_NCHWXX);
            VarNode *conv_bias_src = new_inp[0], *conv_bias_filter = new_inp[1],
1656
                    *conv_bias_bias = nullptr;
1657 1658 1659 1660
            auto new_filter =
                    RelayoutPlaceholder::make(new_inp[1], is_trans.second);
            conv_bias_filter = new_filter.node();
            //! bias trans to nchwxx mode, bias may be scale
1661 1662 1663 1664 1665 1666 1667 1668 1669
            if (new_inp.size() > 2) {
                if (new_inp[2]->shape().ndim == 4) {
                    auto new_bias = RelayoutPlaceholder::make(
                            new_inp[2], src_to_nchwxx_mode);
                    conv_bias_bias = new_bias.node();
                } else {
                    mgb_assert(new_inp[2]->shape().ndim == 5);
                    conv_bias_bias = new_inp[2];
                }
1670 1671 1672 1673 1674
            }
            mgb_assert(conv_bias_src->shape().ndim == 4 &&
                       conv_bias_filter->shape().ndim == 5);
            auto new_param = conv_bias_opr.param();
            new_param.format = conv_bias_format;
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
            SymbolVar new_conv_bias_opr;
            if (conv_bias_bias) {
                new_conv_bias_opr = opr::ConvBias::make(
                        conv_bias_src, conv_bias_filter, conv_bias_bias,
                        new_param, conv_bias_opr.execution_policy(),
                        conv_bias_opr.config());
            } else {
                new_conv_bias_opr = opr::ConvBias::make(
                        conv_bias_src, conv_bias_filter, new_param,
                        conv_bias_opr.execution_policy(),
                        conv_bias_opr.config());
            }
1687 1688 1689 1690 1691 1692 1693 1694
            OperatorNodeBase* new_opr = new_conv_bias_opr.node()->owner_opr();
            mgb_assert(new_conv_bias_opr.shape().ndim == 5,
                       "The conv dst dim is not trans to nchwxx");
            return new_opr;
        }
    };

    auto replace_pooling_opr = [=](OperatorNodeBase* opr,
M
Megvii Engine Team 已提交
1695
                                   const VarNodeArray& new_inp) {
1696 1697
        mgb_assert(opr->input().size() == new_inp.size());
        auto& pooling_opr = opr->cast_final_safe<opr::PoolingForward>();
1698 1699 1700 1701 1702
        mgb_throw_if(
                pooling_opr.param().format !=
                        megdnn::param::Pooling::Format::NCHW,
                MegBrainError,
                "ConvertFormat Pass only support converting NCHW to NCHWxx");
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
        VarNode* inp = new_inp[0];
        //! if input is nchwxx
        if (inp->shape().ndim == 5) {
            auto new_param = pooling_opr.param();
            new_param.format = pooling_format;
            auto new_pooling_opr =
                    opr::PoolingForward::make(inp, new_param, opr->config());
            mgb_assert(new_pooling_opr.shape().ndim == 5,
                       "The pooling dst dim is not trans to nchwxx");
            return new_pooling_opr.node()->owner_opr();
        } else {
            auto new_opr = serialization::copy_opr_shallow(*opr, new_inp,
                                                           opr->config());
            return new_opr;
        }
    };
1719
    
1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
    auto replace_resize_opr = [=](OperatorNodeBase* opr,
                                  const VarNodeArray& new_inp) {
        mgb_assert(opr->input().size() == new_inp.size());
        auto& resize_opr = opr->cast_final_safe<opr::ResizeForward>();
        mgb_throw_if(
                resize_opr.param().format !=
                                megdnn::param::Resize::Format::NCHW &&
                        resize_opr.param().format !=
                                megdnn::param::Resize::Format::NHWC,
                MegBrainError,
                "ConvertFormat Pass only support converting NCHW to NCHWxx");

        VarNode* inp = new_inp[0];
        if (resize_opr.param().format == megdnn::param::Resize::Format::NHWC) {
            auto temp_inp = new_inp;
            if (inp->shape().ndim == 5) {
                auto new_var = RelayoutPlaceholder::make(inp, src_to_nchw_mode);
                temp_inp[0] = new_var.node();
            }
            return serialization::copy_opr_shallow(*opr, temp_inp,
                                                   opr->config());
        } else {
            auto temp_inp = new_inp;
            if (inp->shape().ndim == 5) {
                auto new_param = resize_opr.param();
                new_param.format = resize_format;
                auto new_resize_opr = opr::ResizeForward::make(
                        new_inp[0], new_inp[1], new_param, opr->config());
                return new_resize_opr.node()->owner_opr();
            } else {
                return serialization::copy_opr_shallow(*opr, new_inp,
                                                       opr->config());
            }
        }
    };

1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
    auto replace_reduce_opr = [=](OperatorNodeBase* opr,
                                  const VarNodeArray& new_inp) {
        mgb_assert(opr->input().size() == new_inp.size());
        auto& reduce_opr = opr->cast_final_safe<opr::Reduce>();

        VarNodeArray temp_inp = new_inp;
        if (!opr->input(0)->shape().eq_shape(new_inp[0]->shape())) {
            mgb_assert(opr->input(0)->shape().ndim == 4);
            mgb_assert(new_inp[0]->shape().ndim == 5);
            if (reduce_opr.param().axis != 2 && reduce_opr.param().axis != 3) {
                auto new_var =
                        RelayoutPlaceholder::make(new_inp[0], src_to_nchw_mode);
                temp_inp[0] = new_var.node();
            }
        }
        return serialization::copy_opr_shallow(*opr, temp_inp, opr->config());
    };

1774 1775 1776 1777 1778
    //! When input change and all input can convert to nchwxx, this opr will run
    //! in nchwxx mode, else it will run in nchw mode, for example concat and
    //! elemwise opr
    auto replace_multi_inp_opr = [=](OperatorNodeBase* opr,
                                     const VarNodeArray& new_inp) {
1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
        mgb_assert(opr->input().size() == new_inp.size());
        bool has_inp_changed = false;
        bool can_exec_ncwxx = true;
        for (size_t i = 0; i < opr->input().size(); i++) {
            if (new_inp[i]->shape().ndim == 5) {
                has_inp_changed = true;
            } else if (new_inp[i]->shape().ndim == 4) {
                if (new_inp[i]->shape()[1] % pack_c_size != 0) {
                    can_exec_ncwxx = false;
                }
1789 1790
            } else if (!new_inp[i]->shape().is_scalar()) {
                can_exec_ncwxx = false;
1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
            }
        }
        if (has_inp_changed) {
            auto temp_inp = new_inp;
            if (can_exec_ncwxx) {
                for (size_t i = 0; i < opr->input().size(); i++) {
                    if (new_inp[i]->shape().ndim == 4) {
                        auto new_var = RelayoutPlaceholder::make(
                                new_inp[i], src_to_nchwxx_mode);
                        temp_inp[i] = new_var.node();
                    } else {
                        mgb_assert((new_inp[i]->shape().ndim == 5) ||
                                   new_inp[i]->shape().is_scalar());
                    }
                }
            } else {
                for (size_t i = 0; i < opr->input().size(); i++) {
                    if (new_inp[i]->shape().ndim == 5) {
                        auto new_var = RelayoutPlaceholder::make(
                                new_inp[i], src_to_nchw_mode);
                        temp_inp[i] = new_var.node();
                    }
                }
            }
            return serialization::copy_opr_shallow(*opr, temp_inp,
                                                   opr->config());
        } else {
            return serialization::copy_opr_shallow(*opr, new_inp,
                                                   opr->config());
        }
    };

1823
    auto relayout_inp_to_nchw = [=](OperatorNodeBase* opr,
M
Megvii Engine Team 已提交
1824
                                    const VarNodeArray& new_inp) {
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
        mgb_assert(opr->input().size() == new_inp.size());
        VarNodeArray temp_inp = new_inp;
        for (size_t i = 0; i < opr->input().size(); i++) {
            if (!opr->input(i)->shape().eq_shape(new_inp[i]->shape())) {
                mgb_assert(opr->input(i)->shape().ndim == 4);
                mgb_assert(new_inp[i]->shape().ndim == 5);
                auto new_var =
                        RelayoutPlaceholder::make(new_inp[i], src_to_nchw_mode);
                temp_inp[i] = new_var.node();
            }
        }
        return serialization::copy_opr_shallow(*opr, temp_inp, opr->config());
    };

1839
    auto&& replace_func = m_opr_replace_func;
1840 1841 1842 1843
    //! supportted nchwxx
    replace_func[opr::Convolution::typeinfo()] = replace_conv_opr;
    replace_func[opr::ConvBias::typeinfo()] = replace_conv_bias_opr;
    replace_func[opr::PoolingForward::typeinfo()] = replace_pooling_opr;
1844
    replace_func[opr::ResizeForward::typeinfo()] = replace_resize_opr;
1845 1846 1847 1848 1849
    replace_func[opr::Concat::typeinfo()] = replace_multi_inp_opr;
    replace_func[opr::Elemwise::typeinfo()] = replace_multi_inp_opr;
    replace_func[opr::TypeCvt::typeinfo()] = replace_multi_inp_opr;
    replace_func[opr::ElemwiseMultiType::typeinfo()] = replace_multi_inp_opr;
    replace_func[opr::PowC::typeinfo()] = replace_multi_inp_opr;
1850
    replace_func[opr::Reduce::typeinfo()] = replace_reduce_opr;
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
    //! not support yet
    replace_func[opr::ConvolutionBackwardData::typeinfo()] =
            relayout_inp_to_nchw;
    replace_func[opr::Subtensor::typeinfo()] = relayout_inp_to_nchw;
    replace_func[opr::GetVarShape::typeinfo()] = relayout_inp_to_nchw;
    replace_func[opr::Dimshuffle::typeinfo()] = relayout_inp_to_nchw;
    replace_func[opr::AssertEqual::typeinfo()] = relayout_inp_to_nchw;
    replace_func[opr::IncrSubtensor::typeinfo()] = relayout_inp_to_nchw;
    replace_func[opr::WarpPerspectiveForward::typeinfo()] =
            relayout_inp_to_nchw;
    replace_func[opr::WarpAffineForward::typeinfo()] = relayout_inp_to_nchw;
1862
    replace_func[opr::Reshape::typeinfo()] = relayout_inp_to_nchw;
1863 1864 1865 1866
    replace_func[opr::AxisAddRemove::typeinfo()] = relayout_inp_to_nchw;
    replace_func[opr::Argmax::typeinfo()] = relayout_inp_to_nchw;
    replace_func[opr::Broadcast::typeinfo()] = relayout_inp_to_nchw;
    replace_func[opr::ImmutableTensor::typeinfo()] = relayout_inp_to_nchw;
1867 1868 1869 1870
}

std::unique_ptr<EnableNchwxxPass> EnableNchwxxPass::make_nchwxx_converter(
        size_t pack_c_size) {
1871
    MIDOUT_B("EnableNchwxxPass::make")
1872 1873 1874 1875 1876 1877 1878 1879 1880
    auto ret = std::make_unique<EnableNchwxxPass>(pack_c_size);
    ret->set_var_replace_check_flag(VarReplaceCheckFlag::NOCHECK);
    std::string convter_pass_name = "conv_format_nchw88";
    if (pack_c_size == 4) {
        convter_pass_name = "conv_format_nchw44";
    }
    ret->fill_opr_convert_fun(pack_c_size);
    ret->set_name(convter_pass_name);
    return ret;
1881
    MIDOUT_E
1882 1883 1884 1885 1886 1887 1888
}

/* ================ EnableNchw44DotPass =============== */
VarNode* EnableNchw44DotPass::on_graph_endpoint_var(VarNode* new_var,
                                                    VarNode* orig_var) const {
    if (!orig_var->shape().eq_shape(new_var->shape())) {
        return RelayoutPlaceholder::make(
1889 1890
                       new_var,
                       ReformatKey{TensorFormats::NCHWc4, TensorFormats::NCHW})
1891 1892 1893 1894 1895 1896 1897
                .node();
    }
    return new_var;
}

std::unique_ptr<EnableNchw44DotPass>
EnableNchw44DotPass::make_nchw44_dot_converter() {
1898
    MIDOUT_B("EnableNchw44DotPass::make")
1899 1900
    auto ret = std::make_unique<EnableNchw44DotPass>();
    ret->set_var_replace_check_flag(VarReplaceCheckFlag::NOCHECK);
1901 1902
    //! First is whether the conv can trans to nchwxx, second is the filter
    //! trans mode
1903

1904 1905
    struct TestTransResult {
        TransType trans_type;
1906
        ReformatKey relayout_mod;
1907
        megdnn::param::Convolution::Format conv_format;
1908
    };
1909 1910 1911
    constexpr size_t pack_c_size = 4_z;
    auto test_trans_nchw44_dot =
            [](const megdnn::param::Convolution::Sparse conv_mode,
1912
               const VarNode* filter, const size_t stride_h,
1913 1914
               const size_t stride_w,
               const bool valid_nchw_nchw44) -> TestTransResult {
1915
        TestTransResult ret{TransType::TRANS_NONE, {}, {}};
1916 1917
        bool is_int8 = filter->dtype().enumv() == DTypeEnum::QuantizedS8 ||
                       filter->dtype().enumv() == DTypeEnum::Int8;
1918 1919
        if (conv_mode == megdnn::param::Convolution::Sparse::DENSE) {
            size_t OC = filter->shape()[0];
1920
            size_t IC = filter->shape()[1];
1921
            if ((IC % pack_c_size == 0) && (OC % pack_c_size == 0)) {
1922
                ret.trans_type = TransType::TRANS_PURE_NCHWXX;
1923
                if (is_int8) {
1924 1925
                    ret.relayout_mod = ReformatKey{TensorFormats::KCRS,
                                                   TensorFormats::KCRSk4c4};
1926 1927 1928
                    ret.conv_format =
                            megdnn::param::ConvBias::Format::NCHW44_DOT;
                } else {
1929 1930
                    ret.relayout_mod = ReformatKey{TensorFormats::KCRS,
                                                   TensorFormats::KCRSc4k4};
1931 1932 1933
                    ret.conv_format = megdnn::param::ConvBias::Format::NCHW44;
                }
            } else if (valid_nchw_nchw44) {
1934
                ret.trans_type = TransType::TRANS_HYBIRD_NCHWXX;
1935 1936
                ret.relayout_mod =
                        ReformatKey{TensorFormats::KCRS, TensorFormats::KRSCk4};
1937 1938 1939 1940 1941 1942
                if (is_int8) {
                    ret.conv_format =
                            megdnn::param::ConvBias::Format::NCHW44_DOT;
                } else {
                    ret.conv_format = megdnn::param::ConvBias::Format::NCHW44;
                }
1943 1944
            }
        } else {
1945 1946
            mgb_throw_if(conv_mode != megdnn::param::Convolution::Sparse::GROUP,
                         MegBrainError, "mode error");
1947 1948 1949 1950
            size_t group = filter->shape()[0];
            size_t ocpg = filter->shape()[1];
            size_t icpg = filter->shape()[2];
            if (icpg == 1 && ocpg == 1 && (group % pack_c_size == 0)) {
1951
                ret.trans_type = TransType::TRANS_PURE_NCHWXX;
1952 1953
                ret.relayout_mod = ReformatKey{TensorFormats::C11RS,
                                               TensorFormats::C11RSc4};
1954
                ret.conv_format = megdnn::param::ConvBias::Format::NCHW44;
1955
            } else if ((icpg % pack_c_size == 0) && (ocpg % pack_c_size == 0)) {
1956
                ret.trans_type = TransType::TRANS_PURE_NCHWXX;
1957
                if (is_int8) {
1958 1959
                    ret.relayout_mod = ReformatKey{TensorFormats::GKCRS,
                                                   TensorFormats::GKCRSk4c4};
1960 1961 1962
                    ret.conv_format =
                            megdnn::param::ConvBias::Format::NCHW44_DOT;
                } else {
1963 1964
                    ret.relayout_mod = ReformatKey{TensorFormats::GKCRS,
                                                   TensorFormats::GKCRSc4k4};
1965 1966
                    ret.conv_format = megdnn::param::ConvBias::Format::NCHW44;
                }
1967 1968 1969 1970
            }
        }
        return ret;
    };
1971
    auto replace_conv_opr = [test_trans_nchw44_dot](
1972 1973 1974 1975
                                    OperatorNodeBase* opr,
                                    const VarNodeArray& new_inp) {
        mgb_assert(opr->input().size() == new_inp.size());
        auto& conv_opr = opr->cast_final_safe<opr::ConvolutionForward>();
1976 1977 1978 1979 1980
        mgb_throw_if(conv_opr.param().format !=
                             megdnn::param::Convolution::Format::NCHW,
                     MegBrainError,
                     "ConvertFormat Pass only support converting NCHW to "
                     "NCHW44_DOT");
1981 1982 1983
        bool valid_nchw_nchw44 = nchw_nchwxx_valid(
                conv_opr, new_inp, pack_c_size,
                megdnn::param::ConvBias::NonlineMode::IDENTITY, true);
1984 1985
        auto is_trans = test_trans_nchw44_dot(
                conv_opr.param().sparse, new_inp[1], conv_opr.param().stride_h,
1986
                conv_opr.param().stride_w, valid_nchw_nchw44);
1987
        //! can not trans to nchwxx
1988
        if (is_trans.trans_type == TransType::TRANS_NONE) {
1989 1990 1991 1992 1993 1994 1995
            mgb_assert(new_inp[1]->shape().ndim == 4 ||
                               new_inp[1]->shape().ndim == 5,
                       "The origin filter is not NCHW mode");
            VarNodeArray temp_inp = new_inp;
            //! if src is nchwxx, should RelayoutPlaceholder to nchw
            if (temp_inp[0]->shape().ndim == 5) {
                auto new_src = RelayoutPlaceholder::make(
1996 1997
                        new_inp[0], ReformatKey{TensorFormats::NCHWc4,
                                                TensorFormats::NCHW});
1998 1999 2000 2001 2002
                temp_inp[0] = new_src.node();
            }
            auto new_opr = serialization::copy_opr_shallow(*opr, temp_inp,
                                                           opr->config());
            return new_opr;
2003
        } else if (is_trans.trans_type == TransType::TRANS_PURE_NCHWXX) {
2004 2005 2006 2007 2008
            //! filter trans to nchwxx mode
            mgb_assert(new_inp[1]->shape().ndim == 4 ||
                               new_inp[1]->shape().ndim == 5,
                       "The origin filter is not NCHW mode");
            VarNode *conv_src = new_inp[0], *conv_filter = new_inp[1];
2009 2010
            auto new_filter = RelayoutPlaceholder::make(new_inp[1],
                                                        is_trans.relayout_mod);
2011 2012 2013 2014 2015
            conv_filter = new_filter.node();
            //! src trans to nchwxx mode
            if (new_inp[0]->shape().ndim != 5) {
                mgb_assert(new_inp[0]->shape().ndim == 4);
                auto new_src = RelayoutPlaceholder::make(
2016 2017
                        new_inp[0], ReformatKey{TensorFormats::NCHW,
                                                TensorFormats::NCHWc4});
2018 2019 2020
                conv_src = new_src.node();
            }
            auto new_param = conv_opr.param();
2021
            new_param.format = is_trans.conv_format;
2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
            mgb_assert(conv_src->shape().ndim == 5 &&
                               conv_filter->shape().ndim >= 6,
                       "The conv src dim is not trans to nchwxx");
            auto new_conv_opr = opr::Convolution::make(
                    conv_src, conv_filter, new_param,
                    conv_opr.execution_policy(), conv_opr.config());
            OperatorNodeBase* new_opr = new_conv_opr.node()->owner_opr();
            mgb_assert(new_conv_opr.shape().ndim == 5,
                       "The conv dst dim is not trans to nchwxx");
            return new_opr;
        } else {
2033
            mgb_assert(is_trans.trans_type == TransType::TRANS_HYBIRD_NCHWXX);
2034
            VarNode *conv_src = new_inp[0], *conv_filter = new_inp[1];
2035 2036
            auto new_filter = RelayoutPlaceholder::make(new_inp[1],
                                                        is_trans.relayout_mod);
2037 2038 2039 2040 2041
            conv_filter = new_filter.node();
            mgb_assert(conv_src->shape().ndim == 4 &&
                               conv_filter->shape().ndim == 5,
                       "The src and filter is OK");
            auto new_param = conv_opr.param();
2042
            new_param.format = is_trans.conv_format;
2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
            auto new_conv_opr = opr::Convolution::make(
                    conv_src, conv_filter, new_param,
                    conv_opr.execution_policy(), conv_opr.config());
            OperatorNodeBase* new_opr = new_conv_opr.node()->owner_opr();
            mgb_assert(new_conv_opr.shape().ndim == 5,
                       "The conv dst dim is not trans to nchwxx");
            return new_opr;
        }
    };

2053
    auto replace_conv_bias_opr = [test_trans_nchw44_dot](
2054 2055 2056
                                         OperatorNodeBase* opr,
                                         const VarNodeArray& new_inp) {
        mgb_assert(opr->input().size() == new_inp.size());
2057 2058
        mgb_assert(opr->input().size() <= 3,
                   "nchwxx-dot does not support conv_bias fuse Z right now");
2059
        auto& conv_bias_opr = opr->cast_final_safe<opr::ConvBiasForward>();
2060 2061 2062 2063 2064
        mgb_throw_if(
                conv_bias_opr.param().format !=
                        megdnn::param::ConvBias::Format::NCHW,
                MegBrainError,
                "ConvertFormat Pass only support converting NCHW to NCHWXX");
2065 2066 2067
        bool valid_nchw_nchw44 =
                nchw_nchwxx_valid(conv_bias_opr, new_inp, pack_c_size,
                                  conv_bias_opr.param().nonlineMode, true);
2068 2069
        auto is_trans = test_trans_nchw44_dot(
                conv_bias_opr.param().sparse, new_inp[1],
2070 2071 2072 2073 2074 2075 2076
                conv_bias_opr.param().stride_h, conv_bias_opr.param().stride_w,
                valid_nchw_nchw44);
        auto megdnn_conv =
                opr::intl::get_megdnn_handle(conv_bias_opr.comp_node())
                        ->create_operator<megdnn::ConvBiasForward>();
        SmallVector<TensorLayout> layouts;

2077
        //! can not trans to nchwxx
2078
        if (is_trans.trans_type == TransType::TRANS_NONE) {
2079 2080 2081 2082 2083 2084 2085
            mgb_assert(new_inp[1]->shape().ndim == 4 ||
                               new_inp[1]->shape().ndim == 5,
                       "The origin filter is not NCHW mode");
            VarNodeArray temp_inp = new_inp;
            //! if src is nchwxx, should RelayoutPlaceholder to nchw
            if (temp_inp[0]->shape().ndim == 5) {
                auto new_src = RelayoutPlaceholder::make(
2086 2087
                        new_inp[0],
                        ReformatKey{TensorFormats::NCHWc4, TensorFormats::NCHW});
2088 2089
                temp_inp[0] = new_src.node();
            }
2090

2091
            //! the bias is nchwxx
2092
            if (new_inp.size() > 2 && temp_inp[2]->shape().ndim == 5) {
2093
                auto new_bias = RelayoutPlaceholder::make(
2094 2095
                        new_inp[2], ReformatKey{TensorFormats::NCHWc4,
                                                TensorFormats::NCHW});
2096 2097 2098 2099 2100
                temp_inp[2] = new_bias.node();
            }
            auto new_opr = serialization::copy_opr_shallow(*opr, temp_inp,
                                                           opr->config());
            return new_opr;
2101
        } else if (is_trans.trans_type == TransType::TRANS_PURE_NCHWXX) {
2102
            VarNode *conv_bias_src = new_inp[0], *conv_bias_filter = new_inp[1],
2103
                    *conv_bias_bias = nullptr;
2104 2105 2106 2107
            //! filter trans to nchwxx mode
            mgb_assert(new_inp[1]->shape().ndim == 4 ||
                               new_inp[1]->shape().ndim == 5,
                       "The origin filter is not NCHW mode");
2108 2109
            auto new_filter = RelayoutPlaceholder::make(new_inp[1],
                                                        is_trans.relayout_mod);
2110 2111 2112 2113 2114
            conv_bias_filter = new_filter.node();
            //! src trans to nchwxx mode
            if (new_inp[0]->shape().ndim != 5) {
                mgb_assert(new_inp[0]->shape().ndim == 4);
                auto new_src = RelayoutPlaceholder::make(
2115 2116
                        new_inp[0], ReformatKey{TensorFormats::NCHW,
                                                TensorFormats::NCHWc4});
2117 2118
                conv_bias_src = new_src.node();
            }
2119 2120 2121 2122
            //! bias trans to nchwxx mode
            if (new_inp.size() > 2) {
                if (new_inp[2]->shape().ndim == 4) {
                    auto new_bias = RelayoutPlaceholder::make(
2123 2124
                            new_inp[2], ReformatKey{TensorFormats::NCHW,
                                                    TensorFormats::NCHWc4});
2125 2126 2127 2128 2129
                    conv_bias_bias = new_bias.node();
                } else {
                    mgb_assert(new_inp[2]->shape().ndim == 5);
                    conv_bias_bias = new_inp[2];
                }
2130 2131
            }
            auto new_param = conv_bias_opr.param();
2132
            new_param.format = is_trans.conv_format;
2133 2134 2135
            mgb_assert(conv_bias_src->shape().ndim == 5 &&
                               conv_bias_filter->shape().ndim >= 6,
                       "The conv_bias src dim is not trans to nchwxx");
2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
            SymbolVar new_conv_bias_opr;
            if (conv_bias_bias) {
                new_conv_bias_opr = opr::ConvBias::make(
                        conv_bias_src, conv_bias_filter, conv_bias_bias,
                        new_param, conv_bias_opr.execution_policy(),
                        conv_bias_opr.config());
            } else {
                new_conv_bias_opr = opr::ConvBias::make(
                        conv_bias_src, conv_bias_filter, new_param,
                        conv_bias_opr.execution_policy(),
                        conv_bias_opr.config());
            }
2148 2149 2150 2151 2152
            OperatorNodeBase* new_opr = new_conv_bias_opr.node()->owner_opr();
            mgb_assert(new_conv_bias_opr.shape().ndim == 5,
                       "The conv_bias dst dim is not trans to nchwxx");
            return new_opr;
        } else {
2153
            mgb_assert(is_trans.trans_type == TransType::TRANS_HYBIRD_NCHWXX);
2154
            VarNode *conv_bias_src = new_inp[0], *conv_bias_filter = new_inp[1],
2155
                    *conv_bias_bias = nullptr;
2156 2157
            auto new_filter = RelayoutPlaceholder::make(new_inp[1],
                                                        is_trans.relayout_mod);
2158 2159
            conv_bias_filter = new_filter.node();
            //! bias trans to nchwxx mode, bias may be scale
2160 2161 2162
            if (new_inp.size() > 2) {
                if (new_inp[2]->shape().ndim == 4) {
                    auto new_bias = RelayoutPlaceholder::make(
2163 2164
                            new_inp[2], ReformatKey{TensorFormats::NCHW,
                                                    TensorFormats::NCHWc4});
2165 2166 2167 2168 2169
                    conv_bias_bias = new_bias.node();
                } else {
                    mgb_assert(new_inp[2]->shape().ndim == 5);
                    conv_bias_bias = new_inp[2];
                }
2170 2171 2172 2173
            }
            mgb_assert(conv_bias_src->shape().ndim == 4 &&
                       conv_bias_filter->shape().ndim == 5);
            auto new_param = conv_bias_opr.param();
2174
            new_param.format = is_trans.conv_format;
2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
            SymbolVar new_conv_bias_opr;
            if (conv_bias_bias) {
                new_conv_bias_opr = opr::ConvBias::make(
                        conv_bias_src, conv_bias_filter, conv_bias_bias,
                        new_param, conv_bias_opr.execution_policy(),
                        conv_bias_opr.config());
            } else {
                new_conv_bias_opr = opr::ConvBias::make(
                        conv_bias_src, conv_bias_filter, new_param,
                        conv_bias_opr.execution_policy(),
                        conv_bias_opr.config());
            }
2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197
            OperatorNodeBase* new_opr = new_conv_bias_opr.node()->owner_opr();
            mgb_assert(new_conv_bias_opr.shape().ndim == 5,
                       "The conv dst dim is not trans to nchwxx");
            return new_opr;
        }
    };
    ret->fill_opr_convert_fun(4);
    auto&& replace_func = ret->m_opr_replace_func;
    //! supportted nchwxx
    replace_func[opr::Convolution::typeinfo()] = replace_conv_opr;
    replace_func[opr::ConvBias::typeinfo()] = replace_conv_bias_opr;
2198
    return ret;
2199
    MIDOUT_E
2200 2201 2202 2203
}

/* ==================== ShuffleShuffleRemovePass ================= */
class ShuffleShuffleRemovePass::Impl {
2204
    using Format = opr::ConvBias::Param::Format;
2205 2206

    OptState& m_opt_state;
2207
    using AbstractShuffleOpr = TensorReformatPass::RelayoutPlaceholder;
2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245

    void detect_shuffle_operations();
    void do_replace();

public:
    Impl(OptState& opt_state) : m_opt_state{opt_state} {
        detect_shuffle_operations();
        do_replace();
    }
};

void ShuffleShuffleRemovePass::Impl::detect_shuffle_operations() {
    auto rewriter = m_opt_state.graph().make_rewriter();
    auto uniq_reader_check = UniqReaderCheck{m_opt_state.graph()};
    auto try_reshape_shuffle = [&rewriter,
                                &uniq_reader_check](OperatorNodeBase* opr) {
        // check shuffle
        auto shuffle = try_cast_as_op<opr::Dimshuffle>(opr);
        if (shuffle == nullptr)
            return false;
        auto&& param = shuffle->param();
        if (param.pattern_len != 5)
            return false;
        bool is_nchw2nchw4 = param.pattern[0] == 0 && param.pattern[1] == 1 &&
                             param.pattern[2] == 3 && param.pattern[3] == 4 &&
                             param.pattern[4] == 2 &&
                             opr->output(0)->shape()[4] == 4;
        if (!is_nchw2nchw4)
            return false;
        if (!uniq_reader_check(shuffle->input(0)))
            return false;

        // check reshape
        auto reshape = try_cast_as_op<opr::Reshape>(opr->input(0)->owner_opr());
        if (reshape == nullptr)
            return false;
        auto inp_var = rewriter.get_var(reshape->input(0));
        auto abstract_shuffle = AbstractShuffleOpr::make(
2246 2247
                inp_var,
                ReformatKey{TensorFormats::NCHW, TensorFormats::NCHWc4});
2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
        rewriter.replace_var(
                opr->output(0), abstract_shuffle.node(),
                mgb_cstr_log("replace reformat(nchw -> nchw4) to "
                             "AbstractShuffleOpr(nchw -> nchw4)."));
        return true;
    };

    auto try_reshape_shuffle_reshape = [&rewriter, &uniq_reader_check](
                                               OperatorNodeBase* opr) {
        // check reshape
        auto reshape1 = try_cast_as_op<opr::Reshape>(opr);
        if (reshape1 == nullptr)
            return false;
        if (!uniq_reader_check(reshape1->input(0)))
            return false;

        // check shuffle
        auto shuffle =
                try_cast_as_op<opr::Dimshuffle>(opr->input(0)->owner_opr());
        if (shuffle == nullptr)
            return false;
        auto&& param = shuffle->param();
        if (param.pattern_len != 6)
            return false;
        bool is_nchw42nchw32 = param.pattern[0] == 0 && param.pattern[1] == 1 &&
                               param.pattern[2] == 3 && param.pattern[3] == 4 &&
                               param.pattern[4] == 2 && param.pattern[5] == 5 &&
                               shuffle->input(0)->shape()[5] == 4 &&
                               shuffle->input(0)->shape()[2] == 8;
        bool is_nchw322nchw4 = param.pattern[0] == 0 && param.pattern[1] == 1 &&
                               param.pattern[2] == 4 && param.pattern[3] == 2 &&
                               param.pattern[4] == 3 && param.pattern[5] == 5 &&
                               shuffle->input(0)->shape()[4] == 8 &&
                               shuffle->input(0)->shape()[5] == 4;
        if (!is_nchw42nchw32 && !is_nchw322nchw4)
            return false;
        if (!uniq_reader_check(shuffle->input(0)))
            return false;

        // check reshape
        auto reshape2 =
                try_cast_as_op<opr::Reshape>(shuffle->input(0)->owner_opr());
        if (reshape2 == nullptr)
            return false;
        auto inp_var = rewriter.get_var(reshape2->input(0));
2293 2294 2295 2296 2297
        Format inp_format = is_nchw42nchw32 ? Format::NCHW4 : Format::NCHW32,
               out_format = is_nchw42nchw32 ? Format::NCHW32 : Format::NCHW4;
        auto abstract_shuffle = AbstractShuffleOpr::make(
                inp_var, ReformatKey{opr_format_to_tensor_formats(inp_format),
                                     opr_format_to_tensor_formats(out_format)});
2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329
        std::string reformat_type =
                is_nchw42nchw32 ? "nchw4 -> nchw32" : "nchw32 -> nchw4";
        rewriter.replace_var(opr->output(0), abstract_shuffle.node(),
                             mgb_cstr_log(ssprintf("replace reformat(%s) to "
                                                   "AbstractShuffleOpr(%s).",
                                                   reformat_type.c_str(),
                                                   reformat_type.c_str())
                                                  .c_str()));
        return true;
    };

    auto try_shuffle_reshape = [&rewriter,
                                &uniq_reader_check](OperatorNodeBase* opr) {
        // check reshape
        auto reshape = try_cast_as_op<opr::Reshape>(opr);
        if (reshape == nullptr)
            return false;
        if (!uniq_reader_check(reshape->input(0)))
            return false;

        // check shuffle
        auto shuffle =
                try_cast_as_op<opr::Dimshuffle>(opr->input(0)->owner_opr());
        if (shuffle == nullptr)
            return false;
        auto&& param = shuffle->param();
        if (param.pattern_len != 5)
            return false;
        bool is_nchw42nchw = param.pattern[0] == 0 && param.pattern[1] == 1 &&
                             param.pattern[2] == 4 && param.pattern[3] == 2 &&
                             param.pattern[4] == 3 &&
                             shuffle->input(0)->shape()[4] == 4;
2330 2331 2332 2333 2334
        bool is_nchw42nhwc = param.pattern[0] == 0 && param.pattern[1] == 2 &&
                             param.pattern[2] == 3 && param.pattern[3] == 1 &&
                             param.pattern[4] == 4 &&
                             shuffle->input(0)->shape()[4] == 4;
        if (!is_nchw42nchw && !is_nchw42nhwc)
2335 2336
            return false;
        auto inp_var = rewriter.get_var(shuffle->input(0));
2337 2338 2339 2340 2341 2342 2343 2344 2345
        ReformatKey key;
        key.input_format = TensorFormats::NCHWc4;
        if (is_nchw42nchw) {
            key.output_format = TensorFormats::NCHW;
        } else {
            mgb_assert(is_nchw42nhwc);
            key.output_format = TensorFormats::NHWC;
        }
        auto abstract_shuffle = AbstractShuffleOpr::make(inp_var, key);
2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
        rewriter.replace_var(
                opr->output(0), abstract_shuffle.node(),
                mgb_cstr_log("replace reformat(nchw4 -> nchw) to "
                             "AbstractShuffleOpr(nchw4 -> nchw)."));
        return true;
    };

    auto try_relayout_format = [&rewriter](OperatorNodeBase* opr) {
        // check relayout format
        auto reformat = try_cast_as_op<opr::RelayoutFormat>(opr);
        if (reformat == nullptr)
            return false;
        auto&& param = reformat->param();
        if (param.mode != opr::RelayoutFormat::Param::Mode::CHWN4_NCHW4 &&
            param.mode != opr::RelayoutFormat::Param::Mode::NCHW4_CHWN4)
            return false;
        auto inp_var = rewriter.get_var(reformat->input(0));
        cg::SymbolVar abstract_shuffle;
        if (param.mode == opr::RelayoutFormat::Param::Mode::NCHW4_CHWN4) {
            abstract_shuffle = AbstractShuffleOpr::make(
2366 2367
                    inp_var,
                    ReformatKey{TensorFormats::NCHWc4, TensorFormats::CHWNc4});
2368 2369
        } else {
            abstract_shuffle = AbstractShuffleOpr::make(
2370 2371
                    inp_var,
                    ReformatKey{TensorFormats::CHWNc4, TensorFormats::NCHWc4});
2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
        }
        rewriter.replace_var(
                opr->output(0), abstract_shuffle.node(),
                mgb_cstr_log("replace reformat(nchw4 -> nchw) to "
                             "AbstractShuffleOpr(nchw4 -> nchw)."));
        return true;
    };

    auto on_opr = [&try_reshape_shuffle, &try_shuffle_reshape,
                   &try_reshape_shuffle_reshape, &try_relayout_format,
                   &rewriter, &uniq_reader_check](OperatorNodeBase* opr) {
        if (!try_reshape_shuffle_reshape(opr) && !try_reshape_shuffle(opr) &&
            !try_shuffle_reshape(opr) && !try_relayout_format(opr)) {
            auto new_opr = rewriter.auto_replace_outputs(opr);
            uniq_reader_check.update_on_opr_auto_replace(opr, new_opr);
        }
    };
    m_opt_state.graph().iter(on_opr);
    rewriter.apply_inplace();
}

void ShuffleShuffleRemovePass::Impl::do_replace() {
    auto rewriter = m_opt_state.graph().make_rewriter();
    auto uniq_reader_check = UniqReaderCheck{m_opt_state.graph()};
2396 2397
    ThinHashSet<OperatorNodeBase*> writers;
    ThinHashSet<OperatorNodeBase*> root;
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
    ThinHashSet<VarNode*> trt_opr_inps;
    SmallVector<OperatorNodeBase*> topo_order;

    auto cb = [&topo_order, &trt_opr_inps](OperatorNodeBase* opr) {
        topo_order.push_back(opr);
        MGB_MARK_USED_VAR(trt_opr_inps);
#if MGB_ENABLE_TENSOR_RT
        if (opr->same_type<opr::TensorRTOpr>()) {
            for (auto&& inp : opr->input())
                trt_opr_inps.insert(inp);
        }
#endif
    };
    m_opt_state.graph().iter(cb);

    for (auto&& opr : reverse_adaptor(topo_order)) {
        if (opr->same_type<opr::TypeCvt>() ||
            opr->same_type<AbstractShuffleOpr>()) {
2416 2417 2418 2419
            writers.insert(opr->input(0)->owner_opr());
            if (writers.count(opr) > 0) {
                if (!uniq_reader_check(opr->output(0))) {
                    root.insert(opr);
2420 2421
                }
            } else {
2422
                root.insert(opr);
2423 2424 2425 2426
            }
        }
    }

2427
    auto on_opr = [&rewriter, &uniq_reader_check, &trt_opr_inps,
2428
                   &root](OperatorNodeBase* opr) {
2429 2430 2431 2432
        MGB_MARK_USED_VAR(trt_opr_inps);
        bool cond_opr = opr->same_type<opr::TypeCvt>() ||
                        opr->same_type<AbstractShuffleOpr>();
        if (cond_opr) {
2433 2434
            bool cond_endpoint = root.count(opr) > 0;
            if (!cond_endpoint) {
2435
                return;
2436
            }
2437 2438 2439 2440 2441
            auto cur = opr;
            auto var = opr->output(0), inp_var = opr->input(0);
            bool force_folding_typecvt = false;
            bool first_shuffle = false;
            // initialize inp_format and out_format
2442 2443
            TensorFormats out_format = TensorFormats::NCHW,
                          inp_format = out_format;
2444 2445 2446 2447 2448 2449
            megdnn::DType inp_dtype = cur->input(0)->dtype(),
                          out_dtype = cur->output(0)->dtype();
            SmallVector<megdnn::DType> out_dtype_vec;
            while (cond_opr) {
                if (cur->same_type<AbstractShuffleOpr>()) {
                    auto shuffle = try_cast_as_op<AbstractShuffleOpr>(cur);
2450
                    inp_format = shuffle->key().input_format;
2451
                    if (!first_shuffle) {
2452
                        out_format = shuffle->key().output_format;
2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
                        first_shuffle = true;
                    }
                } else {
                    mgb_assert(cur->same_type<opr::TypeCvt>());
                    out_dtype_vec.push_back(cur->output(0)->dtype());
                }
                inp_var = cur->input(0);
                bool cond_reader = uniq_reader_check(inp_var);
                if (!cond_reader)
                    break;
                cur = cur->input(0)->owner_opr();
                cond_opr = cur->same_type<opr::TypeCvt>() ||
                           cur->same_type<AbstractShuffleOpr>();
            }
            std::reverse(out_dtype_vec.begin(), out_dtype_vec.end());
#if MGB_ENABLE_TENSOR_RT
            force_folding_typecvt =
                    inp_var->owner_opr()->same_type<opr::TensorRTOpr>() ||
                    trt_opr_inps.count(var);
#endif
            auto new_var = rewriter.get_var(inp_var);
            if (inp_format != out_format) {
2475 2476
                new_var = ReformatManager::instance().get(
                        ReformatKey{inp_format, out_format})({new_var});
2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508
            }
            if (force_folding_typecvt) {
                inp_dtype = inp_var->dtype();
                if (inp_dtype != out_dtype) {
                    auto type_cvt = opr::TypeCvt::make(new_var, out_dtype);
                    new_var = type_cvt.node();
                }
            } else {
                if (out_dtype_vec.back() != var->dtype())
                    out_dtype_vec.push_back(var->dtype());
                for (auto&& dtype : out_dtype_vec) {
                    auto type_cvt = opr::TypeCvt::make(new_var, dtype);
                    new_var = type_cvt.node();
                }
            }
            rewriter.replace_var(
                    var, new_var,
                    mgb_cstr_log("replace Dimshuffle and TypeCvt chain"));
        } else {
            auto new_opr = rewriter.auto_replace_outputs(opr);
            uniq_reader_check.update_on_opr_auto_replace(opr, new_opr);
        }
    };
    m_opt_state.graph().iter(on_opr);
    rewriter.apply_inplace();
}

const char* ShuffleShuffleRemovePass::name() const {
    return mgb_cstr_log("shuffle shuffle remove pass");
}

void ShuffleShuffleRemovePass::apply(OptState& opt) const {
2509
    MIDOUT_B("ShuffleShuffleRemovePass::apply")
2510 2511 2512
    opt.set_var_replace_check_flag(VarReplaceCheckFlag::CHECK_SHAPE |
                                   VarReplaceCheckFlag::CHECK_DTYPE);
    Impl{opt};
2513
    MIDOUT_E
2514 2515
}

2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541
/* ================ EnableNCHW64Pass =============== */
VarNode* EnableNCHW64Pass::on_graph_endpoint_var(VarNode* new_var,
                                               VarNode* orig_var) const {
    if (!orig_var->shape().eq_shape(new_var->shape())) {
        auto iter = m_opr_format_map.find(new_var->owner_opr());
        mgb_assert(iter != m_opr_format_map.end(),
                   "cannot find opr(type:%s,name:%s) information, related "
                   "output var node(name:%s)",
                   new_var->owner_opr()->dyn_typeinfo()->name,
                   new_var->owner_opr()->cname(), new_var->cname());
        const auto& fmt = iter->second;
        ReformatKey key;
        MGB_TRY {
            key.input_format = opr_format_to_tensor_formats(fmt);
            key.output_format = TensorFormats::NCHW;
            key.input_dtype = new_var->dtype().enumv();
            key.output_dtype = new_var->dtype().enumv();
        }
        MGB_CATCH(AssertionError & err, {
            mgb_log_error("%s, related var node(name:%s)", err.what(),
                          orig_var->cname());
            throw;
        })
        return RelayoutPlaceholder::make(new_var, key).node();
    }
    return new_var;
2542 2543
}

2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573
std::unique_ptr<EnableNCHW64Pass>
EnableNCHW64Pass::make_nchw64_converter() {
    MIDOUT_B("EnableNCHW64Pass::make")
    auto ret = std::make_unique<EnableNCHW64Pass>();
    ret->set_var_replace_check_flag(VarReplaceCheckFlag::CHECK_ALL ^
                                    VarReplaceCheckFlag::CHECK_SHAPE);
    auto& replace_func = ret->m_opr_replace_func;
    auto& format_map = ret->m_opr_format_map;
    auto make_new_conv = [](const VarNodeArray& inps,
                            const opr::ConvBiasForward* orig_conv,
                            Format format) {
        auto param = orig_conv->param();
        // change format
        param.format = format;
        if (inps.size() == 2) {
            auto new_conv = opr::ConvBiasForward::make(
                    inps[0], inps[1], param, orig_conv->execution_policy(),
                    orig_conv->config());
            return new_conv.node();
        } else if (inps.size() == 3) {
            auto new_conv = opr::ConvBiasForward::make(
                    inps[0], inps[1], inps[2], param,
                    orig_conv->execution_policy(), orig_conv->config());
            return new_conv.node();
        } else {
            mgb_assert(inps.size() == 4);
            auto new_conv = opr::ConvBiasForward::make(
                    inps[0], inps[1], inps[2], inps[3], param,
                    orig_conv->execution_policy(), orig_conv->config());
            return new_conv.node();
2574 2575
        }
    };
2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
    auto try_transform_to_nchw =
            [&format_map](OperatorNodeBase* opr,
                          const VarNodeArray& new_inp) -> VarNode* {
        mgb_assert(opr->input().size() == new_inp.size());
        bool check_dtype = new_inp[0]->dtype().enumv() == DTypeEnum::Float32 &&
                           new_inp[1]->dtype().enumv() == DTypeEnum::Float32;
        if (opr->input().size() >= 3)
            check_dtype &= new_inp[2]->dtype().enumv() == DTypeEnum::Float32;
        if (opr->input().size() >= 4)
            check_dtype &= new_inp[3]->dtype().enumv() == DTypeEnum::Float32;
        if (!check_dtype)
            return nullptr;
        auto inps = new_inp;
        auto process = [&](size_t i) -> VarNode* {
            auto iter = format_map.find(new_inp[i]->owner_opr());
            if (iter == format_map.end()) {
                return inps[i];
            } else {
                const auto& fmt = iter->second;
                ReformatKey key;
                key.input_format = opr_format_to_tensor_formats(fmt);
                key.output_format = TensorFormats::NCHW;
                return RelayoutPlaceholder::make(inps[i], key).node();
            }
2600
        };
2601 2602 2603 2604 2605
        for (size_t i = 0; i < inps.size(); ++i) {
            inps[i] = process(i);
        }
        auto ret = serialization::copy_opr_shallow(*opr, inps, opr->config());
        return ret->output()[0];
2606 2607
    };

2608 2609 2610 2611
    auto try_transform_to_nchw4 =
            [make_new_conv, &format_map](
                    OperatorNodeBase* opr,
                    const VarNodeArray& new_inp) -> VarNode* {
2612
                        mgb_assert(opr->input().size()==new_inp.size());
2613
        bool check_dtype =
2614 2615
                new_inp[0]->dtype().enumv() == DTypeEnum::QuantizedS8 &&
                new_inp[1]->dtype().enumv() == DTypeEnum::QuantizedS8;
2616 2617 2618
        mgb_assert(opr->output().size() > 0);
        bool dst_float = opr->output(0)->dtype().enumv() == DTypeEnum::Float32;
        if (opr->input().size() >= 3) {
2619 2620
            auto dtype_expect = dst_float ? DTypeEnum::Float32
                                          : DTypeEnum::QuantizedS32;
2621 2622 2623 2624 2625 2626
            check_dtype &= new_inp[2]->dtype().enumv() == dtype_expect;
        }
        if (opr->input().size() >= 4) {
            check_dtype &= new_inp[3]->dtype().enumv() ==
                           opr->output(0)->dtype().enumv();
        }
2627 2628
        if (!check_dtype)
            return nullptr;
2629

2630 2631 2632 2633 2634 2635 2636 2637
        size_t out_channels = opr->input(1)->shape()[0];
        size_t in_channels = opr->input(1)->shape()[1];
        bool check_channels = out_channels % 4 == 0 && in_channels % 4 == 0;
        mgb_assert(check_channels,
                   "invalid quantize conv bias opr(name:%s,oc:%zu,ic:%zu)",
                   opr->cname(), out_channels, in_channels);
        auto inps = new_inp;
        auto process = [&](size_t i) -> VarNode* {
2638
            auto iter = format_map.find(new_inp[i]->owner_opr());
2639 2640
            if (iter == format_map.end()) {
                auto ovar = RelayoutPlaceholder::make(
2641 2642
                        inps[i], ReformatKey{TensorFormats::NCHW,
                                             TensorFormats::NCHWc4});
2643 2644 2645 2646 2647 2648
                return ovar.node();
            } else {
                const auto& fmt = iter->second;
                if (fmt == Format::NCHW4) {
                    return inps[i];
                } else {
2649 2650 2651 2652
                    ReformatKey key;
                    key.input_format = opr_format_to_tensor_formats(fmt);
                    key.output_format = TensorFormats::NCHWc4;
                    return RelayoutPlaceholder::make(inps[i], key).node();
2653 2654 2655
                }
            }
        };
2656

2657
        for (size_t i = 0; i < inps.size(); ++i) {
2658 2659
            // do not format bias and z when dst_float is true
            bool skip = dst_float && i >= 2;
2660
            if (!skip) inps[i] = process(i);
2661 2662
        }
        auto& conv_bias = opr->cast_final_safe<opr::ConvBiasForward>();
2663 2664 2665
        auto ret = make_new_conv(
                inps, &conv_bias,
                dst_float ? Format::NCHW4_NCHW : Format::NCHW4);
2666 2667
        if (!dst_float)
            format_map.insert(std::make_pair(ret->owner_opr(), Format::NCHW4));
2668
        return ret;
2669 2670 2671 2672 2673 2674
    };

    auto try_transform_to_nchw32 =
            [make_new_conv, &format_map](
                    OperatorNodeBase* opr,
                    const VarNodeArray& new_inp) -> VarNode* {
2675
        mgb_assert(opr->input().size()==new_inp.size());
2676
        bool check_dtype =
2677 2678
                new_inp[0]->dtype().enumv() == DTypeEnum::QuantizedS8 &&
                new_inp[1]->dtype().enumv() == DTypeEnum::QuantizedS8;
2679 2680
        if (opr->input().size() >= 3)
            check_dtype &=
2681
                    new_inp[2]->dtype().enumv() == DTypeEnum::QuantizedS32;
2682 2683
        if (opr->input().size() >= 4)
            check_dtype &=
2684
                    new_inp[3]->dtype().enumv() == DTypeEnum::QuantizedS8;
2685 2686 2687 2688 2689 2690 2691 2692 2693
        if (!check_dtype)
            return nullptr;
        size_t out_channels = opr->input(1)->shape()[0];
        size_t in_channels = opr->input(1)->shape()[1];
        bool check_channels = out_channels % 32 == 0 && in_channels % 32 == 0;
        if (!check_channels)
            return nullptr;
        auto inps = new_inp;
        auto process = [&](size_t i) -> VarNode* {
2694
            auto iter = format_map.find(new_inp[i]->owner_opr());
2695 2696
            ReformatKey key;
            key.output_format = TensorFormats::NCHWc32;
2697
            if (iter == format_map.end()) {
2698 2699
                key.input_format = TensorFormats::NCHW;
                return RelayoutPlaceholder::make(inps[i], key).node();
2700 2701 2702 2703 2704
            } else {
                const auto& fmt = iter->second;
                if (fmt == Format::NCHW32) {
                    return inps[i];
                } else {
2705 2706
                    key.input_format = opr_format_to_tensor_formats(fmt);
                    return RelayoutPlaceholder::make(inps[i], key).node();
2707 2708 2709 2710 2711 2712 2713
                }
            }
        };
        for (size_t i = 0; i < inps.size(); ++i) {
            inps[i] = process(i);
        }
        auto& conv_bias = opr->cast_final_safe<opr::ConvBiasForward>();
2714 2715 2716
        auto ret = make_new_conv(inps, &conv_bias, Format::NCHW32);
        format_map.insert(std::make_pair(ret->owner_opr(), Format::NCHW32));
        return ret;
2717 2718 2719 2720 2721 2722 2723
    };

    auto try_transform_to_nchw64 =
            [make_new_conv, &format_map](
                    OperatorNodeBase* opr,
                    const VarNodeArray& new_inp) -> VarNode* {
        // fint4XWint4 and fuint4XWint4
2724
        mgb_assert(opr->input().size()==new_inp.size());
2725
        bool check_dtype =
2726
                (new_inp[0]->dtype().enumv() == DTypeEnum::QuantizedS4 ||
2727 2728
                 new_inp[0]->dtype().enumv() ==
                         DTypeEnum::Quantized4Asymm) &&
2729
                new_inp[1]->dtype().enumv() == DTypeEnum::QuantizedS4;
2730 2731
        if (opr->input().size() >= 3)
            check_dtype &=
2732
                    new_inp[2]->dtype().enumv() == DTypeEnum::QuantizedS32;
2733
        if (opr->input().size() >= 4)
2734 2735
            check_dtype &= new_inp[3]->dtype().enumv() ==
                           new_inp[0]->dtype().enumv();
2736 2737 2738 2739 2740 2741 2742 2743 2744
        if (!check_dtype)
            return nullptr;
        size_t out_channels = opr->input(1)->shape()[0];
        size_t in_channels = opr->input(1)->shape()[1];
        bool check_channels = out_channels % 64 == 0 && in_channels % 64 == 0;
        if (!check_channels)
            return nullptr;
        auto inps = new_inp;
        auto process = [&](size_t i) -> VarNode* {
2745
            auto iter = format_map.find(new_inp[i]->owner_opr());
2746 2747
            ReformatKey key;
            key.output_format = TensorFormats::NCHWc64;
2748
            if (iter == format_map.end()) {
2749 2750 2751
                key.input_format = TensorFormats::NCHW;
                key.input_dtype = key.output_dtype = inps[i]->dtype().enumv();
                return RelayoutPlaceholder::make(inps[i], key).node();
2752 2753 2754 2755 2756
            } else {
                const auto& fmt = iter->second;
                if (fmt == Format::NCHW64) {
                    return inps[i];
                } else {
2757 2758 2759
                    key.input_format = opr_format_to_tensor_formats(fmt);
                    key.input_dtype = key.output_dtype = inps[i]->dtype().enumv();
                    return RelayoutPlaceholder::make(inps[i], key).node();
2760 2761 2762 2763 2764 2765 2766
                }
            }
        };
        for (size_t i = 0; i < inps.size(); ++i) {
            inps[i] = process(i);
        }
        auto& conv_bias = opr->cast_final_safe<opr::ConvBiasForward>();
2767 2768 2769
        auto ret = make_new_conv(inps, &conv_bias, Format::NCHW64);
        format_map.insert(std::make_pair(ret->owner_opr(), Format::NCHW64));
        return ret;
2770 2771
    };

2772 2773 2774 2775 2776
    auto try_transform_to_nhwc =
            [make_new_conv, &format_map](
                    OperatorNodeBase* opr,
                    const VarNodeArray& new_inp) -> VarNode* {
        // fint4XWint4 and fuint4XWint4
2777
        mgb_assert(opr->input().size()==new_inp.size());
2778 2779
        bool check_dtype =
                (new_inp[0]->dtype().enumv() == DTypeEnum::QuantizedS4 ||
2780 2781
                 new_inp[0]->dtype().enumv() ==
                         DTypeEnum::Quantized4Asymm) &&
2782 2783 2784 2785 2786
                new_inp[1]->dtype().enumv() == DTypeEnum::QuantizedS4;
        if (opr->input().size() >= 3)
            check_dtype &=
                    new_inp[2]->dtype().enumv() == DTypeEnum::QuantizedS32;
        if (opr->input().size() >= 4)
2787 2788
            check_dtype &= new_inp[3]->dtype().enumv() ==
                           new_inp[0]->dtype().enumv();
2789 2790 2791 2792 2793 2794 2795 2796 2797 2798
        if (!check_dtype)
            return nullptr;
        size_t out_channels = opr->input(1)->shape()[0];
        size_t in_channels = opr->input(1)->shape()[1];
        bool check_channels = out_channels % 8 == 0 && in_channels % 8 == 0;
        if (!check_channels)
            return nullptr;
        auto inps = new_inp;
        auto process = [&](size_t i) -> VarNode* {
            auto iter = format_map.find(new_inp[i]->owner_opr());
2799 2800 2801
            ReformatKey key;
            key.output_format = TensorFormats::NHWC;
            key.input_dtype = key.output_dtype = inps[i]->dtype().enumv();
2802
            if (iter == format_map.end()) {
2803 2804
                key.input_format = TensorFormats::NCHW;
                return RelayoutPlaceholder::make(inps[i], key).node();
2805 2806 2807 2808 2809
            } else {
                const auto& fmt = iter->second;
                if (fmt == Format::NHWC) {
                    return inps[i];
                } else {
2810 2811
                    key.input_format = opr_format_to_tensor_formats(fmt);
                    return RelayoutPlaceholder::make(inps[i], key).node();
2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823
                }
            }
        };
        for (size_t i = 0; i < inps.size(); ++i) {
            inps[i] = process(i);
        }
        auto& conv_bias = opr->cast_final_safe<opr::ConvBiasForward>();
        auto ret = make_new_conv(inps, &conv_bias, Format::NHWC);
        format_map.insert(std::make_pair(ret->owner_opr(), Format::NHWC));
        return ret;
    };

2824 2825 2826
    // replace rule for conv bias opr
    auto replace_conv_bias_opr = [&format_map, try_transform_to_nchw4,
                                  try_transform_to_nchw32,
2827 2828
                                  try_transform_to_nchw64,
                                  try_transform_to_nhwc, try_transform_to_nchw](
2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839
                                         OperatorNodeBase* opr,
                                         const VarNodeArray& new_inp) {
        using Param = megdnn::param::ConvBias;
        using Sparse = Param::Sparse;
        mgb_assert(opr->input().size() == new_inp.size());
        auto& conv_bias = opr->cast_final_safe<opr::ConvBiasForward>();
        mgb_assert(conv_bias.param().sparse == Sparse::DENSE,
                   "only support dense conv now");
        VarNode* new_var = nullptr;
        if ((new_var = try_transform_to_nchw32(opr, new_inp)) ||
            (new_var = try_transform_to_nchw4(opr, new_inp)) ||
2840 2841
            (new_var = try_transform_to_nchw64(opr, new_inp)) ||
            (new_var = try_transform_to_nhwc(opr, new_inp)) ||
2842
            (new_var = try_transform_to_nchw(opr, new_inp))) {
2843 2844 2845
            return new_var->owner_opr();
        } else {
            mgb_assert(
2846 2847
                    new_inp[0]->dtype().enumv() != DTypeEnum::QuantizedS8 &&
                            new_inp[0]->dtype().enumv() !=
2848
                                    DTypeEnum::QuantizedS4 &&
2849 2850 2851 2852
                            new_inp[0]->dtype().enumv() !=
                                    DTypeEnum::Quantized4Asymm &&
                            new_inp[0]->dtype().enumv() != DTypeEnum::Float32,
                    "invalid data type(%s)", new_inp[0]->dtype().name());
2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878
            bool shape_changed = false;
            for (const auto& i : new_inp) {
                if (format_map.count(i->owner_opr()) > 0) {
                    shape_changed = true;
                    break;
                }
            }
            mgb_assert(!shape_changed,
                       "EnableNCHW64Pass won't change format of output tensor "
                       "of non quantized conv bias operator(name:%s)",
                       opr->cname());
            return serialization::copy_opr_shallow(*opr, new_inp,
                                                   opr->config());
        }
    };
    replace_func[opr::ConvBiasForward::typeinfo()] = replace_conv_bias_opr;
    replace_func[opr::ConvolutionBackwardData::
                         typeinfo()] = [&format_map](OperatorNodeBase* opr,
                                                     const VarNodeArray&
                                                             new_inp) {
        mgb_assert(opr->input().size() == new_inp.size());
        mgb_assert(new_inp.size() == 2,
                   "deconv (conv bwd data) operator for inference can "
                   "only have 2 input vars(got:%zu)",
                   new_inp.size());
        auto& deconv = opr->cast_final_safe<opr::ConvolutionBackwardData>();
2879
        if (new_inp[0]->dtype().enumv() == DTypeEnum::QuantizedS8) {
2880
            Format cur;
2881
            auto iter = format_map.find(new_inp[1]->owner_opr());
2882 2883 2884 2885 2886 2887 2888
            if (iter == format_map.end()) {
                cur = Format::NCHW;
            } else {
                cur = iter->second;
            }
            auto inps = new_inp;
            inps[0] = RelayoutPlaceholder::make(
2889 2890
                              inps[0], ReformatKey{TensorFormats::NCHW,
                                                   TensorFormats::NCHWc4})
2891
                              .node();
2892 2893 2894 2895 2896 2897 2898 2899
            if (cur != Format::NCHW4) {
                inps[1] = RelayoutPlaceholder::make(
                                  inps[1],
                                  ReformatKey{opr_format_to_tensor_formats(cur),
                                              TensorFormats::NCHWc4})
                                  .node();
            }
           
2900 2901 2902 2903 2904
            auto param = deconv.param();
            param.format = Format::NCHW4;
            auto new_deconv = opr::ConvolutionBackwardData::make(
                    inps[0], inps[1], param, deconv.execution_policy(),
                    deconv.config());
2905 2906 2907
            auto ret = new_deconv.node()->owner_opr();
            format_map.insert(std::make_pair(ret, Format::NCHW4));
            return ret;
2908 2909 2910 2911 2912 2913 2914 2915
        } else {
            bool shape_changed = false;
            for (const auto& i : new_inp) {
                if (format_map.count(i->owner_opr()) > 0) {
                    shape_changed = true;
                    break;
                }
            }
2916
            mgb_assert(!shape_changed, 
2917 2918 2919 2920 2921 2922 2923 2924 2925
                       "EnableNCHW64Pass won't change format of output tensor "
                       "of non quantized deconv operator(name:%s)",
                       opr->cname());
            return serialization::copy_opr_shallow(*opr, new_inp,
                                                   opr->config());
        }
    };

    // replace rule for elemwise like opr
2926 2927
    auto replace_elemwise_like_opr = [&format_map](OperatorNodeBase* opr,
                                        const VarNodeArray& new_inp) {
2928 2929 2930 2931
        mgb_assert(opr->input().size() == new_inp.size());
        ThinHashMap<Format, size_t> format_size;
        bool same_format = true;
        bool first_touch = false;
2932
        Format format(Format::NCHW);
2933
        for (const auto& i : new_inp) {
2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951
            Format cur;
            auto iter = format_map.find(i->owner_opr());
            if (iter == format_map.end()) {
                cur = Format::NCHW;
            } else {
                cur = iter->second;
            }
            auto& size = format_size[cur];
            size += i->shape().total_nr_elems();
            if (!first_touch) {
                first_touch = true;
                format = cur;
            } else {
                if (format != cur)
                    same_format = false;
            }
        }
        if (same_format) {
2952 2953
            auto ret = serialization::copy_opr_shallow(*opr, new_inp,
                                                       opr->config());
2954
            if (format != Format::NCHW)
2955 2956
                format_map.insert(std::make_pair(ret, format));
            return ret;
2957 2958
        }

2959
        Format max_format(Format::NCHW);
2960 2961 2962 2963 2964 2965 2966 2967 2968
        size_t max_size = std::numeric_limits<size_t>::min();
        for (const auto& item : format_size) {
            if (item.second > max_size) {
                max_format = item.first;
                max_size = item.second;
            }
        }
        auto inps = new_inp;
        for (size_t i = 0; i < opr->input().size(); ++i) {
2969
            auto iter = format_map.find(new_inp[i]->owner_opr());
2970 2971 2972 2973 2974 2975 2976
            Format cur;
            if (iter != format_map.end()) {
                cur = iter->second;
            } else {
                cur = Format::NCHW;
            }
            if (cur != max_format) {
2977 2978 2979 2980
                ReformatKey key{opr_format_to_tensor_formats(cur),
                                opr_format_to_tensor_formats(max_format)};
                key.input_dtype = key.output_dtype = inps[i]->dtype().enumv();
                inps[i] = RelayoutPlaceholder::make(inps[i], key).node();
2981 2982
            }
        }
2983
        auto ret = serialization::copy_opr_shallow(*opr, inps, opr->config());
2984
        if (max_format != Format::NCHW)
2985 2986
            format_map.insert(std::make_pair(ret, max_format));
        return ret;
2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999
    };
    // elemwise like
    replace_func[opr::Elemwise::typeinfo()] = replace_elemwise_like_opr;
    replace_func[opr::TypeCvt::typeinfo()] = replace_elemwise_like_opr;
    replace_func[opr::ElemwiseMultiType::typeinfo()] =
            replace_elemwise_like_opr;
    replace_func[opr::PowC::typeinfo()] = replace_elemwise_like_opr;

    auto replace_warp_perspective_opr = [&format_map](
                                                OperatorNodeBase* opr,
                                                const VarNodeArray& new_inp) {
        mgb_assert(opr->input().size() == new_inp.size());
        auto& warp = opr->cast_final_safe<opr::WarpPerspectiveForward>();
3000 3001
        if (new_inp[0]->dtype().enumv() == DTypeEnum::QuantizedS4 ||
            new_inp[0]->dtype().enumv() == DTypeEnum::Quantized4Asymm) {
3002
            Format cur;
3003
            auto iter = format_map.find(new_inp[0]->owner_opr());
3004 3005 3006 3007 3008 3009
            if (iter == format_map.end()) {
                cur = Format::NCHW;
            } else {
                cur = iter->second;
            }
            auto inps = new_inp;
3010 3011 3012 3013 3014
            if (cur != Format::NCHW64 && cur != Format::NHWC) {
                ReformatKey key{opr_format_to_tensor_formats(cur),
                                TensorFormats::NHWC, inps[0]->dtype().enumv(),
                                inps[0]->dtype().enumv()};
                inps[0] = RelayoutPlaceholder::make(inps[0], key).node();
3015
            }
3016
            auto target_format = cur == Format::NCHW64 ? cur : Format::NHWC;
3017
            auto param = warp.param();
3018
            param.format = target_format;
3019 3020 3021
            SymbolVar new_warp;
            if (inps.size() == 3) {
                new_warp = opr::WarpPerspectiveForward::make(
3022 3023
                        inps[0], inps[1], inps[2], param,
                        warp.config());
3024 3025 3026 3027 3028 3029
            } else {
                mgb_assert(inps.size() == 4);
                new_warp = opr::WarpPerspectiveForward::make(
                        inps[0], inps[1], inps[2], inps[3], param,
                        warp.config());
            }
3030
            auto ret = new_warp.node()->owner_opr();
3031
            format_map.insert(std::make_pair(ret, target_format));
3032 3033
            return ret;
        } else if (new_inp[0]->dtype().enumv() == DTypeEnum::QuantizedS8) {
3034
            Format cur;
3035
            auto iter = format_map.find(new_inp[0]->owner_opr());
3036 3037 3038 3039 3040 3041
            if (iter == format_map.end()) {
                cur = Format::NCHW;
            } else {
                cur = iter->second;
            }
            auto inps = new_inp;
3042 3043 3044 3045 3046 3047
            if (cur != Format::NCHW4) {
                inps[0] = RelayoutPlaceholder::make(
                                  inps[0],
                                  ReformatKey{opr_format_to_tensor_formats(cur),
                                              TensorFormats::NCHWc4})
                                  .node();
3048 3049 3050 3051 3052 3053
            }
            auto param = warp.param();
            param.format = Format::NCHW4;
            SymbolVar new_warp;
            if (inps.size() == 3) {
                new_warp = opr::WarpPerspectiveForward::make(
3054 3055
                        inps[0], inps[1], inps[2], param,
                        warp.config());
3056 3057 3058 3059 3060 3061
            } else {
                mgb_assert(inps.size() == 4);
                new_warp = opr::WarpPerspectiveForward::make(
                        inps[0], inps[1], inps[2], inps[3], param,
                        warp.config());
            }
3062 3063 3064
            auto ret = new_warp.node()->owner_opr();
            format_map.insert(std::make_pair(ret, Format::NCHW4));
            return ret;
3065 3066 3067 3068 3069 3070 3071 3072
        } else {
            bool shape_changed = false;
            for (const auto& i : new_inp) {
                if (format_map.count(i->owner_opr()) > 0) {
                    shape_changed = true;
                    break;
                }
            }
3073
            mgb_assert(!shape_changed, 
3074 3075 3076 3077 3078 3079 3080
                       "EnableNCHW64Pass won't change format of output tensor "
                       "of non quantized warp perspective operator(name:%s)",
                       opr->cname());
            return serialization::copy_opr_shallow(*opr, new_inp,
                                                   opr->config());
        }
    };
3081 3082 3083
    auto replace_pooling_opr = [&format_map](
                                       OperatorNodeBase* opr,
                                       const VarNodeArray& new_inp) {
3084 3085
        mgb_assert(opr->input().size() == new_inp.size());
        auto& pooling = opr->cast_final_safe<opr::PoolingForward>();
3086 3087
        if (new_inp[0]->dtype().enumv() == DTypeEnum::QuantizedS4 ||
            new_inp[0]->dtype().enumv() == DTypeEnum::Quantized4Asymm) {
3088
            Format cur;
3089
            auto iter = format_map.find(new_inp[0]->owner_opr());
3090 3091 3092 3093 3094 3095
            if (iter == format_map.end()) {
                cur = Format::NCHW;
            } else {
                cur = iter->second;
            }
            auto inps = new_inp;
3096 3097 3098 3099 3100
            if (cur != Format::NCHW64 && cur != Format::NHWC) {
                ReformatKey key{opr_format_to_tensor_formats(cur),
                                TensorFormats::NHWC, inps[0]->dtype().enumv(),
                                inps[0]->dtype().enumv()};
                inps[0] = RelayoutPlaceholder::make(inps[0], key).node();
3101
            }
3102
            auto target_format = cur == Format::NCHW64 ? cur : Format::NHWC;
3103
            auto param = pooling.param();
3104
            param.format = target_format;
3105 3106
            auto new_pool =
                    opr::PoolingForward::make(inps[0], param, pooling.config());
3107
            auto ret = new_pool.node()->owner_opr();
3108
            format_map.insert(std::make_pair(ret, target_format));
3109 3110
            return ret;
        } else if (new_inp[0]->dtype().enumv() == DTypeEnum::QuantizedS8) {
3111
            Format cur;
3112
            auto iter = format_map.find(new_inp[0]->owner_opr());
3113 3114 3115 3116 3117 3118 3119
            if (iter == format_map.end()) {
                cur = Format::NCHW;
            } else {
                cur = iter->second;
            }
            bool use_nchw32 = false;
            auto inps = new_inp;
3120
            ReformatKey key;
3121 3122
            switch (cur) {
                case Format::NCHW: {
3123
                    size_t in_channels = new_inp[0]->shape()[1];
3124
                    use_nchw32 = in_channels % 32 == 0;
3125 3126 3127 3128
                    key.input_format = TensorFormats::NCHW;
                    key.output_format = use_nchw32 ? TensorFormats::NCHWc32
                                                   : TensorFormats::NCHWc4;
                    inps[0] = RelayoutPlaceholder::make(inps[0], key).node();
3129 3130
                    break;
                }
3131 3132 3133
                case Format::NHWC: {
                    size_t in_channels = new_inp[0]->shape()[3];
                    use_nchw32 = in_channels % 32 == 0;
3134 3135 3136 3137
                    key.input_format = TensorFormats::NHWC;
                    key.output_format = use_nchw32 ? TensorFormats::NCHWc32
                                                   : TensorFormats::NCHWc4;
                    inps[0] = RelayoutPlaceholder::make(inps[0], key).node();
3138 3139
                    break;
                }
3140 3141
                case Format::NCHW64:
                    inps[0] = RelayoutPlaceholder::make(
3142 3143 3144
                                      inps[0],
                                      ReformatKey{TensorFormats::NCHWc64,
                                                  TensorFormats::NCHWc32})
3145 3146 3147 3148 3149 3150 3151 3152 3153
                                      .node();
                    break;
                case Format::NCHW32:
                    use_nchw32 = true;
                    break;
                default:
                    mgb_assert(cur == Format::NCHW4);
            }
            Format out_format = use_nchw32 ? Format::NCHW32 : Format::NCHW4;
3154
            
3155 3156 3157 3158
            auto param = pooling.param();
            param.format = out_format;
            auto new_pool =
                    opr::PoolingForward::make(inps[0], param, pooling.config());
3159 3160 3161
            auto ret = new_pool.node()->owner_opr();
            format_map.insert(std::make_pair(ret, out_format));
            return ret;
3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188
        } else {
            bool shape_changed = false;
            for (const auto& i : new_inp) {
                if (format_map.count(i->owner_opr()) > 0) {
                    shape_changed = true;
                    break;
                }
            }
            mgb_assert(!shape_changed,
                       "EnableNCHW64Pass won't change format of output tensor "
                       "of non quantized pooling operator(name:%s)",
                       opr->cname());
            return serialization::copy_opr_shallow(*opr, new_inp,
                                                   opr->config());
        }
    };
    // format aware
    replace_func[opr::WarpPerspectiveForward::typeinfo()] =
            replace_warp_perspective_opr;
    replace_func[opr::PoolingForward::typeinfo()] = replace_pooling_opr;

    // to nchw
    auto replace_inps_to_nchw = [&format_map](OperatorNodeBase* opr,
                                              const VarNodeArray& new_inp) {
        mgb_assert(opr->input().size() == new_inp.size());
        auto inps = new_inp;
        for (size_t i = 0; i < opr->input().size(); ++i) {
3189
            auto iter = format_map.find(new_inp[i]->owner_opr());
3190
            auto fmt = iter != format_map.end()?iter->second:Format::NCHW;
3191
            if (iter != format_map.end()) {
3192 3193 3194 3195
                ReformatKey key{opr_format_to_tensor_formats(fmt),
                                TensorFormats::NCHW, inps[i]->dtype().enumv(),
                                inps[i]->dtype().enumv()};
                inps[i] = RelayoutPlaceholder::make(inps[i], key).node();
3196 3197
            }
        }
3198 3199
        auto ret = serialization::copy_opr_shallow(*opr, inps, opr->config());
        return ret;
3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210
    };

    replace_func[opr::Reduce::typeinfo()] = replace_inps_to_nchw;
    replace_func[opr::Concat::typeinfo()] = replace_inps_to_nchw;
    replace_func[opr::Reshape::typeinfo()] = replace_inps_to_nchw;
    replace_func[opr::GetVarShape::typeinfo()] = replace_inps_to_nchw;
    replace_func[opr::Dimshuffle::typeinfo()] = replace_inps_to_nchw;
    replace_func[opr::Subtensor::typeinfo()] = replace_inps_to_nchw;
    return ret;
    MIDOUT_E
}
3211

3212
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}