未验证 提交 ec922551 编写于 作者: S Shengliang Guan 提交者: GitHub

Merge pull request #2849 from taosdata/Aries-Lee1991-patch-14

alter the file format
......@@ -6,12 +6,12 @@ TDengine是涛思数据面对高速增长的物联网大数据市场和技术挑
TDengine的模块之一是时序数据库。但除此之外,为减少研发的复杂度、系统维护的难度,TDengine还提供缓存、消息队列、订阅、流式计算等功能,为物联网、工业互联网大数据的处理提供全栈的技术方案,是一个高效易用的物联网大数据平台。与Hadoop等典型的大数据平台相比,它具有如下鲜明的特点:
- __10倍以上的性能提升__:定义了创新的数据存储结构,单核每秒就能处理至少2万次请求,插入数百万个数据点,读出一千万以上数据点,比现有通用数据库快了十倍以上。
- __硬件或云服务成本降至1/5__:由于超强性能,计算资源不到通用大数据方案的1/5;通过列式存储和先进的压缩算法,存储空间不到通用数据库的1/10
- __全栈时序数据处理引擎__:将数据库、消息队列、缓存、流式计算等功能融合一起,应用无需再集成Kafka/Redis/HBase/Spark/HDFS等软件,大幅降低应用开发和维护的复杂度成本。
- __强大的分析功能__:无论是十年前还是一秒钟前的数据,指定时间范围即可查询。数据可在时间轴上或多个设备上进行聚合。临时查询可通过Shell, Python, R, Matlab随时进行。
- __与第三方工具无缝连接__:不用一行代码,即可与Telegraf, Grafana, EMQ, Prometheus, Matlab, R等集成。后续将支持OPC, Hadoop, Spark等, BI工具也将无缝连接。
- __零运维成本、零学习成本__:安装、集群一秒搞定,无需分库分表,实时备份。标准SQL,支持JDBC, RESTful, 支持Python/Java/C/C++/Go, 与MySQL相似,零学习成本。
* __10倍以上的性能提升__:定义了创新的数据存储结构,单核每秒就能处理至少2万次请求,插入数百万个数据点,读出一千万以上数据点,比现有通用数据库快了十倍以上。
* __硬件或云服务成本降至1/5__:由于超强性能,计算资源不到通用大数据方案的1/5;通过列式存储和先进的压缩算法,存储空间不到通用数据库的1/10
* __全栈时序数据处理引擎__:将数据库、消息队列、缓存、流式计算等功能融合一起,应用无需再集成Kafka/Redis/HBase/Spark/HDFS等软件,大幅降低应用开发和维护的复杂度成本。
* __强大的分析功能__:无论是十年前还是一秒钟前的数据,指定时间范围即可查询。数据可在时间轴上或多个设备上进行聚合。临时查询可通过Shell, Python, R, Matlab随时进行。
* __与第三方工具无缝连接__:不用一行代码,即可与Telegraf, Grafana, EMQ, Prometheus, Matlab, R等集成。后续将支持OPC, Hadoop, Spark等, BI工具也将无缝连接。
* __零运维成本、零学习成本__:安装、集群一秒搞定,无需分库分表,实时备份。标准SQL,支持JDBC, RESTful, 支持Python/Java/C/C++/Go, 与MySQL相似,零学习成本。
采用TDengine,可将典型的物联网、车联网、工业互联网大数据平台的总拥有成本大幅降低。但需要指出的是,因充分利用了物联网时序数据的特点,它无法用来处理网络爬虫、微博、微信、电商、ERP、CRM等通用型数据。
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册