未验证 提交 559a0779 编写于 作者: S Shengliang Guan 提交者: GitHub

Merge pull request #5074 from taosdata/fix/TD-2875

[TD-2875]<fix>: use monotonic clock source
...@@ -9,6 +9,7 @@ ADD_SUBDIRECTORY(lz4) ...@@ -9,6 +9,7 @@ ADD_SUBDIRECTORY(lz4)
ADD_SUBDIRECTORY(cJson) ADD_SUBDIRECTORY(cJson)
ADD_SUBDIRECTORY(wepoll) ADD_SUBDIRECTORY(wepoll)
ADD_SUBDIRECTORY(MsvcLibX) ADD_SUBDIRECTORY(MsvcLibX)
ADD_SUBDIRECTORY(rmonotonic)
IF (TD_LINUX AND TD_MQTT) IF (TD_LINUX AND TD_MQTT)
ADD_SUBDIRECTORY(MQTT-C) ADD_SUBDIRECTORY(MQTT-C)
......
...@@ -38,6 +38,7 @@ ...@@ -38,6 +38,7 @@
typedef int clockid_t; typedef int clockid_t;
/* Supported values for clockid_t */ /* Supported values for clockid_t */
#define CLOCK_REALTIME 0 #define CLOCK_REALTIME 0
#define CLOCK_MONOTONIC 1
int clock_gettime(clockid_t clock_id, struct timespec *tp); int clock_gettime(clockid_t clock_id, struct timespec *tp);
......
...@@ -34,15 +34,56 @@ ...@@ -34,15 +34,56 @@
#include "msvcTime.h" #include "msvcTime.h"
#include "sys/msvcStat.h" /* For MsvcLibX's Filetime2Timespec */ #include "sys/msvcStat.h" /* For MsvcLibX's Filetime2Timespec */
int clock_gettime(clockid_t clock_id, struct timespec *pTS) { #define MS_PER_SEC 1000ULL // MS = milliseconds
FILETIME ft; #define US_PER_MS 1000ULL // US = microseconds
if (clock_id != CLOCK_REALTIME) { #define HNS_PER_US 10ULL // HNS = hundred-nanoseconds (e.g., 1 hns = 100 ns)
errno = EINVAL; #define NS_PER_US 1000ULL
return -1;
#define HNS_PER_SEC (MS_PER_SEC * US_PER_MS * HNS_PER_US)
#define NS_PER_HNS (100ULL) // NS = nanoseconds
#define NS_PER_SEC (MS_PER_SEC * US_PER_MS * NS_PER_US)
int clock_gettime_monotonic(struct timespec *tv) {
static LARGE_INTEGER ticksPerSec;
LARGE_INTEGER ticks;
double seconds;
if (!ticksPerSec.QuadPart) {
QueryPerformanceFrequency(&ticksPerSec);
if (!ticksPerSec.QuadPart) {
errno = ENOTSUP;
return -1;
}
} }
QueryPerformanceCounter(&ticks);
seconds = (double) ticks.QuadPart / (double) ticksPerSec.QuadPart;
tv->tv_sec = (time_t)seconds;
tv->tv_nsec = (long)((ULONGLONG)(seconds * NS_PER_SEC) % NS_PER_SEC);
return 0;
}
int clock_gettime_realtime(struct timespec *pTS) {
FILETIME ft;
GetSystemTimeAsFileTime(&ft); GetSystemTimeAsFileTime(&ft);
Filetime2Timespec(&ft, pTS); Filetime2Timespec(&ft, pTS);
return 0; return 0;
} }
int clock_gettime(clockid_t clock_id, struct timespec *pTS) {
if (clock_id == CLOCK_MONOTONIC) {
return clock_gettime_monotonic(pTS);
} else if (clock_id == CLOCK_REALTIME) {
return clock_gettime_realtime(pTS);
}
errno = ENOTSUP;
return -1;
}
#endif /* defined(_WIN32) */ #endif /* defined(_WIN32) */
AUX_SOURCE_DIRECTORY(${CMAKE_CURRENT_SOURCE_DIR}/src SOURCE_LIST)
add_definitions(-DUSE_PROCESSOR_CLOCK)
INCLUDE_DIRECTORIES(${CMAKE_CURRENT_SOURCE_DIR}/../MsvcLibX/include)
ADD_LIBRARY(rmonotonic ${SOURCE_LIST})
TARGET_INCLUDE_DIRECTORIES(rmonotonic PUBLIC ${CMAKE_CURRENT_SOURCE_DIR}/inc)
IF (TD_WINDOWS)
TARGET_LINK_LIBRARIES(rmonotonic MsvcLibXw)
ENDIF ()
#ifndef __MONOTONIC_H
#define __MONOTONIC_H
/* The monotonic clock is an always increasing clock source. It is unrelated to
* the actual time of day and should only be used for relative timings. The
* monotonic clock is also not guaranteed to be chronologically precise; there
* may be slight skew/shift from a precise clock.
*
* Depending on system architecture, the monotonic time may be able to be
* retrieved much faster than a normal clock source by using an instruction
* counter on the CPU. On x86 architectures (for example), the RDTSC
* instruction is a very fast clock source for this purpose.
*/
//#include "fmacros.h"
#include <stdint.h>
//#include <unistd.h>
#if defined(_WIN32) || defined(_WIN64)
#define inline
#endif
/* A counter in micro-seconds. The 'monotime' type is provided for variables
* holding a monotonic time. This will help distinguish & document that the
* variable is associated with the monotonic clock and should not be confused
* with other types of time.*/
typedef uint64_t monotime;
/* Retrieve counter of micro-seconds relative to an arbitrary point in time. */
extern monotime (*getMonotonicUs)(void);
/* Call once at startup to initialize the monotonic clock. Though this only
* needs to be called once, it may be called additional times without impact.
* Returns a printable string indicating the type of clock initialized.
* (The returned string is static and doesn't need to be freed.) */
const char * monotonicInit();
/* Functions to measure elapsed time. Example:
* monotime myTimer;
* elapsedStart(&myTimer);
* while (elapsedMs(myTimer) < 10) {} // loops for 10ms
*/
static inline void elapsedStart(monotime *start_time) {
*start_time = getMonotonicUs();
}
static inline uint64_t elapsedUs(monotime start_time) {
return getMonotonicUs() - start_time;
}
static inline uint64_t elapsedMs(monotime start_time) {
return elapsedUs(start_time) / 1000;
}
#endif
#include "monotonic.h"
#include <stddef.h>
#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#undef NDEBUG
#include <assert.h>
#if defined(_WIN32) || defined(_WIN64)
#include "msvcTime.h"
#include "msvcStdio.h"
#endif
/* The function pointer for clock retrieval. */
monotime (*getMonotonicUs)(void) = NULL;
static char monotonic_info_string[32];
/* Using the processor clock (aka TSC on x86) can provide improved performance
* throughout Redis wherever the monotonic clock is used. The processor clock
* is significantly faster than calling 'clock_getting' (POSIX). While this is
* generally safe on modern systems, this link provides additional information
* about use of the x86 TSC: http://oliveryang.net/2015/09/pitfalls-of-TSC-usage
*
* To use the processor clock, either uncomment this line, or build with
* CFLAGS="-DUSE_PROCESSOR_CLOCK"
#define USE_PROCESSOR_CLOCK
*/
#if defined(USE_PROCESSOR_CLOCK) && defined(__x86_64__) && defined(__linux__)
#include <regex.h>
#include <x86intrin.h>
static long mono_ticksPerMicrosecond = 0;
static monotime getMonotonicUs_x86() {
return __rdtsc() / mono_ticksPerMicrosecond;
}
static void monotonicInit_x86linux() {
const int bufflen = 256;
char buf[bufflen];
regex_t cpuGhzRegex, constTscRegex;
const size_t nmatch = 2;
regmatch_t pmatch[nmatch];
int constantTsc = 0;
int rc;
/* Determine the number of TSC ticks in a micro-second. This is
* a constant value matching the standard speed of the processor.
* On modern processors, this speed remains constant even though
* the actual clock speed varies dynamically for each core. */
rc = regcomp(&cpuGhzRegex, "^model name\\s+:.*@ ([0-9.]+)GHz", REG_EXTENDED);
assert(rc == 0);
/* Also check that the constant_tsc flag is present. (It should be
* unless this is a really old CPU. */
rc = regcomp(&constTscRegex, "^flags\\s+:.* constant_tsc", REG_EXTENDED);
assert(rc == 0);
FILE *cpuinfo = fopen("/proc/cpuinfo", "r");
if (cpuinfo != NULL) {
while (fgets(buf, bufflen, cpuinfo) != NULL) {
if (regexec(&cpuGhzRegex, buf, nmatch, pmatch, 0) == 0) {
buf[pmatch[1].rm_eo] = '\0';
double ghz = atof(&buf[pmatch[1].rm_so]);
mono_ticksPerMicrosecond = (long)(ghz * 1000);
break;
}
}
while (fgets(buf, bufflen, cpuinfo) != NULL) {
if (regexec(&constTscRegex, buf, nmatch, pmatch, 0) == 0) {
constantTsc = 1;
break;
}
}
fclose(cpuinfo);
}
regfree(&cpuGhzRegex);
regfree(&constTscRegex);
if (mono_ticksPerMicrosecond == 0) {
fprintf(stderr, "monotonic: x86 linux, unable to determine clock rate");
return;
}
if (!constantTsc) {
fprintf(stderr, "monotonic: x86 linux, 'constant_tsc' flag not present");
return;
}
snprintf(monotonic_info_string, sizeof(monotonic_info_string),
"X86 TSC @ %ld ticks/us", mono_ticksPerMicrosecond);
getMonotonicUs = getMonotonicUs_x86;
}
#endif
#if defined(USE_PROCESSOR_CLOCK) && defined(__aarch64__)
static long mono_ticksPerMicrosecond = 0;
/* Read the clock value. */
static inline uint64_t __cntvct() {
uint64_t virtual_timer_value;
__asm__ volatile("mrs %0, cntvct_el0" : "=r"(virtual_timer_value));
return virtual_timer_value;
}
/* Read the Count-timer Frequency. */
static inline uint32_t cntfrq_hz() {
uint64_t virtual_freq_value;
__asm__ volatile("mrs %0, cntfrq_el0" : "=r"(virtual_freq_value));
return (uint32_t)virtual_freq_value; /* top 32 bits are reserved */
}
static monotime getMonotonicUs_aarch64() {
return __cntvct() / mono_ticksPerMicrosecond;
}
static void monotonicInit_aarch64() {
mono_ticksPerMicrosecond = (long)cntfrq_hz() / 1000L / 1000L;
if (mono_ticksPerMicrosecond == 0) {
fprintf(stderr, "monotonic: aarch64, unable to determine clock rate");
return;
}
snprintf(monotonic_info_string, sizeof(monotonic_info_string),
"ARM CNTVCT @ %ld ticks/us", mono_ticksPerMicrosecond);
getMonotonicUs = getMonotonicUs_aarch64;
}
#endif
static monotime getMonotonicUs_posix(void) {
/* clock_gettime() is specified in POSIX.1b (1993). Even so, some systems
* did not support this until much later. CLOCK_MONOTONIC is technically
* optional and may not be supported - but it appears to be universal.
* If this is not supported, provide a system-specific alternate version. */
struct timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);
return ((uint64_t)ts.tv_sec) * 1000000 + ts.tv_nsec / 1000;
}
static void monotonicInit_posix() {
/* Ensure that CLOCK_MONOTONIC is supported. This should be supported
* on any reasonably current OS. If the assertion below fails, provide
* an appropriate alternate implementation. */
struct timespec ts;
int rc = clock_gettime(CLOCK_MONOTONIC, &ts);
assert(rc == 0);
snprintf(monotonic_info_string, sizeof(monotonic_info_string),
"POSIX clock_gettime");
getMonotonicUs = getMonotonicUs_posix;
}
const char * monotonicInit() {
#if defined(USE_PROCESSOR_CLOCK) && defined(__x86_64__) && defined(__linux__)
if (getMonotonicUs == NULL) monotonicInit_x86linux();
#endif
#if defined(USE_PROCESSOR_CLOCK) && defined(__aarch64__)
if (getMonotonicUs == NULL) monotonicInit_aarch64();
#endif
if (getMonotonicUs == NULL) monotonicInit_posix();
return monotonic_info_string;
}
...@@ -3,9 +3,10 @@ PROJECT(TDengine) ...@@ -3,9 +3,10 @@ PROJECT(TDengine)
INCLUDE_DIRECTORIES(${TD_COMMUNITY_DIR}/src/rpc/inc) INCLUDE_DIRECTORIES(${TD_COMMUNITY_DIR}/src/rpc/inc)
INCLUDE_DIRECTORIES(${TD_COMMUNITY_DIR}/src/sync/inc) INCLUDE_DIRECTORIES(${TD_COMMUNITY_DIR}/src/sync/inc)
INCLUDE_DIRECTORIES(${TD_COMMUNITY_DIR}/deps/rmonotonic/inc)
AUX_SOURCE_DIRECTORY(src SRC) AUX_SOURCE_DIRECTORY(src SRC)
ADD_LIBRARY(tutil ${SRC}) ADD_LIBRARY(tutil ${SRC})
TARGET_LINK_LIBRARIES(tutil pthread osdetail lz4 z) TARGET_LINK_LIBRARIES(tutil pthread osdetail lz4 z rmonotonic)
IF (TD_LINUX) IF (TD_LINUX)
TARGET_LINK_LIBRARIES(tutil m rt) TARGET_LINK_LIBRARIES(tutil m rt)
......
...@@ -18,6 +18,7 @@ ...@@ -18,6 +18,7 @@
#include "tsched.h" #include "tsched.h"
#include "ttimer.h" #include "ttimer.h"
#include "tutil.h" #include "tutil.h"
#include "monotonic.h"
extern int8_t tscEmbedded; extern int8_t tscEmbedded;
...@@ -186,6 +187,10 @@ static void removeTimer(uintptr_t id) { ...@@ -186,6 +187,10 @@ static void removeTimer(uintptr_t id) {
unlockTimerList(list); unlockTimerList(list);
} }
static int64_t getMonotonicMs(void) {
return (int64_t) getMonotonicUs() / 1000;
}
static void addToWheel(tmr_obj_t* timer, uint32_t delay) { static void addToWheel(tmr_obj_t* timer, uint32_t delay) {
timerAddRef(timer); timerAddRef(timer);
// select a wheel for the timer, we are not an accurate timer, // select a wheel for the timer, we are not an accurate timer,
...@@ -201,7 +206,7 @@ static void addToWheel(tmr_obj_t* timer, uint32_t delay) { ...@@ -201,7 +206,7 @@ static void addToWheel(tmr_obj_t* timer, uint32_t delay) {
time_wheel_t* wheel = wheels + timer->wheel; time_wheel_t* wheel = wheels + timer->wheel;
timer->prev = NULL; timer->prev = NULL;
timer->expireAt = taosGetTimestampMs() + delay; timer->expireAt = getMonotonicMs() + delay;
pthread_mutex_lock(&wheel->mutex); pthread_mutex_lock(&wheel->mutex);
...@@ -334,7 +339,7 @@ tmr_h taosTmrStart(TAOS_TMR_CALLBACK fp, int mseconds, void* param, void* handle ...@@ -334,7 +339,7 @@ tmr_h taosTmrStart(TAOS_TMR_CALLBACK fp, int mseconds, void* param, void* handle
} }
static void taosTimerLoopFunc(int signo) { static void taosTimerLoopFunc(int signo) {
int64_t now = taosGetTimestampMs(); int64_t now = getMonotonicMs();
for (int i = 0; i < tListLen(wheels); i++) { for (int i = 0; i < tListLen(wheels); i++) {
// `expried` is a temporary expire list. // `expried` is a temporary expire list.
...@@ -501,7 +506,7 @@ static void taosTmrModuleInit(void) { ...@@ -501,7 +506,7 @@ static void taosTmrModuleInit(void) {
pthread_mutex_init(&tmrCtrlMutex, NULL); pthread_mutex_init(&tmrCtrlMutex, NULL);
int64_t now = taosGetTimestampMs(); int64_t now = getMonotonicMs();
for (int i = 0; i < tListLen(wheels); i++) { for (int i = 0; i < tListLen(wheels); i++) {
time_wheel_t* wheel = wheels + i; time_wheel_t* wheel = wheels + i;
if (pthread_mutex_init(&wheel->mutex, NULL) != 0) { if (pthread_mutex_init(&wheel->mutex, NULL) != 0) {
...@@ -532,6 +537,8 @@ static void taosTmrModuleInit(void) { ...@@ -532,6 +537,8 @@ static void taosTmrModuleInit(void) {
} }
void* taosTmrInit(int maxNumOfTmrs, int resolution, int longest, const char* label) { void* taosTmrInit(int maxNumOfTmrs, int resolution, int longest, const char* label) {
tmrInfo("ttimer monotonic clock source:%s", monotonicInit());
pthread_once(&tmrModuleInit, taosTmrModuleInit); pthread_once(&tmrModuleInit, taosTmrModuleInit);
pthread_mutex_lock(&tmrCtrlMutex); pthread_mutex_lock(&tmrCtrlMutex);
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册