pthread_mutex_consistent.c 6.8 KB
Newer Older
S
slguan 已提交
1
/*
S
slguan 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
 * pthread_mutex_consistent.c
 *
 * Description:
 * This translation unit implements mutual exclusion (mutex) primitives.
 *
 * --------------------------------------------------------------------------
 *
 *      Pthreads-win32 - POSIX Threads Library for Win32
 *      Copyright(C) 1998 John E. Bossom
 *      Copyright(C) 1999,2005 Pthreads-win32 contributors
 * 
 *      Contact Email: rpj@callisto.canberra.edu.au
 * 
 *      The current list of contributors is contained
 *      in the file CONTRIBUTORS included with the source
 *      code distribution. The list can also be seen at the
 *      following World Wide Web location:
 *      http://sources.redhat.com/pthreads-win32/contributors.html
 * 
 *      This library is free software; you can redistribute it and/or
 *      modify it under the terms of the GNU Lesser General Public
 *      License as published by the Free Software Foundation; either
 *      version 2 of the License, or (at your option) any later version.
 * 
 *      This library is distributed in the hope that it will be useful,
 *      but WITHOUT ANY WARRANTY; without even the implied warranty of
 *      MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 *      Lesser General Public License for more details.
 * 
 *      You should have received a copy of the GNU Lesser General Public
 *      License along with this library in the file COPYING.LIB;
 *      if not, write to the Free Software Foundation, Inc.,
 *      59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
 */

/*
 * From the Sun Multi-threaded Programming Guide
 *
 * robustness defines the behavior when the owner of the mutex terminates without unlocking the
 * mutex, usually because its process terminated abnormally. The value of robustness that is
 * defined in pthread.h is PTHREAD_MUTEX_ROBUST or PTHREAD_MUTEX_STALLED. The
 * default value is PTHREAD_MUTEX_STALLED .
 * ■ PTHREAD_MUTEX_STALLED
 * When the owner of the mutex terminates without unlocking the mutex, all subsequent calls
 * to pthread_mutex_lock() are blocked from progress in an unspecified manner.
 * ■ PTHREAD_MUTEX_ROBUST
 * When the owner of the mutex terminates without unlocking the mutex, the mutex is
 * unlocked. The next owner of this mutex acquires the mutex with an error return of
 * EOWNERDEAD.
 * Note – Your application must always check the return code from pthread_mutex_lock() for
 * a mutex initialized with the PTHREAD_MUTEX_ROBUST attribute.
 * ■ The new owner of this mutex should make the state protected by the mutex consistent.
 * This state might have been left inconsistent when the previous owner terminated.
 * ■ If the new owner is able to make the state consistent, call
 * pthread_mutex_consistent() for the mutex before unlocking the mutex. This
 * marks the mutex as consistent and subsequent calls to pthread_mutex_lock() and
 * pthread_mutex_unlock() will behave in the normal manner.
 * ■ If the new owner is not able to make the state consistent, do not call
 * pthread_mutex_consistent() for the mutex, but unlock the mutex.
 * All waiters are woken up and all subsequent calls to pthread_mutex_lock() fail to
 * acquire the mutex. The return code is ENOTRECOVERABLE. The mutex can be made
 * consistent by calling pthread_mutex_destroy() to uninitialize the mutex, and calling
 * pthread_mutex_int() to reinitialize the mutex.However, the state that was protected
 * by the mutex remains inconsistent and some form of application recovery is required.
 * ■ If the thread that acquires the lock with EOWNERDEAD terminates without unlocking the
 * mutex, the next owner acquires the lock with an EOWNERDEAD return code.
 */
#if !defined(_UWIN)
/*#   include <process.h> */
#endif
#include "pthread.h"
#include "implement.h"

INLINE
int
ptw32_robust_mutex_inherit(pthread_mutex_t * mutex)
{
  int result;
  pthread_mutex_t mx = *mutex;
  ptw32_robust_node_t* robust = mx->robustNode;

  switch ((LONG)PTW32_INTERLOCKED_COMPARE_EXCHANGE_LONG(
            (PTW32_INTERLOCKED_LONGPTR)&robust->stateInconsistent,
            (PTW32_INTERLOCKED_LONG)PTW32_ROBUST_INCONSISTENT,
            (PTW32_INTERLOCKED_LONG)-1 /* The terminating thread sets this */))
    {
      case -1L:
          result = EOWNERDEAD;
          break;
      case (LONG)PTW32_ROBUST_NOTRECOVERABLE:
          result = ENOTRECOVERABLE;
          break;
      default:
          result = 0;
          break;
    }

  return result;
}

/*
 * The next two internal support functions depend on only being
 * called by the thread that owns the robust mutex. This enables
 * us to avoid additional locks.
 * Any mutex currently in the thread's robust mutex list is held
 * by the thread, again eliminating the need for locks.
 * The forward/backward links allow the thread to unlock mutexes
 * in any order, not necessarily the reverse locking order.
 * This is all possible because it is an error if a thread that
 * does not own the [robust] mutex attempts to unlock it.
 */

INLINE
void
ptw32_robust_mutex_add(pthread_mutex_t* mutex, pthread_t self)
{
  ptw32_robust_node_t** list;
  pthread_mutex_t mx = *mutex;
  ptw32_thread_t* tp = (ptw32_thread_t*)self.p;
  ptw32_robust_node_t* robust = mx->robustNode;

  list = &tp->robustMxList;
  mx->ownerThread = self;
  if (NULL == *list)
    {
      robust->prev = NULL;
      robust->next = NULL;
      *list = robust;
    }
  else
    {
      robust->prev = NULL;
      robust->next = *list;
      (*list)->prev = robust;
      *list = robust;
    }
}

INLINE
void
ptw32_robust_mutex_remove(pthread_mutex_t* mutex, ptw32_thread_t* otp)
{
  ptw32_robust_node_t** list;
  pthread_mutex_t mx = *mutex;
  ptw32_robust_node_t* robust = mx->robustNode;

  list = &(((ptw32_thread_t*)mx->ownerThread.p)->robustMxList);
  mx->ownerThread.p = otp;
  if (robust->next != NULL)
    {
      robust->next->prev = robust->prev;
    }
  if (robust->prev != NULL)
    {
      robust->prev->next = robust->next;
    }
  if (*list == robust)
    {
      *list = robust->next;
    }
}


int
pthread_mutex_consistent (pthread_mutex_t* mutex)
{
  pthread_mutex_t mx = *mutex;
  int result = 0;

  /*
   * Let the system deal with invalid pointers.
   */
  if (mx == NULL)
    {
      return EINVAL;
    }

  if (mx->kind >= 0
        || (PTW32_INTERLOCKED_LONG)PTW32_ROBUST_INCONSISTENT != PTW32_INTERLOCKED_COMPARE_EXCHANGE_LONG(
                                                (PTW32_INTERLOCKED_LONGPTR)&mx->robustNode->stateInconsistent,
                                                (PTW32_INTERLOCKED_LONG)PTW32_ROBUST_CONSISTENT,
                                                (PTW32_INTERLOCKED_LONG)PTW32_ROBUST_INCONSISTENT))
    {
      result = EINVAL;
    }

  return (result);
}