提交 a9dce8ec 编写于 作者: L liuqi

Add block tuning to limit the execution time less than 1ms.

上级 537b4600
......@@ -50,6 +50,21 @@ double OpenCLProfilingTimer::ElapsedMicros() {
return (stop_nanos_ - start_nanos_) / 1000.0;
}
double OpenCLProfilingTimer::AccumulatedMicros() {
return accumulated_micros_;
}
void OpenCLProfilingTimer::AccumulateTiming(){
StopTiming();
accumulated_micros_ += (stop_nanos_ - start_nanos_) / 1000.0;
}
void OpenCLProfilingTimer::ClearTiming() {
start_nanos_ = 0;
stop_nanos_ = 0;
accumulated_micros_ = 0;
}
OpenCLRuntime *OpenCLRuntime::Global() {
static OpenCLRuntime instance;
return &instance;
......
......@@ -18,16 +18,20 @@
namespace mace {
class OpenCLProfilingTimer : public Timer {
public:
explicit OpenCLProfilingTimer(const cl::Event *event) : event_(event) {};
void StartTiming() override;
void StopTiming() override;
double ElapsedMicros() override;
public:
explicit OpenCLProfilingTimer(const cl::Event *event) : event_(event), accumulated_micros_(0) {};
void StartTiming() override;
void StopTiming() override;
void AccumulateTiming() override;
void ClearTiming() override;
double ElapsedMicros() override;
double AccumulatedMicros() override;
private:
const cl::Event *event_;
double start_nanos_;
double stop_nanos_;
private:
const cl::Event *event_;
double start_nanos_;
double stop_nanos_;
double accumulated_micros_;
};
class OpenCLRuntime {
......@@ -40,15 +44,15 @@ class OpenCLRuntime {
void GetCallStats(const cl::Event &event, CallStats *stats);
uint32_t GetDeviceMaxWorkGroupSize();
uint32_t GetKernelMaxWorkGroupSize(const cl::Kernel& kernel);
uint32_t GetKernelMaxWorkGroupSize(const cl::Kernel &kernel);
cl::Kernel BuildKernel(const std::string &program_name,
const std::string &kernel_name,
const std::set<std::string> &build_options);
private:
OpenCLRuntime();
~OpenCLRuntime();
OpenCLRuntime(const OpenCLRuntime&) = delete;
OpenCLRuntime &operator=(const OpenCLRuntime&) = delete;
OpenCLRuntime(const OpenCLRuntime &) = delete;
OpenCLRuntime &operator=(const OpenCLRuntime &) = delete;
void BuildProgram(const std::string &program_file_name,
const std::string &binary_file_name,
......
......@@ -63,7 +63,7 @@ void ActivationFunctor<DeviceType::OPENCL, T>::operator()(const Tensor *input,
const uint32_t gws[3] = {static_cast<uint32_t>(channel_blocks),
static_cast<uint32_t>(width),
static_cast<uint32_t>(height * batch)};
const std::vector<uint32_t> lws = {8, 16, 8};
std::vector<uint32_t> lws = {8, 16, 8, 1};
const uint32_t kwg_size =
runtime->GetKernelMaxWorkGroupSize(activation_kernel);
auto params_generator = [&]() -> std::vector<std::vector<uint32_t>> {
......@@ -73,33 +73,66 @@ void ActivationFunctor<DeviceType::OPENCL, T>::operator()(const Tensor *input,
local_ws[2] = std::min<uint32_t>(height * batch,
kwg_size / (local_ws[0] * local_ws[1]));
return {
{local_ws[0], local_ws[1], local_ws[2]},
{kwg_size / 16, 4, 4},
{kwg_size / 32, 4, 8},
{kwg_size / 32, 8, 4},
{kwg_size / 64, 8, 8},
{kwg_size / 64, 16, 4},
{kwg_size / 128, 8, 16},
{kwg_size / 128, 16, 8},
{kwg_size / 128, 32, 4},
{1, kwg_size / 32, 32},
{1, kwg_size / 64, 64},
{1, kwg_size / 128, 128},
{3, 15, 9},
{7, 15, 9},
{9, 7, 15},
{15, 7, 9},
{1, kwg_size, 1},
{4, 15, 8}, // SNPE size
{local_ws[0], local_ws[1], local_ws[2], 1},
{kwg_size / 16, 4, 4, 1},
{kwg_size / 32, 4, 8, 1},
{kwg_size / 32, 8, 4, 1},
{kwg_size / 64, 8, 8, 1},
{kwg_size / 64, 16, 4, 1},
{kwg_size / 128, 8, 16, 1},
{kwg_size / 128, 16, 8, 1},
{kwg_size / 128, 32, 4, 1},
{1, kwg_size / 32, 32, 1},
{1, kwg_size / 64, 64, 1},
{1, kwg_size / 128, 128, 1},
{3, 15, 9, 1},
{7, 15, 9, 1},
{9, 7, 15, 1},
{15, 7, 9, 1},
{1, kwg_size, 1, 1},
{4, 15, 8, 1}, // SNPE size
};
};
cl::Event event;
auto func = [&](const std::vector<uint32_t> &params) -> cl_int {
cl_int error = runtime->command_queue().enqueueNDRangeKernel(
activation_kernel, cl::NullRange, cl::NDRange(gws[0], gws[1], gws[2]),
cl::NDRange(params[0], params[1], params[2]), nullptr, &event);
MACE_CHECK(error == CL_SUCCESS) << "Error code: " << error;
auto func = [&](std::vector<uint32_t> &params, Timer *timer) -> cl_int {
cl_int error = CL_SUCCESS;
if (timer == nullptr) {
uint32_t num_blocks = params.back();
const uint32_t block_size = gws[2] / num_blocks;
if (gws[2] % num_blocks > 0) num_blocks++;
for (uint32_t i = 0; i < num_blocks; ++i) {
uint32_t gws2 = (i == num_blocks - 1) ? (gws[2] - (i * block_size)) : block_size;
error = runtime->command_queue().enqueueNDRangeKernel(
activation_kernel,
cl::NDRange(0, 0, i * block_size),
cl::NDRange(gws[0], gws[1], gws2),
cl::NDRange(params[0], params[1], params[2]), nullptr, &event);
MACE_CHECK(error == CL_SUCCESS) << "Error code: " << error;
}
} else {
timer->StartTiming();
error = runtime->command_queue().enqueueNDRangeKernel(
activation_kernel, cl::NullRange, cl::NDRange(gws[0], gws[1], gws[2]),
cl::NDRange(params[0], params[1], params[2]), nullptr, &event);
MACE_CHECK(error == CL_SUCCESS) << "Error code: " << error;
timer->StopTiming();
double elapse_time = timer->ElapsedMicros();
timer->ClearTiming();
uint32_t num_blocks = std::min(static_cast<uint32_t>(elapse_time / kMaxKernelExeTime) + 1, gws[2]);
params.back() = num_blocks;
const uint32_t block_size = gws[2] / num_blocks;
if (gws[2] % num_blocks > 0) num_blocks++;
for (uint32_t i = 0; i < num_blocks; ++i) {
uint32_t gws2 = (i == num_blocks - 1) ? (gws[2] - (i * block_size)) : block_size;
error = runtime->command_queue().enqueueNDRangeKernel(
activation_kernel,
cl::NDRange(0, 0, i * block_size),
cl::NDRange(gws[0], gws[1], gws2),
cl::NDRange(params[0], params[1], params[2]), nullptr, &event);
MACE_CHECK(error == CL_SUCCESS) << "Error code: " << error;
timer->AccumulateTiming();
}
}
return error;
};
std::string tuning_key =
......
......@@ -50,33 +50,66 @@ static void AddN(const std::vector<const Tensor *> &input_tensors,
static_cast<uint32_t>(batch_height_pixels)
};
const uint32_t kwg_size = runtime->GetKernelMaxWorkGroupSize(addn_kernel);
std::vector<uint32_t> lws = {64, 16};
std::vector<uint32_t> lws = {64, 16, 1};
auto params_generator = [&]() -> std::vector<std::vector<uint32_t>> {
uint32_t local_ws[2];
local_ws[0] = std::min<uint32_t>(width_pixels, kwg_size);
local_ws[1] = std::min<uint32_t>(batch_height_pixels, kwg_size / local_ws[0]);
return {{local_ws[0], local_ws[1]},
{local_ws[1], local_ws[0]},
{kwg_size / 4, 4},
{kwg_size / 16, 16},
{kwg_size / 32, 32},
{kwg_size / 64, 64},
{kwg_size / 128, 128},
{kwg_size / 256, 256},
{kwg_size / 512, 512},
{kwg_size, 1},
{1, kwg_size}
return {{local_ws[0], local_ws[1], 1},
{local_ws[1], local_ws[0], 1},
{kwg_size / 4, 4, 1},
{kwg_size / 16, 16, 1},
{kwg_size / 32, 32, 1},
{kwg_size / 64, 64, 1},
{kwg_size / 128, 128, 1},
{kwg_size / 256, 256, 1},
{kwg_size / 512, 512, 1},
{kwg_size, 1, 1},
{1, kwg_size, 1}
};
};
cl::Event event;
auto func = [&](const std::vector<uint32_t> &params) -> cl_int {
cl_int error = runtime->command_queue().enqueueNDRangeKernel(
addn_kernel, cl::NullRange,
cl::NDRange(gws[0], gws[1]),
cl::NDRange(params[0], params[1]),
nullptr, &event);
MACE_CHECK(error == CL_SUCCESS) << "Error code: " << error;
auto func = [&](std::vector<uint32_t> &params, Timer *timer) -> cl_int {
cl_int error = CL_SUCCESS;
if (timer == nullptr) {
uint32_t num_blocks = params.back();
const uint32_t block_size = gws[1] / num_blocks;
if (gws[1] % num_blocks > 0) num_blocks++;
for (uint32_t i = 0; i < num_blocks; ++i) {
uint32_t gws1 = (i == num_blocks - 1) ? (gws[1] - (i * block_size)) : block_size;
error = runtime->command_queue().enqueueNDRangeKernel(
addn_kernel,
cl::NDRange(0, i * block_size),
cl::NDRange(gws[0], gws1),
cl::NDRange(params[0], params[1]),
nullptr, &event);
MACE_CHECK(error == CL_SUCCESS) << "Error code: " << error;
}
} else {
timer->StartTiming();
error = runtime->command_queue().enqueueNDRangeKernel(
addn_kernel, cl::NullRange,
cl::NDRange(gws[0], gws[1]),
cl::NDRange(params[0], params[1]), nullptr, &event);
MACE_CHECK(error == CL_SUCCESS) << "Error code: " << error;
timer->StopTiming();
double elapse_time = timer->ElapsedMicros();
timer->ClearTiming();
uint32_t num_blocks = std::min(static_cast<uint32_t>(elapse_time / kMaxKernelExeTime) + 1, gws[1]);
params.back() = num_blocks;
const uint32_t block_size = gws[1] / num_blocks;
if (gws[1] % num_blocks > 0) num_blocks++;
for (uint32_t i = 0; i < num_blocks; ++i) {
uint32_t gws1 = (i == num_blocks - 1) ? (gws[1] - (i * block_size)) : block_size;
error = runtime->command_queue().enqueueNDRangeKernel(
addn_kernel,
cl::NDRange(0, i * block_size),
cl::NDRange(gws[0], gws1),
cl::NDRange(params[0], params[1]), nullptr, &event);
MACE_CHECK(error == CL_SUCCESS) << "Error code: " << error;
timer->AccumulateTiming();
}
}
return error;
};
std::stringstream ss;
......
......@@ -83,7 +83,7 @@ void BatchNormFunctor<DeviceType::OPENCL, T>::operator()(const Tensor *input,
const uint32_t gws[3] = {static_cast<uint32_t>(channel_blocks),
static_cast<uint32_t>(width),
static_cast<uint32_t>(height * batch)};
const std::vector<uint32_t> lws = {8, 16, 8};
std::vector<uint32_t> lws = {8, 16, 8, 1};
const uint32_t kwg_size = runtime->GetKernelMaxWorkGroupSize(bm_kernel);
auto params_generator = [&]() -> std::vector<std::vector<uint32_t>> {
std::vector<uint32_t> local_ws(3, 0);
......@@ -92,33 +92,66 @@ void BatchNormFunctor<DeviceType::OPENCL, T>::operator()(const Tensor *input,
local_ws[2] = std::min<uint32_t>(height * batch,
kwg_size / (local_ws[0] * local_ws[1]));
return {
{local_ws[0], local_ws[1], local_ws[2]},
{kwg_size / 16, 4, 4},
{kwg_size / 32, 4, 8},
{kwg_size / 32, 8, 4},
{kwg_size / 64, 8, 8},
{kwg_size / 64, 16, 4},
{kwg_size / 128, 8, 16},
{kwg_size / 128, 16, 8},
{kwg_size / 128, 32, 4},
{1, kwg_size / 32, 32},
{1, kwg_size / 64, 64},
{1, kwg_size / 128, 128},
{3, 15, 9},
{7, 15, 9},
{9, 7, 15},
{15, 7, 9},
{1, kwg_size, 1},
{8, 128, 1}, // SNPE size
{local_ws[0], local_ws[1], local_ws[2], 1},
{kwg_size / 16, 4, 4, 1},
{kwg_size / 32, 4, 8, 1},
{kwg_size / 32, 8, 4, 1},
{kwg_size / 64, 8, 8, 1},
{kwg_size / 64, 16, 4, 1},
{kwg_size / 128, 8, 16, 1},
{kwg_size / 128, 16, 8, 1},
{kwg_size / 128, 32, 4, 1},
{1, kwg_size / 32, 32, 1},
{1, kwg_size / 64, 64, 1},
{1, kwg_size / 128, 128, 1},
{3, 15, 9, 1},
{7, 15, 9, 1},
{9, 7, 15, 1},
{15, 7, 9, 1},
{1, kwg_size, 1, 1},
{8, 128, 1, 1}, // SNPE size
};
};
cl::Event event;
auto func = [&](const std::vector<uint32_t> &params) -> cl_int {
cl_int error = runtime->command_queue().enqueueNDRangeKernel(
bm_kernel, cl::NullRange, cl::NDRange(gws[0], gws[1], gws[2]),
cl::NDRange(params[0], params[1], params[2]), nullptr, &event);
MACE_CHECK(error == CL_SUCCESS) << "Error code: " << error;
auto func = [&](std::vector<uint32_t> &params, Timer *timer) -> cl_int {
cl_int error = CL_SUCCESS;
if (timer == nullptr) {
uint32_t num_blocks = params.back();
const uint32_t block_size = gws[2] / num_blocks;
if (gws[2] % num_blocks > 0) num_blocks++;
for (uint32_t i = 0; i < num_blocks; ++i) {
uint32_t gws2 = (i == num_blocks - 1) ? (gws[2] - (i * block_size)) : block_size;
error = runtime->command_queue().enqueueNDRangeKernel(
bm_kernel,
cl::NDRange(0, 0, i * block_size),
cl::NDRange(gws[0], gws[1], gws2),
cl::NDRange(params[0], params[1], params[2]), nullptr, &event);
MACE_CHECK(error == CL_SUCCESS) << "Error code: " << error;
}
} else {
timer->StartTiming();
error = runtime->command_queue().enqueueNDRangeKernel(
bm_kernel, cl::NullRange, cl::NDRange(gws[0], gws[1], gws[2]),
cl::NDRange(params[0], params[1], params[2]), nullptr, &event);
MACE_CHECK(error == CL_SUCCESS) << "Error code: " << error;
timer->StopTiming();
double elapse_time = timer->ElapsedMicros();
timer->ClearTiming();
uint32_t num_blocks = std::min(static_cast<uint32_t>(elapse_time / kMaxKernelExeTime) + 1, gws[2]);
params.back() = num_blocks;
const uint32_t block_size = gws[2] / num_blocks;
if (gws[2] % num_blocks > 0) num_blocks++;
for (uint32_t i = 0; i < num_blocks; ++i) {
uint32_t gws2 = (i == num_blocks - 1) ? (gws[2] - (i * block_size)) : block_size;
error = runtime->command_queue().enqueueNDRangeKernel(
bm_kernel,
cl::NDRange(0, 0, i * block_size),
cl::NDRange(gws[0], gws[1], gws2),
cl::NDRange(params[0], params[1], params[2]), nullptr, &event);
MACE_CHECK(error == CL_SUCCESS) << "Error code: " << error;
timer->AccumulateTiming();
}
}
return error;
};
std::string tuning_key =
......
......@@ -51,42 +51,73 @@ static void Concat2(const Tensor *input0,
static_cast<uint32_t>(batch * height),
};
const uint32_t kwg_size = runtime->GetKernelMaxWorkGroupSize(concat_kernel);
std::vector<uint32_t> lws = {8, 16, 8};
std::vector<uint32_t> lws = {8, 16, 8, 1};
auto params_generator = [&]() -> std::vector<std::vector<uint32_t>> {
std::vector<uint32_t> local_ws(3, 0);
local_ws[0] = std::min<uint32_t>(channel_blk, kwg_size);
local_ws[1] = std::min<uint32_t>(width, kwg_size / local_ws[0]);
local_ws[2] = std::min<uint32_t>(height * batch, kwg_size / (local_ws[0] * local_ws[1]));
return {{local_ws[0], local_ws[1], local_ws[2]},
{local_ws[2], local_ws[1], local_ws[0]},
{kwg_size / 16, 4, 4},
{kwg_size / 32, 4, 8},
{kwg_size / 32, 8, 4},
{kwg_size / 64, 8, 8},
{kwg_size / 64, 16, 4},
{kwg_size / 128, 8, 16},
{kwg_size / 128, 16, 8},
{kwg_size / 128, 32, 4},
{1, kwg_size / 32, 32},
{1, kwg_size / 64, 64},
{1, kwg_size / 128, 128},
{3, 15, 9},
{7, 15, 9},
{9, 7, 15},
{15, 7, 9},
{1, kwg_size, 1},
{4, 15, 8}, //SNPE size
return {{local_ws[0], local_ws[1], local_ws[2], 1},
{local_ws[2], local_ws[1], local_ws[0], 1},
{kwg_size / 16, 4, 4, 1},
{kwg_size / 32, 4, 8, 1},
{kwg_size / 32, 8, 4, 1},
{kwg_size / 64, 8, 8, 1},
{kwg_size / 64, 16, 4, 1},
{kwg_size / 128, 8, 16, 1},
{kwg_size / 128, 16, 8, 1},
{kwg_size / 128, 32, 4, 1},
{1, kwg_size / 32, 32, 1},
{1, kwg_size / 64, 64, 1},
{1, kwg_size / 128, 128, 1},
{3, 15, 9, 1},
{7, 15, 9, 1},
{9, 7, 15, 1},
{15, 7, 9, 1},
{1, kwg_size, 1, 1},
{4, 15, 8, 1}, //SNPE size
};
};
cl::Event event;
auto func = [&](const std::vector<uint32_t> &params) -> cl_int {
cl_int error = runtime->command_queue().enqueueNDRangeKernel(
concat_kernel, cl::NullRange,
cl::NDRange(gws[0], gws[1], gws[2]),
cl::NDRange(params[0], params[1], params[2]),
nullptr, &event);
MACE_CHECK(error == CL_SUCCESS) << "Error code: " << error;
auto func = [&](std::vector<uint32_t> &params, Timer *timer) -> cl_int {
cl_int error = CL_SUCCESS;
if (timer == nullptr) {
uint32_t num_blocks = params.back();
const uint32_t block_size = gws[2] / num_blocks;
if (gws[2] % num_blocks > 0) num_blocks++;
for (uint32_t i = 0; i < num_blocks; ++i) {
uint32_t gws2 = (i == num_blocks - 1) ? (gws[2] - (i * block_size)) : block_size;
error = runtime->command_queue().enqueueNDRangeKernel(
concat_kernel,
cl::NDRange(0, 0, i * block_size),
cl::NDRange(gws[0], gws[1], gws2),
cl::NDRange(params[0], params[1], params[2]), nullptr, &event);
MACE_CHECK(error == CL_SUCCESS) << "Error code: " << error;
}
} else {
timer->StartTiming();
error = runtime->command_queue().enqueueNDRangeKernel(
concat_kernel, cl::NullRange, cl::NDRange(gws[0], gws[1], gws[2]),
cl::NDRange(params[0], params[1], params[2]), nullptr, &event);
MACE_CHECK(error == CL_SUCCESS) << "Error code: " << error;
timer->StopTiming();
double elapse_time = timer->ElapsedMicros();
timer->ClearTiming();
uint32_t num_blocks = std::min(static_cast<uint32_t>(elapse_time / kMaxKernelExeTime) + 1, gws[2]);
params.back() = num_blocks;
const uint32_t block_size = gws[2] / num_blocks;
if (gws[2] % num_blocks > 0) num_blocks++;
for (uint32_t i = 0; i < num_blocks; ++i) {
uint32_t gws2 = (i == num_blocks - 1) ? (gws[2] - (i * block_size)) : block_size;
error = runtime->command_queue().enqueueNDRangeKernel(
concat_kernel,
cl::NDRange(0, 0, i * block_size),
cl::NDRange(gws[0], gws[1], gws2),
cl::NDRange(params[0], params[1], params[2]), nullptr, &event);
MACE_CHECK(error == CL_SUCCESS) << "Error code: " << error;
timer->AccumulateTiming();
}
}
return error;
};
std::stringstream ss;
......
......@@ -96,7 +96,7 @@ void Conv1x1(const Tensor *input,
const uint32_t gws[3] = {static_cast<uint32_t>(channel_blocks),
static_cast<uint32_t>(width_blocks),
static_cast<uint32_t>(height * batch)};
const std::vector<uint32_t> lws = {8, 15, 8};
std::vector<uint32_t> lws = {8, 15, 8, 1};
const uint32_t kwg_size = runtime->GetKernelMaxWorkGroupSize(conv_2d_kernel);
auto params_generator = [&]() -> std::vector<std::vector<uint32_t>> {
std::vector<uint32_t> local_ws(3, 0);
......@@ -105,33 +105,66 @@ void Conv1x1(const Tensor *input,
local_ws[2] = std::min<uint32_t>(height * batch,
kwg_size / (local_ws[0] * local_ws[1]));
return {
{local_ws[0], local_ws[1], local_ws[2]},
{kwg_size / 16, 4, 4},
{kwg_size / 32, 4, 8},
{kwg_size / 32, 8, 4},
{kwg_size / 64, 8, 8},
{kwg_size / 64, 16, 4},
{kwg_size / 128, 8, 16},
{kwg_size / 128, 16, 8},
{kwg_size / 128, 32, 4},
{1, kwg_size / 32, 32},
{1, kwg_size / 64, 64},
{1, kwg_size / 128, 128},
{3, 15, 9},
{7, 15, 9},
{9, 7, 15},
{15, 7, 9},
{1, kwg_size, 1},
{4, 15, 8}, // SNPE size
{local_ws[0], local_ws[1], local_ws[2], 1},
{kwg_size / 16, 4, 4, 1},
{kwg_size / 32, 4, 8, 1},
{kwg_size / 32, 8, 4, 1},
{kwg_size / 64, 8, 8, 1},
{kwg_size / 64, 16, 4, 1},
{kwg_size / 128, 8, 16, 1},
{kwg_size / 128, 16, 8, 1},
{kwg_size / 128, 32, 4, 1},
{1, kwg_size / 32, 32, 1},
{1, kwg_size / 64, 64, 1},
{1, kwg_size / 128, 128, 1},
{3, 15, 9, 1},
{7, 15, 9, 1},
{9, 7, 15, 1},
{15, 7, 9, 1},
{1, kwg_size, 1, 1},
{4, 15, 8, 1}, // SNPE size
};
};
cl::Event event;
auto func = [&](const std::vector<uint32_t> &params) -> cl_int {
cl_int error = runtime->command_queue().enqueueNDRangeKernel(
conv_2d_kernel, cl::NullRange, cl::NDRange(gws[0], gws[1], gws[2]),
cl::NDRange(params[0], params[1], params[2]), nullptr, &event);
MACE_CHECK(error == CL_SUCCESS) << "Error code: " << error;
auto func = [&](std::vector<uint32_t> &params, Timer *timer) -> cl_int {
cl_int error = CL_SUCCESS;
if (timer == nullptr) {
uint32_t num_blocks = params.back();
const uint32_t block_size = gws[2] / num_blocks;
if (gws[2] % num_blocks > 0) num_blocks++;
for (uint32_t i = 0; i < num_blocks; ++i) {
uint32_t gws2 = (i == num_blocks - 1) ? (gws[2] - (i * block_size)) : block_size;
error = runtime->command_queue().enqueueNDRangeKernel(
conv_2d_kernel,
cl::NDRange(0, 0, i * block_size),
cl::NDRange(gws[0], gws[1], gws2),
cl::NDRange(params[0], params[1], params[2]), nullptr, &event);
MACE_CHECK(error == CL_SUCCESS) << "Error code: " << error;
}
} else {
timer->StartTiming();
error = runtime->command_queue().enqueueNDRangeKernel(
conv_2d_kernel, cl::NullRange, cl::NDRange(gws[0], gws[1], gws[2]),
cl::NDRange(params[0], params[1], params[2]), nullptr, &event);
MACE_CHECK(error == CL_SUCCESS) << "Error code: " << error;
timer->StopTiming();
double elapse_time = timer->ElapsedMicros();
timer->ClearTiming();
uint32_t num_blocks = std::min(static_cast<uint32_t>(elapse_time / kMaxKernelExeTime) + 1, gws[2]);
params.back() = num_blocks;
const uint32_t block_size = gws[2] / num_blocks;
if (gws[2] % num_blocks > 0) num_blocks++;
for (uint32_t i = 0; i < num_blocks; ++i) {
uint32_t gws2 = (i == num_blocks - 1) ? (gws[2] - (i * block_size)) : block_size;
error = runtime->command_queue().enqueueNDRangeKernel(
conv_2d_kernel,
cl::NDRange(0, 0, i * block_size),
cl::NDRange(gws[0], gws[1], gws2),
cl::NDRange(params[0], params[1], params[2]), nullptr, &event);
MACE_CHECK(error == CL_SUCCESS) << "Error code: " << error;
timer->AccumulateTiming();
}
}
return error;
};
std::string tuning_key =
......
......@@ -94,7 +94,7 @@ static void Conv2d3x3S12(const Tensor *input,
const uint32_t gws[3] = {static_cast<uint32_t>(channel_blocks),
static_cast<uint32_t>(width_blocks),
static_cast<uint32_t>(height * batch)};
const std::vector<uint32_t> lws = {4, 15, 8};
std::vector<uint32_t> lws = {4, 15, 8, 1};
const uint32_t kwg_size = runtime->GetKernelMaxWorkGroupSize(conv_2d_kernel);
auto params_generator = [&]() -> std::vector<std::vector<uint32_t>> {
std::vector<uint32_t> local_ws(3, 0);
......@@ -103,34 +103,66 @@ static void Conv2d3x3S12(const Tensor *input,
local_ws[2] = std::min<uint32_t>(height * batch,
kwg_size / (local_ws[0] * local_ws[1]));
return {
{local_ws[0], local_ws[1], local_ws[2]},
{local_ws[2], local_ws[1], local_ws[0]},
{kwg_size / 16, 4, 4},
{kwg_size / 32, 4, 8},
{kwg_size / 32, 8, 4},
{kwg_size / 64, 8, 8},
{kwg_size / 64, 16, 4},
{kwg_size / 128, 8, 16},
{kwg_size / 128, 16, 8},
{kwg_size / 128, 32, 4},
{1, kwg_size / 32, 32},
{1, kwg_size / 64, 64},
{1, kwg_size / 128, 128},
{3, 15, 9},
{7, 15, 9},
{9, 7, 15},
{15, 7, 9},
{1, kwg_size, 1},
{4, 15, 8}, // SNPE size
{local_ws[0], local_ws[1], local_ws[2], 1},
{kwg_size / 16, 4, 4, 1},
{kwg_size / 32, 4, 8, 1},
{kwg_size / 32, 8, 4, 1},
{kwg_size / 64, 8, 8, 1},
{kwg_size / 64, 16, 4, 1},
{kwg_size / 128, 8, 16, 1},
{kwg_size / 128, 16, 8, 1},
{kwg_size / 128, 32, 4, 1},
{1, kwg_size / 32, 32, 1},
{1, kwg_size / 64, 64, 1},
{1, kwg_size / 128, 128, 1},
{3, 15, 9, 1},
{7, 15, 9, 1},
{9, 7, 15, 1},
{15, 7, 9, 1},
{1, kwg_size, 1, 1},
{4, 15, 8, 1}, // SNPE size
};
};
cl::Event event;
auto func = [&](const std::vector<uint32_t> &params) -> cl_int {
cl_int error = runtime->command_queue().enqueueNDRangeKernel(
conv_2d_kernel, cl::NullRange, cl::NDRange(gws[0], gws[1], gws[2]),
cl::NDRange(params[0], params[1], params[2]), nullptr, &event);
MACE_CHECK(error == CL_SUCCESS) << "Error code: " << error;
auto func = [&](std::vector<uint32_t> &params, Timer *timer) -> cl_int {
cl_int error = CL_SUCCESS;
if (timer == nullptr) {
uint32_t num_blocks = params.back();
const uint32_t block_size = gws[2] / num_blocks;
if (gws[2] % num_blocks > 0) num_blocks++;
for (uint32_t i = 0; i < num_blocks; ++i) {
uint32_t gws2 = (i == num_blocks - 1) ? (gws[2] - (i * block_size)) : block_size;
error = runtime->command_queue().enqueueNDRangeKernel(
conv_2d_kernel,
cl::NDRange(0, 0, i * block_size),
cl::NDRange(gws[0], gws[1], gws2),
cl::NDRange(params[0], params[1], params[2]), nullptr, &event);
MACE_CHECK(error == CL_SUCCESS) << "Error code: " << error;
}
} else {
timer->StartTiming();
error = runtime->command_queue().enqueueNDRangeKernel(
conv_2d_kernel, cl::NullRange, cl::NDRange(gws[0], gws[1], gws[2]),
cl::NDRange(params[0], params[1], params[2]), nullptr, &event);
MACE_CHECK(error == CL_SUCCESS) << "Error code: " << error;
timer->StopTiming();
double elapse_time = timer->ElapsedMicros();
timer->ClearTiming();
uint32_t num_blocks = std::min(static_cast<uint32_t>(elapse_time / kMaxKernelExeTime) + 1, gws[2]);
params.back() = num_blocks;
const uint32_t block_size = gws[2] / num_blocks;
if (gws[2] % num_blocks > 0) num_blocks++;
for (uint32_t i = 0; i < num_blocks; ++i) {
uint32_t gws2 = (i == num_blocks - 1) ? (gws[2] - (i * block_size)) : block_size;
error = runtime->command_queue().enqueueNDRangeKernel(
conv_2d_kernel,
cl::NDRange(0, 0, i * block_size),
cl::NDRange(gws[0], gws[1], gws2),
cl::NDRange(params[0], params[1], params[2]), nullptr, &event);
MACE_CHECK(error == CL_SUCCESS) << "Error code: " << error;
timer->AccumulateTiming();
}
}
return error;
};
std::string tuning_key =
......
......@@ -96,7 +96,7 @@ void Conv2dOpencl(const Tensor *input,
const uint32_t gws[3] = {static_cast<uint32_t>(channel_blocks),
static_cast<uint32_t>(width_blocks),
static_cast<uint32_t>(height * batch)};
const std::vector<uint32_t> lws = {8, 16, 8};
std::vector<uint32_t> lws = {8, 16, 8, 1};
const uint32_t kwg_size = runtime->GetKernelMaxWorkGroupSize(conv_2d_kernel);
auto params_generator = [&]() -> std::vector<std::vector<uint32_t>> {
std::vector<uint32_t> local_ws(3, 0);
......@@ -105,34 +105,66 @@ void Conv2dOpencl(const Tensor *input,
local_ws[2] = std::min<uint32_t>(height * batch,
kwg_size / (local_ws[0] * local_ws[1]));
return {
{local_ws[0], local_ws[1], local_ws[2]},
{local_ws[2], local_ws[1], local_ws[0]},
{kwg_size / 16, 4, 4},
{kwg_size / 32, 4, 8},
{kwg_size / 32, 8, 4},
{kwg_size / 64, 8, 8},
{kwg_size / 64, 16, 4},
{kwg_size / 128, 8, 16},
{kwg_size / 128, 16, 8},
{kwg_size / 128, 32, 4},
{1, kwg_size / 32, 32},
{1, kwg_size / 64, 64},
{1, kwg_size / 128, 128},
{3, 15, 9},
{7, 15, 9},
{9, 7, 15},
{15, 7, 9},
{1, kwg_size, 1},
{4, 15, 8}, // SNPE size
{local_ws[0], local_ws[1], local_ws[2], 1},
{kwg_size / 16, 4, 4, 1},
{kwg_size / 32, 4, 8, 1},
{kwg_size / 32, 8, 4, 1},
{kwg_size / 64, 8, 8, 1},
{kwg_size / 64, 16, 4, 1},
{kwg_size / 128, 8, 16, 1},
{kwg_size / 128, 16, 8, 1},
{kwg_size / 128, 32, 4, 1},
{1, kwg_size / 32, 32, 1},
{1, kwg_size / 64, 64, 1},
{1, kwg_size / 128, 128, 1},
{3, 15, 9, 1},
{7, 15, 9, 1},
{9, 7, 15, 1},
{15, 7, 9, 1},
{1, kwg_size, 1, 1},
{4, 15, 8, 1}, // SNPE size
};
};
cl::Event event;
auto func = [&](const std::vector<uint32_t> &params) -> cl_int {
cl_int error = runtime->command_queue().enqueueNDRangeKernel(
conv_2d_kernel, cl::NullRange, cl::NDRange(gws[0], gws[1], gws[2]),
cl::NDRange(params[0], params[1], params[2]), nullptr, &event);
MACE_CHECK(error == CL_SUCCESS) << "Error code: " << error;
auto func = [&](std::vector<uint32_t> &params, Timer *timer) -> cl_int {
cl_int error = CL_SUCCESS;
if (timer == nullptr) {
uint32_t num_blocks = params.back();
const uint32_t block_size = gws[2] / num_blocks;
if (gws[2] % num_blocks > 0) num_blocks++;
for (uint32_t i = 0; i < num_blocks; ++i) {
uint32_t gws2 = (i == num_blocks - 1) ? (gws[2] - (i * block_size)) : block_size;
error = runtime->command_queue().enqueueNDRangeKernel(
conv_2d_kernel,
cl::NDRange(0, 0, i * block_size),
cl::NDRange(gws[0], gws[1], gws2),
cl::NDRange(params[0], params[1], params[2]), nullptr, &event);
MACE_CHECK(error == CL_SUCCESS) << "Error code: " << error;
}
} else {
timer->StartTiming();
error = runtime->command_queue().enqueueNDRangeKernel(
conv_2d_kernel, cl::NullRange, cl::NDRange(gws[0], gws[1], gws[2]),
cl::NDRange(params[0], params[1], params[2]), nullptr, &event);
MACE_CHECK(error == CL_SUCCESS) << "Error code: " << error;
timer->StopTiming();
double elapse_time = timer->ElapsedMicros();
timer->ClearTiming();
uint32_t num_blocks = std::min(static_cast<uint32_t>(elapse_time / kMaxKernelExeTime) + 1, gws[2]);
params.back() = num_blocks;
const uint32_t block_size = gws[2] / num_blocks;
if (gws[2] % num_blocks > 0) num_blocks++;
for (uint32_t i = 0; i < num_blocks; ++i) {
uint32_t gws2 = (i == num_blocks - 1) ? (gws[2] - (i * block_size)) : block_size;
error = runtime->command_queue().enqueueNDRangeKernel(
conv_2d_kernel,
cl::NDRange(0, 0, i * block_size),
cl::NDRange(gws[0], gws[1], gws2),
cl::NDRange(params[0], params[1], params[2]), nullptr, &event);
MACE_CHECK(error == CL_SUCCESS) << "Error code: " << error;
timer->AccumulateTiming();
}
}
return error;
};
std::string tuning_key =
......
......@@ -14,6 +14,8 @@
namespace mace {
namespace kernels {
const float kMaxKernelExeTime = 1000.0; // microseconds
enum BufferType {
FILTER = 0,
IN_OUT= 1,
......
......@@ -60,7 +60,7 @@ static void Pooling(const Tensor *input,
static_cast<uint32_t>(batch * out_height),
};
const uint32_t kwg_size = runtime->GetKernelMaxWorkGroupSize(pooling_kernel);
std::vector<uint32_t> lws(3, 0);
std::vector<uint32_t> lws(4, 1);
lws[0] = std::min<uint32_t>(channel_blocks, kwg_size);
lws[1] = std::min<uint32_t>(out_width, kwg_size / lws[0]);
lws[2] = std::min<uint32_t>(out_height * batch, kwg_size / (lws[0] * lws[1]));
......@@ -69,35 +69,67 @@ static void Pooling(const Tensor *input,
local_ws[0] = std::min<uint32_t>(channel_blocks, kwg_size);
local_ws[1] = std::min<uint32_t>(out_width, kwg_size / local_ws[0]);
local_ws[2] = std::min<uint32_t>(out_height * batch, kwg_size / (local_ws[0] * local_ws[1]));
return {{local_ws[0], local_ws[1], local_ws[2]},
{kwg_size / 16, 4, 4},
{kwg_size / 32, 4, 8},
{kwg_size / 32, 8, 4},
{kwg_size / 64, 8, 8},
{kwg_size / 64, 16, 4},
{kwg_size / 128, 8, 16},
{kwg_size / 128, 16, 8},
{kwg_size / 128, 32, 4},
{1, kwg_size / 32, 32},
{1, kwg_size / 64, 64},
{1, kwg_size / 128, 128},
{3, 15, 9},
{7, 15, 9},
{9, 7, 15},
{15, 7, 9},
{1, kwg_size, 1},
{4, 15, 8}, //SNPE size
return {
{local_ws[0], local_ws[1], local_ws[2], 1},
{kwg_size / 16, 4, 4, 1},
{kwg_size / 32, 4, 8, 1},
{kwg_size / 32, 8, 4, 1},
{kwg_size / 64, 8, 8, 1},
{kwg_size / 64, 16, 4, 1},
{kwg_size / 128, 8, 16, 1},
{kwg_size / 128, 16, 8, 1},
{kwg_size / 128, 32, 4, 1},
{1, kwg_size / 32, 32, 1},
{1, kwg_size / 64, 64, 1},
{1, kwg_size / 128, 128, 1},
{3, 15, 9, 1},
{7, 15, 9, 1},
{9, 7, 15, 1},
{15, 7, 9, 1},
{1, kwg_size, 1, 1},
{4, 15, 8, 1}, // SNPE size
};
};
cl::Event event;
auto func = [&](const std::vector<uint32_t> &params) -> cl_int {
cl_int error = runtime->command_queue().enqueueNDRangeKernel(
pooling_kernel, cl::NullRange,
cl::NDRange(gws[0], gws[1], gws[2]),
cl::NDRange(params[0], params[1], params[2]),
nullptr, &event);
MACE_CHECK(error == CL_SUCCESS) << "Error code: " << error;
auto func = [&](std::vector<uint32_t> &params, Timer *timer) -> cl_int {
cl_int error = CL_SUCCESS;
if (timer == nullptr) {
uint32_t num_blocks = params.back();
const uint32_t block_size = gws[2] / num_blocks;
if (gws[2] % num_blocks > 0) num_blocks++;
for (uint32_t i = 0; i < num_blocks; ++i) {
uint32_t gws2 = (i == num_blocks - 1) ? (gws[2] - (i * block_size)) : block_size;
error = runtime->command_queue().enqueueNDRangeKernel(
pooling_kernel,
cl::NDRange(0, 0, i * block_size),
cl::NDRange(gws[0], gws[1], gws2),
cl::NDRange(params[0], params[1], params[2]), nullptr, &event);
MACE_CHECK(error == CL_SUCCESS) << "Error code: " << error;
}
} else {
timer->StartTiming();
error = runtime->command_queue().enqueueNDRangeKernel(
pooling_kernel, cl::NullRange, cl::NDRange(gws[0], gws[1], gws[2]),
cl::NDRange(params[0], params[1], params[2]), nullptr, &event);
MACE_CHECK(error == CL_SUCCESS) << "Error code: " << error;
timer->StopTiming();
double elapse_time = timer->ElapsedMicros();
timer->ClearTiming();
uint32_t num_blocks = std::min(static_cast<uint32_t>(elapse_time / kMaxKernelExeTime) + 1, gws[2]);
params.back() = num_blocks;
const uint32_t block_size = gws[2] / num_blocks;
if (gws[2] % num_blocks > 0) num_blocks++;
for (uint32_t i = 0; i < num_blocks; ++i) {
uint32_t gws2 = (i == num_blocks - 1) ? (gws[2] - (i * block_size)) : block_size;
error = runtime->command_queue().enqueueNDRangeKernel(
pooling_kernel,
cl::NDRange(0, 0, i * block_size),
cl::NDRange(gws[0], gws[1], gws2),
cl::NDRange(params[0], params[1], params[2]), nullptr, &event);
MACE_CHECK(error == CL_SUCCESS) << "Error code: " << error;
timer->AccumulateTiming();
}
}
return error;
};
std::stringstream ss;
......
......@@ -59,38 +59,74 @@ void ResizeBilinearFunctor<DeviceType::OPENCL, T>::operator()(
const uint32_t gws[3] = {static_cast<uint32_t>(channel_blocks),
static_cast<uint32_t>(out_width),
static_cast<uint32_t>(out_height * batch)};
const std::vector<uint32_t> lws = {8, 16, 8};
std::vector<uint32_t> lws = {8, 16, 8, 1};
const uint32_t kwg_size = runtime->GetKernelMaxWorkGroupSize(rb_kernel);
auto params_generator = [&]() -> std::vector<std::vector<uint32_t>> {
std::vector<uint32_t> local_ws(3, 0);
local_ws[0] = std::min<uint32_t>(channel_blocks, kwg_size);
local_ws[1] = std::min<uint32_t>(out_width, kwg_size / local_ws[0]);
local_ws[2] = std::min<uint32_t>(out_height * batch, kwg_size / (local_ws[0] * local_ws[1]));
return {{local_ws[0], local_ws[1], local_ws[2]},
{kwg_size / 16, 4, 4},
{kwg_size / 32, 4, 8},
{kwg_size / 32, 8, 4},
{kwg_size / 64, 8, 8},
{kwg_size / 64, 16, 4},
{kwg_size / 128, 8, 16},
{kwg_size / 128, 16, 8},
{kwg_size / 128, 32, 4},
{1, kwg_size / 32, 32},
{1, kwg_size / 64, 64},
{1, kwg_size / 128, 128},
{1, kwg_size, 1},
{4, 15, 8}, //SNPE size
return {
{local_ws[0], local_ws[1], local_ws[2], 1},
{kwg_size / 16, 4, 4, 1},
{kwg_size / 32, 4, 8, 1},
{kwg_size / 32, 8, 4, 1},
{kwg_size / 64, 8, 8, 1},
{kwg_size / 64, 16, 4, 1},
{kwg_size / 128, 8, 16, 1},
{kwg_size / 128, 16, 8, 1},
{kwg_size / 128, 32, 4, 1},
{1, kwg_size / 32, 32, 1},
{1, kwg_size / 64, 64, 1},
{1, kwg_size / 128, 128, 1},
{3, 15, 9, 1},
{7, 15, 9, 1},
{9, 7, 15, 1},
{15, 7, 9, 1},
{1, kwg_size, 1, 1},
{4, 15, 8, 1}, // SNPE size
};
};
cl::Event event;
auto func = [&](const std::vector<uint32_t> &params) -> cl_int {
cl_int error = runtime->command_queue().enqueueNDRangeKernel(
rb_kernel, cl::NullRange,
cl::NDRange(gws[0], gws[1], gws[2]),
cl::NDRange(params[0], params[1], params[2]),
nullptr, &event);
MACE_CHECK(error == CL_SUCCESS) << "Error code: " << error;
auto func = [&](std::vector<uint32_t> &params, Timer *timer) -> cl_int {
cl_int error = CL_SUCCESS;
if (timer == nullptr) {
uint32_t num_blocks = params.back();
const uint32_t block_size = gws[2] / num_blocks;
if (gws[2] % num_blocks > 0) num_blocks++;
for (uint32_t i = 0; i < num_blocks; ++i) {
uint32_t gws2 = (i == num_blocks - 1) ? (gws[2] - (i * block_size)) : block_size;
error = runtime->command_queue().enqueueNDRangeKernel(
rb_kernel,
cl::NDRange(0, 0, i * block_size),
cl::NDRange(gws[0], gws[1], gws2),
cl::NDRange(params[0], params[1], params[2]), nullptr, &event);
MACE_CHECK(error == CL_SUCCESS) << "Error code: " << error;
}
} else {
timer->StartTiming();
error = runtime->command_queue().enqueueNDRangeKernel(
rb_kernel, cl::NullRange, cl::NDRange(gws[0], gws[1], gws[2]),
cl::NDRange(params[0], params[1], params[2]), nullptr, &event);
MACE_CHECK(error == CL_SUCCESS) << "Error code: " << error;
timer->StopTiming();
double elapse_time = timer->ElapsedMicros();
timer->ClearTiming();
uint32_t num_blocks = std::min(static_cast<uint32_t>(elapse_time / kMaxKernelExeTime) + 1, gws[2]);
params.back() = num_blocks;
const uint32_t block_size = gws[2] / num_blocks;
if (gws[2] % num_blocks > 0) num_blocks++;
for (uint32_t i = 0; i < num_blocks; ++i) {
uint32_t gws2 = (i == num_blocks - 1) ? (gws[2] - (i * block_size)) : block_size;
error = runtime->command_queue().enqueueNDRangeKernel(
rb_kernel,
cl::NDRange(0, 0, i * block_size),
cl::NDRange(gws[0], gws[1], gws2),
cl::NDRange(params[0], params[1], params[2]), nullptr, &event);
MACE_CHECK(error == CL_SUCCESS) << "Error code: " << error;
timer->AccumulateTiming();
}
}
return error;
};
std::stringstream ss;
......
......@@ -41,42 +41,74 @@ void SoftmaxFunctor<DeviceType::OPENCL, T>::operator()(const Tensor *logits,
const uint32_t gws[3] = {static_cast<uint32_t>(channel_blocks),
static_cast<uint32_t>(width),
static_cast<uint32_t>(height * batch)};
const std::vector<uint32_t> lws = {8, 16, 8};
std::vector<uint32_t> lws = {8, 16, 8, 1};
const uint32_t kwg_size = runtime->GetKernelMaxWorkGroupSize(softmax_kernel);
auto params_generator = [&]() -> std::vector<std::vector<uint32_t>> {
std::vector<uint32_t> local_ws(3, 0);
local_ws[0] = std::min<uint32_t>(channel_blocks, kwg_size);
local_ws[1] = std::min<uint32_t>(width, kwg_size / local_ws[0]);
local_ws[2] = std::min<uint32_t>(height * batch, kwg_size / (local_ws[0] * local_ws[1]));
return {{4, 15, 8}, //SNPE size
{local_ws[0], local_ws[1], local_ws[2]},
{local_ws[2], local_ws[1], local_ws[0]},
{kwg_size / 16, 4, 4},
{kwg_size / 32, 4, 8},
{kwg_size / 32, 8, 4},
{kwg_size / 64, 8, 8},
{kwg_size / 64, 16, 4},
{kwg_size / 128, 8, 16},
{kwg_size / 128, 16, 8},
{kwg_size / 128, 32, 4},
{1, kwg_size / 32, 32},
{1, kwg_size / 64, 64},
{1, kwg_size / 128, 128},
{3, 15, 9},
{7, 15, 9},
{9, 7, 15},
{15, 7, 9},
{1, kwg_size, 1}};
return {
{local_ws[0], local_ws[1], local_ws[2], 1},
{kwg_size / 16, 4, 4, 1},
{kwg_size / 32, 4, 8, 1},
{kwg_size / 32, 8, 4, 1},
{kwg_size / 64, 8, 8, 1},
{kwg_size / 64, 16, 4, 1},
{kwg_size / 128, 8, 16, 1},
{kwg_size / 128, 16, 8, 1},
{kwg_size / 128, 32, 4, 1},
{1, kwg_size / 32, 32, 1},
{1, kwg_size / 64, 64, 1},
{1, kwg_size / 128, 128, 1},
{3, 15, 9, 1},
{7, 15, 9, 1},
{9, 7, 15, 1},
{15, 7, 9, 1},
{1, kwg_size, 1, 1},
{4, 15, 8, 1}, // SNPE size
};
};
cl::Event event;
auto func = [&](const std::vector<uint32_t> &params) -> cl_int {
cl_int error = runtime->command_queue().enqueueNDRangeKernel(
softmax_kernel, cl::NullRange,
cl::NDRange(gws[0], gws[1], gws[2]),
cl::NDRange(params[0], params[1], params[2]),
nullptr, &event);
MACE_CHECK(error == CL_SUCCESS) << "Error code: " << error;
auto func = [&](std::vector<uint32_t> &params, Timer *timer) -> cl_int {
cl_int error = CL_SUCCESS;
if (timer == nullptr) {
uint32_t num_blocks = params.back();
const uint32_t block_size = gws[2] / num_blocks;
if (gws[2] % num_blocks > 0) num_blocks++;
for (uint32_t i = 0; i < num_blocks; ++i) {
uint32_t gws2 = (i == num_blocks - 1) ? (gws[2] - (i * block_size)) : block_size;
error = runtime->command_queue().enqueueNDRangeKernel(
softmax_kernel,
cl::NDRange(0, 0, i * block_size),
cl::NDRange(gws[0], gws[1], gws2),
cl::NDRange(params[0], params[1], params[2]), nullptr, &event);
MACE_CHECK(error == CL_SUCCESS) << "Error code: " << error;
}
} else {
timer->StartTiming();
error = runtime->command_queue().enqueueNDRangeKernel(
softmax_kernel, cl::NullRange, cl::NDRange(gws[0], gws[1], gws[2]),
cl::NDRange(params[0], params[1], params[2]), nullptr, &event);
MACE_CHECK(error == CL_SUCCESS) << "Error code: " << error;
timer->StopTiming();
double elapse_time = timer->ElapsedMicros();
timer->ClearTiming();
uint32_t num_blocks = std::min(static_cast<uint32_t>(elapse_time / kMaxKernelExeTime) + 1, gws[2]);
params.back() = num_blocks;
const uint32_t block_size = gws[2] / num_blocks;
if (gws[2] % num_blocks > 0) num_blocks++;
for (uint32_t i = 0; i < num_blocks; ++i) {
uint32_t gws2 = (i == num_blocks - 1) ? (gws[2] - (i * block_size)) : block_size;
error = runtime->command_queue().enqueueNDRangeKernel(
softmax_kernel,
cl::NDRange(0, 0, i * block_size),
cl::NDRange(gws[0], gws[1], gws2),
cl::NDRange(params[0], params[1], params[2]), nullptr, &event);
MACE_CHECK(error == CL_SUCCESS) << "Error code: " << error;
timer->AccumulateTiming();
}
}
return error;
};
std::stringstream ss;
......
......@@ -61,36 +61,74 @@ void SpaceToBatchFunctor<DeviceType::OPENCL, T>::operator()(Tensor *space_tensor
const uint32_t gws[3] = {chan_blk,
static_cast<uint32_t>(batch_tensor->dim(2)),
static_cast<uint32_t>(batch_tensor->dim(0) * batch_tensor->dim(1))};
const std::vector<uint32_t> lws = {8, 16, 8};
std::vector<uint32_t> lws = {8, 16, 8, 1};
const uint32_t kwg_size = runtime->GetKernelMaxWorkGroupSize(s2b_kernel);
auto params_generator = [&]() -> std::vector<std::vector<uint32_t>> {
std::vector<uint32_t> local_ws(3, 0);
local_ws[0] = std::min<uint32_t>(chan_blk, kwg_size);
local_ws[1] = std::min<uint32_t>(32, kwg_size / local_ws[0]);
local_ws[2] = std::min<uint32_t>(32, kwg_size / (local_ws[0] * local_ws[1]));
return {{local_ws[0], local_ws[1], local_ws[2]},
{4, 32, 8},
{4, 64, 4},
{4, 128, 2},
{8, 16, 8},
{8, 32, 4},
{8, 64, 2},
{16, 8, 8},
{16, 16, 4},
{16, 32, 2},
{32, 8, 4},
{32, 16, 2},
{64, 4, 4}};
return {
{local_ws[0], local_ws[1], local_ws[2], 1},
{kwg_size / 16, 4, 4, 1},
{kwg_size / 32, 4, 8, 1},
{kwg_size / 32, 8, 4, 1},
{kwg_size / 64, 8, 8, 1},
{kwg_size / 64, 16, 4, 1},
{kwg_size / 128, 8, 16, 1},
{kwg_size / 128, 16, 8, 1},
{kwg_size / 128, 32, 4, 1},
{1, kwg_size / 32, 32, 1},
{1, kwg_size / 64, 64, 1},
{1, kwg_size / 128, 128, 1},
{3, 15, 9, 1},
{7, 15, 9, 1},
{9, 7, 15, 1},
{15, 7, 9, 1},
{1, kwg_size, 1, 1},
{4, 15, 8, 1}, // SNPE size
};
};
cl::Event event;
auto func = [&](const std::vector<uint32_t> &params) -> cl_int {
cl_int error = runtime->command_queue().enqueueNDRangeKernel(
s2b_kernel, cl::NullRange,
cl::NDRange(gws[0], gws[1], gws[2]),
cl::NDRange(params[0], params[1], params[2]),
nullptr, &event);
MACE_CHECK(error == CL_SUCCESS) << "Error code: " << error;
auto func = [&](std::vector<uint32_t> &params, Timer *timer) -> cl_int {
cl_int error = CL_SUCCESS;
if (timer == nullptr) {
uint32_t num_blocks = params.back();
const uint32_t block_size = gws[2] / num_blocks;
if (gws[2] % num_blocks > 0) num_blocks++;
for (uint32_t i = 0; i < num_blocks; ++i) {
uint32_t gws2 = (i == num_blocks - 1) ? (gws[2] - (i * block_size)) : block_size;
error = runtime->command_queue().enqueueNDRangeKernel(
s2b_kernel,
cl::NDRange(0, 0, i * block_size),
cl::NDRange(gws[0], gws[1], gws2),
cl::NDRange(params[0], params[1], params[2]), nullptr, &event);
MACE_CHECK(error == CL_SUCCESS) << "Error code: " << error;
}
} else {
timer->StartTiming();
error = runtime->command_queue().enqueueNDRangeKernel(
s2b_kernel, cl::NullRange, cl::NDRange(gws[0], gws[1], gws[2]),
cl::NDRange(params[0], params[1], params[2]), nullptr, &event);
MACE_CHECK(error == CL_SUCCESS) << "Error code: " << error;
timer->StopTiming();
double elapse_time = timer->ElapsedMicros();
timer->ClearTiming();
uint32_t num_blocks = std::min(static_cast<uint32_t>(elapse_time / kMaxKernelExeTime) + 1, gws[2]);
params.back() = num_blocks;
const uint32_t block_size = gws[2] / num_blocks;
if (gws[2] % num_blocks > 0) num_blocks++;
for (uint32_t i = 0; i < num_blocks; ++i) {
uint32_t gws2 = (i == num_blocks - 1) ? (gws[2] - (i * block_size)) : block_size;
error = runtime->command_queue().enqueueNDRangeKernel(
s2b_kernel,
cl::NDRange(0, 0, i * block_size),
cl::NDRange(gws[0], gws[1], gws2),
cl::NDRange(params[0], params[1], params[2]), nullptr, &event);
MACE_CHECK(error == CL_SUCCESS) << "Error code: " << error;
timer->AccumulateTiming();
}
}
return error;
};
std::stringstream ss;
......
......@@ -10,29 +10,50 @@
namespace mace {
class Timer {
public:
virtual void StartTiming() = 0;
virtual void StopTiming() = 0;
virtual double ElapsedMicros() = 0;
public:
virtual void StartTiming() = 0;
virtual void StopTiming() = 0;
virtual void AccumulateTiming() = 0;
virtual void ClearTiming() = 0;
virtual double ElapsedMicros() = 0;
virtual double AccumulatedMicros() = 0;
};
class WallClockTimer : public Timer {
public:
void StartTiming() override {
start_micros_ = mace::utils::NowMicros();
}
void StopTiming() override {
stop_micros_ = mace::utils::NowMicros();
}
double ElapsedMicros() override {
return stop_micros_ - start_micros_;
}
private:
double start_micros_;
double stop_micros_;
public:
WallClockTimer() : accumulated_micros_(0) {}
void StartTiming() override {
start_micros_ = mace::utils::NowMicros();
}
void StopTiming() override {
stop_micros_ = mace::utils::NowMicros();
}
void AccumulateTiming() override {
StopTiming();
accumulated_micros_ += stop_micros_ - start_micros_;
}
void ClearTiming() override {
start_micros_ = 0;
stop_micros_ = 0;
accumulated_micros_ = 0;
}
double ElapsedMicros() override {
return stop_micros_ - start_micros_;
}
double AccumulatedMicros() override {
return accumulated_micros_;
}
private:
double start_micros_;
double stop_micros_;
double accumulated_micros_;
};
} // namespace mace
......
......@@ -41,10 +41,10 @@ class Tuner {
template <typename RetType>
RetType TuneOrRun(
const std::string param_key,
const std::vector<param_type> &default_param,
std::vector<param_type> &default_param,
const std::function<std::vector<std::vector<param_type>>()>
&param_generator,
const std::function<RetType(const std::vector<param_type> &)> &func,
const std::function<RetType(std::vector<param_type> &, Timer *)> &func,
Timer *timer) {
std::string obfucated_param_key = MACE_OBFUSCATE_SYMBOL(param_key);
if (IsTuning() && param_generator != nullptr) {
......@@ -60,12 +60,12 @@ class Tuner {
if (param_table_.find(obfucated_param_key) != param_table_.end()) {
VLOG(1) << param_key << ": "
<< internal::MakeString(param_table_[obfucated_param_key]);
return func(param_table_[obfucated_param_key]);
return func(param_table_[obfucated_param_key], nullptr);
} else {
#ifndef MACE_DISABLE_NO_TUNING_WARNING
LOG(WARNING) << "Fallback to default parameter: " << param_key;
#endif
return func(default_param);
return func(default_param, nullptr);
}
}
}
......@@ -119,18 +119,16 @@ class Tuner {
template <typename RetType>
inline RetType Run(
const std::function<RetType(const std::vector<param_type> &)> &func,
const std::vector<param_type> &params,
const std::function<RetType(std::vector<param_type> &, Timer *)> &func,
std::vector<param_type> &params,
Timer *timer,
int num_runs,
double *time_us) {
RetType res;
int64_t total_time_us = 0;
for (int i = 0; i < num_runs; ++i) {
timer->StartTiming();
res = func(params);
timer->StopTiming();
total_time_us += timer->ElapsedMicros();
res = func(params, timer);
total_time_us += timer->AccumulatedMicros();
}
*time_us = total_time_us * 1.0 / num_runs;
......@@ -141,13 +139,13 @@ class Tuner {
inline RetType Tune(
const std::function<std::vector<std::vector<param_type>>()>
&param_generator,
const std::function<RetType(const std::vector<param_type> &)> &func,
const std::function<RetType(std::vector<param_type> &, Timer *)> &func,
Timer *timer,
std::vector<param_type> *opt_params) {
RetType res;
double opt_time = std::numeric_limits<double>::max();
auto params = param_generator();
for (const auto &param : params) {
for (auto param : params) {
double tmp_time = 0.0;
// warm up
Run<RetType>(func, param, timer, 2, &tmp_time);
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册