Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
慢慢CG
Mace
提交
5bbd271e
Mace
项目概览
慢慢CG
/
Mace
与 Fork 源项目一致
Fork自
Xiaomi / Mace
通知
1
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
DevOps
流水线
流水线任务
计划
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
Mace
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
DevOps
DevOps
流水线
流水线任务
计划
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
流水线任务
提交
Issue看板
提交
5bbd271e
编写于
11月 15, 2017
作者:
L
liuqi
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Finish conv 1x1 with stride 2 opencl kernel.
上级
446780e5
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
99 addition
and
42 deletion
+99
-42
mace/kernels/opencl/cl/conv_2d_1x1.cl
mace/kernels/opencl/cl/conv_2d_1x1.cl
+78
-37
mace/kernels/opencl/conv_2d_opencl.cc
mace/kernels/opencl/conv_2d_opencl.cc
+4
-1
mace/kernels/opencl/conv_2d_opencl_1x1.cc
mace/kernels/opencl/conv_2d_opencl_1x1.cc
+17
-4
未找到文件。
mace/kernels/opencl/cl/conv_2d_1x1.cl
浏览文件 @
5bbd271e
...
...
@@ -24,33 +24,89 @@ __kernel void conv_2d_1x1_naive(__global const float *input, /* n, c, h, w */
}
}
#
define
vec_conv_2d_1x1_s1
(
out_size
)
\
do
{
\
float4
in0
=
vload4
(
0
,
input_ptr
)
; \
float4
in1
=
vload4
(
0
,
input_ptr
+
in_pixel
)
; \
float4
in2
=
vload4
(
0
,
input_ptr
+
2
*
in_pixel
)
; \
float4
in3
=
vload4
(
0
,
input_ptr
+
3
*
in_pixel
)
; \
for
(
int
oc
=
0
; oc < out_size; ++oc) { \
float4
weights
=
vload4
(
0
,
filter_ptr
+
oc
*
in_chan_num
)
; \
float4
out
=
vload4
(
0
,
output_ptr
+
oc
*
out_pixel
)
; \
out
+=
in0
*
weights.x
; \
out
+=
in1
*
weights.y
; \
out
+=
in2
*
weights.z
; \
out
+=
in3
*
weights.w
; \
vstore4
(
out,
0
,
output_ptr
+
oc
*
out_pixel
)
; \
}
\
}
while
(
0
)
#
define
vec_conv_2d_1x1_s2
(
out_size
)
\
do
{
\
float4
in00
=
vload4
(
0
,
input_ptr
)
; \
float3
in01
=
vload3
(
0
,
input_ptr
+
4
)
; \
float4
in10
=
vload4
(
0
,
input_ptr
+
in_pixel
)
; \
float3
in11
=
vload3
(
0
,
input_ptr
+
in_pixel
+
4
)
; \
float4
in20
=
vload4
(
0
,
input_ptr
+
2
*
in_pixel
)
; \
float3
in21
=
vload3
(
0
,
input_ptr
+
2
*
in_pixel
+
4
)
;\
float4
in30
=
vload4
(
0
,
input_ptr
+
3
*
in_pixel
)
; \
float3
in31
=
vload3
(
0
,
input_ptr
+
3
*
in_pixel
+
4
)
; \
float4
in0
=
(
float4
)(
in00.s02,
in01.s02
)
; \
float4
in1
=
(
float4
)(
in10.s02,
in11.s02
)
; \
float4
in2
=
(
float4
)(
in20.s02,
in21.s02
)
; \
float4
in3
=
(
float4
)(
in30.s02,
in31.s02
)
; \
for
(
int
oc
=
0
; oc < out_size; ++oc) { \
float4
weights
=
vload4
(
0
,
filter_ptr
+
oc
*
in_chan_num
)
; \
float4
out
=
vload4
(
0
,
output_ptr
+
oc
*
out_pixel
)
; \
out
+=
in0
*
weights.x
; \
out
+=
in1
*
weights.y
; \
out
+=
in2
*
weights.z
; \
out
+=
in3
*
weights.w
; \
vstore4
(
out,
0
,
output_ptr
+
oc
*
out_pixel
)
; \
}
\
}
while
(
0
)
__kernel
void
conv_2d_1x1_v2
(
__global
const
float
*input,
/*
n,
c,
h,
w
*/
__global
const
float
*filter,
/*
o,
i,
kh,
kw
*/
__global
const
float
*bias,
/*
o
*/
__global
float
*output,
/*
n,
c,
h,
w
*/
__private
const
int
in_chan_num,
__private
const
int
out_chan_num,
__private
const
int
pixel_num
)
{
__private
const
int
in_height,
__private
const
int
in_width,
__private
const
int
out_height,
__private
const
int
out_width,
__private
const
int
stride
)
{
int
batch
=
get_global_id
(
0
)
;
int
out_chan_blk
=
get_global_id
(
1
)
;
int
out_pixel_blk
=
get_global_id
(
2
)
;
const
int
in_pixel
=
in_height
*
in_width
;
const
int
out_pixel
=
out_height
*
out_width
;
const
int
round_out_width
=
(
out_width
+
3
)
/
4
;
const
int
out_pixel_height
=
out_pixel_blk
/
round_out_width
;
const
int
out_pixel_width
=
out_pixel_blk
%
round_out_width
;
const
int
out_chan_begin
=
out_chan_blk
*
4
;
const
int
out_chan_end
=
min
(
out_chan_begin
+
4
,
out_chan_num
)
;
const
int
out_pixel_begin
=
out_pixel_blk
*
4
;
const
int
out_pixel_end
=
min
(
out_pixel_begin
+
4
,
pixel_num
)
;
const
int
out_pixel_begin
=
out_pixel_height
*
out_width
+
out_pixel_width
*
4
;
const
int
out_pixel_end
=
min
(
out_pixel_begin
+
4
,
(
out_pixel_height
+
1
)
*
out_width
)
;
const
int
in_pixel_begin
=
out_pixel_height
*
stride
*
in_width
+
out_pixel_width
*
stride
*
4
;
const
int
in_offset
=
batch
*
in_chan_num
*
pixel_num
;
const
int
out_offset
=
batch
*
out_chan_num
*
pixel_num
;
const
int
in_offset
=
batch
*
in_chan_num
*
in_pixel
;
const
int
out_offset
=
batch
*
out_chan_num
*
out_pixel
;
const
float
*input_base
=
input
+
in_offset
+
out
_pixel_begin
;
const
float
*input_base
=
input
+
in_offset
+
in
_pixel_begin
;
float
*output_base
=
output
+
out_offset
+
out_pixel_begin
;
int
out_chan_len
=
out_chan_end
-
out_chan_begin
;
int
pixel_len
=
out_pixel_end
-
out_pixel_begin
;
for
(
int
out_chan
=
out_chan_begin
; out_chan < out_chan_end; ++out_chan) {
float
*output_ptr
=
output_base
+
out_chan
*
pixel_num
;
float
*output_ptr
=
output_base
+
out_chan
*
out_pixel
;
float
bias_value
=
bias
==
NULL
?
0
:
bias[out_chan]
;
for
(
int
p
=
0
; p < pixel_len; ++p) {
output_ptr[p]
=
bias_value
;
...
...
@@ -60,52 +116,37 @@ __kernel void conv_2d_1x1_v2(__global const float *input, /* n, c, h, w */
int
in_chan
=
0
;
if
(
pixel_len
==
4
)
{
for
(
; in_chan + 3 < in_chan_num; in_chan += 4) {
const
float
*input_ptr
=
input_base
+
in_chan
*
pixel_num
;
const
float
*input_ptr
=
input_base
+
in_chan
*
in_pixel
;
int
out_chan
=
out_chan_begin
;
for
(
; out_chan + 3 < out_chan_end; out_chan += 4) {
const
float*
filter_ptr
=
filter
+
out_chan
*
in_chan_num
+
in_chan
;
float
*output_ptr
=
output_base
+
out_chan
*
pixel_num
;
float4
in0
=
vload4
(
0
,
input_ptr
)
;
float4
in1
=
vload4
(
0
,
input_ptr
+
pixel_num
)
;
float4
in2
=
vload4
(
0
,
input_ptr
+
2
*
pixel_num
)
;
float4
in3
=
vload4
(
0
,
input_ptr
+
3
*
pixel_num
)
;
#
pragma
unroll
for
(
int
oc
=
0
; oc < 4; ++oc) {
float4
weights
=
vload4
(
0
,
filter_ptr
+
oc
*
in_chan_num
)
;
float4
out
=
vload4
(
0
,
output_ptr
+
oc
*
pixel_num
)
;
out
+=
in0
*
weights.x
;
out
+=
in1
*
weights.y
;
out
+=
in2
*
weights.z
;
out
+=
in3
*
weights.w
;
vstore4
(
out,
0
,
output_ptr
+
oc
*
pixel_num
)
;
float
*output_ptr
=
output_base
+
out_chan
*
out_pixel
;
if
(
stride
==
1
)
{
vec_conv_2d_1x1_s1
(
4
)
;
}
else
if
(
stride
==
2
)
{
vec_conv_2d_1x1_s2
(
4
)
;
}
}
for
(
; out_chan < out_chan_end; ++out_chan) {
const
float*
filter_ptr
=
filter
+
out_chan
*
in_chan_num
+
in_chan
;
float
*output_ptr
=
output_base
+
out_chan
*
pixel_num
;
float4
weights
=
vload4
(
0
,
filter_ptr
)
;
float4
in0
=
vload4
(
0
,
input_ptr
)
;
float4
in1
=
vload4
(
0
,
input_ptr
+
pixel_num
)
;
float4
in2
=
vload4
(
0
,
input_ptr
+
2
*
pixel_num
)
;
float4
in3
=
vload4
(
0
,
input_ptr
+
3
*
pixel_num
)
;
float4
out
=
vload4
(
0
,
output_ptr
)
;
out
+=
in0
*
weights.x
;
out
+=
in1
*
weights.y
;
out
+=
in2
*
weights.z
;
out
+=
in3
*
weights.w
;
vstore4
(
out,
0
,
output_ptr
)
;
float
*output_ptr
=
output_base
+
out_chan
*
out_pixel
;
if
(
stride
==
1
)
{
vec_conv_2d_1x1_s1
(
1
)
;
}
else
if
(
stride
==
2
)
{
vec_conv_2d_1x1_s2
(
1
)
;
}
}
}
}
for
(
; in_chan < in_chan_num; ++in_chan) {
const
float
*input_ptr
=
input_base
+
in_chan
*
pixel_num
;
const
float
*input_ptr
=
input_base
+
in_chan
*
in_pixel
;
for
(
int
out_chan
=
out_chan_begin
; out_chan < out_chan_end; ++out_chan) {
float
weights
=
filter[out_chan
*
in_chan_num
+
in_chan]
;
float
*output_ptr
=
output_base
+
out_chan
*
pixel_num
;
float
*output_ptr
=
output_base
+
out_chan
*
out_pixel
;
for
(
int
p
=
0
; p < pixel_len; ++p) {
float
in
=
input_ptr[p]
;
float
in
=
input_ptr[p
*stride
]
;
output_ptr[p]
+=
in
*
weights
;
}
}
...
...
mace/kernels/opencl/conv_2d_opencl.cc
浏览文件 @
5bbd271e
...
...
@@ -10,6 +10,9 @@ namespace kernels {
extern
void
Conv2dOpenclK1x1S1
(
const
Tensor
*
input
,
const
Tensor
*
filter
,
const
Tensor
*
bias
,
Tensor
*
output
);
extern
void
Conv2dOpenclK1x1S2
(
const
Tensor
*
input
,
const
Tensor
*
filter
,
const
Tensor
*
bias
,
Tensor
*
output
);
extern
void
Conv2dOpenclK3x3S1
(
const
Tensor
*
input
,
const
Tensor
*
filter
,
const
Tensor
*
bias
,
Tensor
*
output
);
...
...
@@ -24,7 +27,7 @@ void Conv2dFunctor<DeviceType::OPENCL, float>::operator()(const Tensor *input,
const
Tensor
*
bias
,
Tensor
*
output
);
// Selection matrix: kernel_size x stride_size
static
const
Conv2dOpenclFunction
selector
[
5
][
2
]
=
{
{
Conv2dOpenclK1x1S1
,
nullptr
},
{
Conv2dOpenclK1x1S1
,
Conv2dOpenclK1x1S2
},
{
nullptr
,
nullptr
},
{
Conv2dOpenclK3x3S1
,
Conv2dOpenclK3x3S2
},
{
nullptr
,
nullptr
},
...
...
mace/kernels/opencl/conv_2d_opencl_1x1.cc
浏览文件 @
5bbd271e
...
...
@@ -45,6 +45,7 @@ void Conv1x1Naive(const Tensor *input,
void
Conv1x1V2
(
const
Tensor
*
input
,
const
Tensor
*
filter
,
const
Tensor
*
bias
,
const
int
stride
,
Tensor
*
output
)
{
const
index_t
batch
=
output
->
dim
(
0
);
const
index_t
channels
=
output
->
dim
(
1
);
...
...
@@ -54,9 +55,8 @@ void Conv1x1V2(const Tensor *input,
auto
runtime
=
OpenCLRuntime
::
Get
();
auto
program
=
runtime
->
program
();
const
index_t
pixels
=
height
*
width
;
const
index_t
channel_blocks
=
(
channels
+
3
)
/
4
;
const
index_t
pixel_blocks
=
(
pixels
+
3
)
/
4
;
const
index_t
pixel_blocks
=
(
width
+
3
)
/
4
*
height
;
// TODO KernelFunctor has an extra clReleaseCommandQueue due to a copy
// TODO check wired clReleaseCommandQueue latency
...
...
@@ -77,7 +77,11 @@ void Conv1x1V2(const Tensor *input,
conv_2d_kernel
.
setArg
(
idx
++
,
*
(
static_cast
<
cl
::
Buffer
*>
(
output
->
buffer
())));
conv_2d_kernel
.
setArg
(
idx
++
,
static_cast
<
int
>
(
input_channels
));
conv_2d_kernel
.
setArg
(
idx
++
,
static_cast
<
int
>
(
channels
));
conv_2d_kernel
.
setArg
(
idx
++
,
static_cast
<
int
>
(
pixels
));
conv_2d_kernel
.
setArg
(
idx
++
,
static_cast
<
int
>
(
input
->
dim
(
2
)));
conv_2d_kernel
.
setArg
(
idx
++
,
static_cast
<
int
>
(
input
->
dim
(
3
)));
conv_2d_kernel
.
setArg
(
idx
++
,
static_cast
<
int
>
(
height
));
conv_2d_kernel
.
setArg
(
idx
++
,
static_cast
<
int
>
(
width
));
conv_2d_kernel
.
setArg
(
idx
++
,
stride
);
auto
command_queue
=
runtime
->
command_queue
();
cl_int
error
=
command_queue
.
enqueueNDRangeKernel
(
...
...
@@ -189,7 +193,16 @@ extern void Conv2dOpenclK1x1S1(const Tensor *input,
MACE_CHECK
(
input_batch
==
batch
&&
input_height
==
height
&&
input_width
==
width
);
Conv1x1V2
(
input
,
filter
,
bias
,
output
);
Conv1x1V2
(
input
,
filter
,
bias
,
1
,
output
);
};
extern
void
Conv2dOpenclK1x1S2
(
const
Tensor
*
input
,
const
Tensor
*
filter
,
const
Tensor
*
bias
,
Tensor
*
output
)
{
MACE_CHECK
(
input
->
dim
(
0
)
==
output
->
dim
(
0
));
Conv1x1V2
(
input
,
filter
,
bias
,
2
,
output
);
};
}
// namespace kernels
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录