Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
慢慢CG
Mace
提交
11a838dc
Mace
项目概览
慢慢CG
/
Mace
与 Fork 源项目一致
Fork自
Xiaomi / Mace
通知
1
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
DevOps
流水线
流水线任务
计划
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
Mace
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
DevOps
DevOps
流水线
流水线任务
计划
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
流水线任务
提交
Issue看板
提交
11a838dc
编写于
12月 07, 2017
作者:
L
liuqi
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add tuning code for opencl kernel.
上级
3ce4322d
变更
12
隐藏空白更改
内联
并排
Showing
12 changed file
with
288 addition
and
94 deletion
+288
-94
mace/kernels/opencl/addn.cc
mace/kernels/opencl/addn.cc
+42
-8
mace/kernels/opencl/batch_norm_opencl.cc
mace/kernels/opencl/batch_norm_opencl.cc
+6
-1
mace/kernels/opencl/concat.cc
mace/kernels/opencl/concat.cc
+50
-13
mace/kernels/opencl/conv_2d_opencl_1x1.cc
mace/kernels/opencl/conv_2d_opencl_1x1.cc
+6
-1
mace/kernels/opencl/conv_2d_opencl_3x3.cc
mace/kernels/opencl/conv_2d_opencl_3x3.cc
+6
-1
mace/kernels/opencl/conv_2d_opencl_general.cc
mace/kernels/opencl/conv_2d_opencl_general.cc
+6
-1
mace/kernels/opencl/pooling_opencl.cc
mace/kernels/opencl/pooling_opencl.cc
+55
-18
mace/kernels/opencl/relu_opencl.cc
mace/kernels/opencl/relu_opencl.cc
+6
-1
mace/kernels/opencl/resize_bilinear_opencl.cc
mace/kernels/opencl/resize_bilinear_opencl.cc
+46
-12
mace/python/tools/tf_converter_lib.py
mace/python/tools/tf_converter_lib.py
+50
-30
tools/validate.py
tools/validate.py
+6
-2
tools/validate_gcn.sh
tools/validate_gcn.sh
+9
-6
未找到文件。
mace/kernels/opencl/addn.cc
浏览文件 @
11a838dc
...
@@ -6,6 +6,7 @@
...
@@ -6,6 +6,7 @@
#include "mace/core/runtime/opencl/opencl_runtime.h"
#include "mace/core/runtime/opencl/opencl_runtime.h"
#include "mace/kernels/opencl/helper.h"
#include "mace/kernels/opencl/helper.h"
#include "mace/utils/utils.h"
#include "mace/utils/utils.h"
#include "mace/utils/tuner.h"
namespace
mace
{
namespace
mace
{
namespace
kernels
{
namespace
kernels
{
...
@@ -33,8 +34,6 @@ static void AddN(const std::vector<const Tensor *> &input_tensors,
...
@@ -33,8 +34,6 @@ static void AddN(const std::vector<const Tensor *> &input_tensors,
built_options
.
emplace
(
"-DINPUT_NUM="
+
ToString
(
input_tensors
.
size
()));
built_options
.
emplace
(
"-DINPUT_NUM="
+
ToString
(
input_tensors
.
size
()));
auto
addn_kernel
=
runtime
->
BuildKernel
(
"addn"
,
"addn"
,
built_options
);
auto
addn_kernel
=
runtime
->
BuildKernel
(
"addn"
,
"addn"
,
built_options
);
const
uint32_t
lws
=
runtime
->
GetKernelMaxWorkGroupSize
(
addn_kernel
);
uint32_t
idx
=
0
;
uint32_t
idx
=
0
;
for
(
auto
input
:
input_tensors
)
{
for
(
auto
input
:
input_tensors
)
{
addn_kernel
.
setArg
(
idx
++
,
addn_kernel
.
setArg
(
idx
++
,
...
@@ -42,12 +41,47 @@ static void AddN(const std::vector<const Tensor *> &input_tensors,
...
@@ -42,12 +41,47 @@ static void AddN(const std::vector<const Tensor *> &input_tensors,
}
}
addn_kernel
.
setArg
(
idx
++
,
*
(
static_cast
<
cl
::
Image2D
*>
(
output
->
buffer
())));
addn_kernel
.
setArg
(
idx
++
,
*
(
static_cast
<
cl
::
Image2D
*>
(
output
->
buffer
())));
cl_int
error
=
runtime
->
command_queue
().
enqueueNDRangeKernel
(
const
uint32_t
gws
[
2
]
=
{
addn_kernel
,
cl
::
NullRange
,
static_cast
<
uint32_t
>
(
width_pixels
),
cl
::
NDRange
(
width_pixels
,
batch_height_pixels
),
static_cast
<
uint32_t
>
(
batch_height_pixels
)
cl
::
NDRange
(
64
,
16
),
// TODO fix this
};
nullptr
,
OpenCLRuntime
::
Get
()
->
GetDefaultEvent
());
const
uint32_t
kwg_size
=
runtime
->
GetKernelMaxWorkGroupSize
(
addn_kernel
);
MACE_CHECK
(
error
==
CL_SUCCESS
)
<<
"error code: "
<<
error
;
std
::
vector
<
uint32_t
>
lws
=
{
64
,
16
};
auto
params_generator
=
[
&
]()
->
std
::
vector
<
std
::
vector
<
uint32_t
>>
{
uint32_t
local_ws
[
2
];
local_ws
[
0
]
=
std
::
min
<
uint32_t
>
(
width_pixels
,
kwg_size
);
local_ws
[
1
]
=
std
::
min
<
uint32_t
>
(
batch_height_pixels
,
kwg_size
/
local_ws
[
0
]);
return
{{
local_ws
[
0
],
local_ws
[
1
]},
{
kwg_size
/
16
,
16
},
{
kwg_size
/
32
,
32
},
{
kwg_size
/
64
,
64
},
{
kwg_size
/
128
,
128
},
{
kwg_size
/
256
,
256
},
{
kwg_size
,
1
},
{
1
,
kwg_size
}
};
};
auto
func
=
[
&
](
const
std
::
vector
<
uint32_t
>
&
params
)
->
cl_int
{
cl_int
error
=
runtime
->
command_queue
().
enqueueNDRangeKernel
(
addn_kernel
,
cl
::
NullRange
,
cl
::
NDRange
(
gws
[
0
],
gws
[
1
]),
cl
::
NDRange
(
params
[
0
],
params
[
1
]),
NULL
,
OpenCLRuntime
::
Get
()
->
GetDefaultEvent
());
MACE_CHECK
(
error
==
CL_SUCCESS
)
<<
"Error code: "
<<
error
;
return
error
;
};
std
::
stringstream
ss
;
ss
<<
"addn_opencl_kernel_"
<<
output
->
dim
(
0
)
<<
"_"
<<
output
->
dim
(
1
)
<<
"_"
<<
output
->
dim
(
2
)
<<
"_"
<<
output
->
dim
(
3
);
Tuner
<
uint32_t
>::
Get
()
->
template
TuneOrRun
<
cl_int
>(
ss
.
str
(),
lws
,
params_generator
,
func
);
}
}
template
<
typename
T
>
template
<
typename
T
>
...
...
mace/kernels/opencl/batch_norm_opencl.cc
浏览文件 @
11a838dc
...
@@ -48,8 +48,13 @@ void BatchNormFunctor<DeviceType::OPENCL, T>::operator()(
...
@@ -48,8 +48,13 @@ void BatchNormFunctor<DeviceType::OPENCL, T>::operator()(
static_cast
<
uint32_t
>
(
height
*
batch
)};
static_cast
<
uint32_t
>
(
height
*
batch
)};
const
std
::
vector
<
uint32_t
>
lws
=
{
8
,
16
,
8
};
const
std
::
vector
<
uint32_t
>
lws
=
{
8
,
16
,
8
};
const
uint32_t
kwg_size
=
runtime
->
GetKernelMaxWorkGroupSize
(
bm_kernel
);
const
uint32_t
kwg_size
=
runtime
->
GetKernelMaxWorkGroupSize
(
bm_kernel
);
auto
params_generator
=
[
&
kwg_size
]()
->
std
::
vector
<
std
::
vector
<
uint32_t
>>
{
auto
params_generator
=
[
&
]()
->
std
::
vector
<
std
::
vector
<
uint32_t
>>
{
std
::
vector
<
uint32_t
>
local_ws
(
3
,
0
);
local_ws
[
0
]
=
std
::
min
<
uint32_t
>
(
channel_blocks
,
kwg_size
);
local_ws
[
1
]
=
std
::
min
<
uint32_t
>
(
width
,
kwg_size
/
local_ws
[
0
]);
local_ws
[
2
]
=
std
::
min
<
uint32_t
>
(
height
*
batch
,
kwg_size
/
(
local_ws
[
0
]
*
local_ws
[
1
]));
return
{{
8
,
128
,
1
},
//SNPE size
return
{{
8
,
128
,
1
},
//SNPE size
{
local_ws
[
0
],
local_ws
[
1
],
local_ws
[
2
]},
{
kwg_size
/
16
,
4
,
4
},
{
kwg_size
/
16
,
4
,
4
},
{
kwg_size
/
32
,
4
,
8
},
{
kwg_size
/
32
,
4
,
8
},
{
kwg_size
/
32
,
8
,
4
},
{
kwg_size
/
32
,
8
,
4
},
...
...
mace/kernels/opencl/concat.cc
浏览文件 @
11a838dc
...
@@ -6,6 +6,7 @@
...
@@ -6,6 +6,7 @@
#include "mace/core/runtime/opencl/opencl_runtime.h"
#include "mace/core/runtime/opencl/opencl_runtime.h"
#include "mace/kernels/opencl/helper.h"
#include "mace/kernels/opencl/helper.h"
#include "mace/utils/utils.h"
#include "mace/utils/utils.h"
#include "mace/utils/tuner.h"
namespace
mace
{
namespace
mace
{
namespace
kernels
{
namespace
kernels
{
...
@@ -41,21 +42,57 @@ static void Concat2(const Tensor *input0,
...
@@ -41,21 +42,57 @@ static void Concat2(const Tensor *input0,
concat_kernel
.
setArg
(
idx
++
,
static_cast
<
int32_t
>
(
input0
->
dim
(
3
)));
concat_kernel
.
setArg
(
idx
++
,
static_cast
<
int32_t
>
(
input0
->
dim
(
3
)));
concat_kernel
.
setArg
(
idx
++
,
*
(
static_cast
<
cl
::
Image2D
*>
(
output
->
buffer
())));
concat_kernel
.
setArg
(
idx
++
,
*
(
static_cast
<
cl
::
Image2D
*>
(
output
->
buffer
())));
const
uint32_t
gws
[
3
]
=
{
static_cast
<
uint32_t
>
(
channel_blk
),
static_cast
<
uint32_t
>
(
width
),
static_cast
<
uint32_t
>
(
batch
*
height
),
};
const
uint32_t
kwg_size
=
runtime
->
GetKernelMaxWorkGroupSize
(
concat_kernel
);
const
uint32_t
kwg_size
=
runtime
->
GetKernelMaxWorkGroupSize
(
concat_kernel
);
std
::
vector
<
uint32_t
>
lws
=
{
8
,
16
,
8
};
auto
params_generator
=
[
&
]()
->
std
::
vector
<
std
::
vector
<
uint32_t
>>
{
std
::
vector
<
uint32_t
>
local_ws
(
3
,
0
);
local_ws
[
0
]
=
std
::
min
<
uint32_t
>
(
channel_blk
,
kwg_size
);
local_ws
[
1
]
=
std
::
min
<
uint32_t
>
(
width
,
kwg_size
/
local_ws
[
0
]);
local_ws
[
2
]
=
std
::
min
<
uint32_t
>
(
height
*
batch
,
kwg_size
/
(
local_ws
[
0
]
*
local_ws
[
1
]));
return
{{
4
,
15
,
8
},
//SNPE size
{
local_ws
[
0
],
local_ws
[
1
],
local_ws
[
2
]},
{
kwg_size
/
16
,
4
,
4
},
{
kwg_size
/
32
,
4
,
8
},
{
kwg_size
/
32
,
8
,
4
},
{
kwg_size
/
64
,
8
,
8
},
{
kwg_size
/
64
,
16
,
4
},
{
kwg_size
/
128
,
8
,
16
},
{
kwg_size
/
128
,
16
,
8
},
{
kwg_size
/
128
,
32
,
4
},
{
1
,
kwg_size
/
32
,
32
},
{
1
,
kwg_size
/
64
,
64
},
{
1
,
kwg_size
/
128
,
128
},
{
3
,
15
,
9
},
{
7
,
15
,
9
},
{
9
,
7
,
15
},
{
15
,
7
,
9
},
{
1
,
kwg_size
,
1
}};
};
auto
func
=
[
&
](
const
std
::
vector
<
uint32_t
>
&
params
)
->
cl_int
{
cl_int
error
=
runtime
->
command_queue
().
enqueueNDRangeKernel
(
concat_kernel
,
cl
::
NullRange
,
cl
::
NDRange
(
gws
[
0
],
gws
[
1
],
gws
[
2
]),
cl
::
NDRange
(
params
[
0
],
params
[
1
],
params
[
2
]),
NULL
,
OpenCLRuntime
::
Get
()
->
GetDefaultEvent
());
uint32_t
lws
[
3
]
=
{
8
,
16
,
8
}
;
MACE_CHECK
(
error
==
CL_SUCCESS
)
<<
"Error code: "
<<
error
;
// lws[0] = std::min<uint32_t>(channel_blk, kwg_size)
;
return
error
;
// lws[1] = std::min<uint32_t>(width, kwg_size / lws[0])
;
}
;
// lws[2] = std::min<uint32_t>(height * batch, kwg_size / (lws[0] * lws[1]))
;
std
::
stringstream
ss
;
ss
<<
"concat_opencl_kernel_"
cl_int
error
=
runtime
->
command_queue
().
enqueueNDRangeKernel
(
<<
output
->
dim
(
0
)
<<
"_"
concat_kernel
,
cl
::
NullRange
,
<<
output
->
dim
(
1
)
<<
"_"
cl
::
NDRange
(
static_cast
<
uint32_t
>
(
channel_blk
),
<<
output
->
dim
(
2
)
<<
"_"
static_cast
<
uint32_t
>
(
width
),
<<
output
->
dim
(
3
);
static_cast
<
uint32_t
>
(
height
*
batch
)
),
Tuner
<
uint32_t
>::
Get
()
->
template
TuneOrRun
<
cl_int
>(
ss
.
str
(
),
cl
::
NDRange
(
lws
[
0
],
lws
[
1
],
lws
[
2
])
,
lws
,
NULL
,
OpenCLRuntime
::
Get
()
->
GetDefaultEvent
());
params_generator
,
MACE_CHECK
(
error
==
CL_SUCCESS
);
func
);
}
}
template
<
typename
T
>
template
<
typename
T
>
...
...
mace/kernels/opencl/conv_2d_opencl_1x1.cc
浏览文件 @
11a838dc
...
@@ -68,8 +68,13 @@ void Conv1x1(const Tensor *input,
...
@@ -68,8 +68,13 @@ void Conv1x1(const Tensor *input,
static_cast
<
uint32_t
>
(
height
*
batch
)};
static_cast
<
uint32_t
>
(
height
*
batch
)};
const
std
::
vector
<
uint32_t
>
lws
=
{
8
,
15
,
8
};
const
std
::
vector
<
uint32_t
>
lws
=
{
8
,
15
,
8
};
const
uint32_t
kwg_size
=
runtime
->
GetKernelMaxWorkGroupSize
(
conv_2d_kernel
);
const
uint32_t
kwg_size
=
runtime
->
GetKernelMaxWorkGroupSize
(
conv_2d_kernel
);
auto
params_generator
=
[
&
kwg_size
]()
->
std
::
vector
<
std
::
vector
<
uint32_t
>>
{
auto
params_generator
=
[
&
]()
->
std
::
vector
<
std
::
vector
<
uint32_t
>>
{
std
::
vector
<
uint32_t
>
local_ws
(
3
,
0
);
local_ws
[
0
]
=
std
::
min
<
uint32_t
>
(
channel_blocks
,
kwg_size
);
local_ws
[
1
]
=
std
::
min
<
uint32_t
>
(
width_blocks
,
kwg_size
/
local_ws
[
0
]);
local_ws
[
2
]
=
std
::
min
<
uint32_t
>
(
height
*
batch
,
kwg_size
/
(
local_ws
[
0
]
*
local_ws
[
1
]));
return
{{
4
,
15
,
8
},
//SNPE size
return
{{
4
,
15
,
8
},
//SNPE size
{
local_ws
[
0
],
local_ws
[
1
],
local_ws
[
2
]},
{
kwg_size
/
16
,
4
,
4
},
{
kwg_size
/
16
,
4
,
4
},
{
kwg_size
/
32
,
4
,
8
},
{
kwg_size
/
32
,
4
,
8
},
{
kwg_size
/
32
,
8
,
4
},
{
kwg_size
/
32
,
8
,
4
},
...
...
mace/kernels/opencl/conv_2d_opencl_3x3.cc
浏览文件 @
11a838dc
...
@@ -60,8 +60,13 @@ static void Conv2d3x3S12(const Tensor *input, const Tensor *filter,
...
@@ -60,8 +60,13 @@ static void Conv2d3x3S12(const Tensor *input, const Tensor *filter,
static_cast
<
uint32_t
>
(
height
*
batch
)};
static_cast
<
uint32_t
>
(
height
*
batch
)};
const
std
::
vector
<
uint32_t
>
lws
=
{
4
,
15
,
8
};
const
std
::
vector
<
uint32_t
>
lws
=
{
4
,
15
,
8
};
const
uint32_t
kwg_size
=
runtime
->
GetKernelMaxWorkGroupSize
(
conv_2d_kernel
);
const
uint32_t
kwg_size
=
runtime
->
GetKernelMaxWorkGroupSize
(
conv_2d_kernel
);
auto
params_generator
=
[
&
kwg_size
]()
->
std
::
vector
<
std
::
vector
<
uint32_t
>>
{
auto
params_generator
=
[
&
]()
->
std
::
vector
<
std
::
vector
<
uint32_t
>>
{
std
::
vector
<
uint32_t
>
local_ws
(
3
,
0
);
local_ws
[
0
]
=
std
::
min
<
uint32_t
>
(
channel_blocks
,
kwg_size
);
local_ws
[
1
]
=
std
::
min
<
uint32_t
>
(
width_blocks
,
kwg_size
/
local_ws
[
0
]);
local_ws
[
2
]
=
std
::
min
<
uint32_t
>
(
height
*
batch
,
kwg_size
/
(
local_ws
[
0
]
*
local_ws
[
1
]));
return
{{
4
,
15
,
8
},
//SNPE size
return
{{
4
,
15
,
8
},
//SNPE size
{
local_ws
[
0
],
local_ws
[
1
],
local_ws
[
2
]},
{
kwg_size
/
16
,
4
,
4
},
{
kwg_size
/
16
,
4
,
4
},
{
kwg_size
/
32
,
4
,
8
},
{
kwg_size
/
32
,
4
,
8
},
{
kwg_size
/
32
,
8
,
4
},
{
kwg_size
/
32
,
8
,
4
},
...
...
mace/kernels/opencl/conv_2d_opencl_general.cc
浏览文件 @
11a838dc
...
@@ -62,8 +62,13 @@ void Conv2dOpencl(const Tensor *input, const Tensor *filter,
...
@@ -62,8 +62,13 @@ void Conv2dOpencl(const Tensor *input, const Tensor *filter,
static_cast
<
uint32_t
>
(
height
*
batch
)};
static_cast
<
uint32_t
>
(
height
*
batch
)};
const
std
::
vector
<
uint32_t
>
lws
=
{
8
,
16
,
8
};
const
std
::
vector
<
uint32_t
>
lws
=
{
8
,
16
,
8
};
const
uint32_t
kwg_size
=
runtime
->
GetKernelMaxWorkGroupSize
(
conv_2d_kernel
);
const
uint32_t
kwg_size
=
runtime
->
GetKernelMaxWorkGroupSize
(
conv_2d_kernel
);
auto
params_generator
=
[
&
kwg_size
]()
->
std
::
vector
<
std
::
vector
<
uint32_t
>>
{
auto
params_generator
=
[
&
]()
->
std
::
vector
<
std
::
vector
<
uint32_t
>>
{
std
::
vector
<
uint32_t
>
local_ws
(
3
,
0
);
local_ws
[
0
]
=
std
::
min
<
uint32_t
>
(
channel_blocks
,
kwg_size
);
local_ws
[
1
]
=
std
::
min
<
uint32_t
>
(
width_blocks
,
kwg_size
/
local_ws
[
0
]);
local_ws
[
2
]
=
std
::
min
<
uint32_t
>
(
height
*
batch
,
kwg_size
/
(
local_ws
[
0
]
*
local_ws
[
1
]));
return
{{
4
,
15
,
8
},
//SNPE size
return
{{
4
,
15
,
8
},
//SNPE size
{
local_ws
[
0
],
local_ws
[
1
],
local_ws
[
2
]},
{
kwg_size
/
16
,
4
,
4
},
{
kwg_size
/
16
,
4
,
4
},
{
kwg_size
/
32
,
4
,
8
},
{
kwg_size
/
32
,
4
,
8
},
{
kwg_size
/
32
,
8
,
4
},
{
kwg_size
/
32
,
8
,
4
},
...
...
mace/kernels/opencl/pooling_opencl.cc
浏览文件 @
11a838dc
...
@@ -6,6 +6,7 @@
...
@@ -6,6 +6,7 @@
#include "mace/core/runtime/opencl/cl2_header.h"
#include "mace/core/runtime/opencl/cl2_header.h"
#include "mace/core/runtime/opencl/opencl_runtime.h"
#include "mace/core/runtime/opencl/opencl_runtime.h"
#include "mace/kernels/opencl/helper.h"
#include "mace/kernels/opencl/helper.h"
#include "mace/utils/tuner.h"
namespace
mace
{
namespace
mace
{
namespace
kernels
{
namespace
kernels
{
...
@@ -23,11 +24,6 @@ static void Pooling(const Tensor *input,
...
@@ -23,11 +24,6 @@ static void Pooling(const Tensor *input,
index_t
channels
=
output
->
dim
(
3
);
index_t
channels
=
output
->
dim
(
3
);
index_t
channel_blocks
=
(
channels
+
3
)
/
4
;
index_t
channel_blocks
=
(
channels
+
3
)
/
4
;
const
uint32_t
gws
[
3
]
=
{
static_cast
<
uint32_t
>
(
channel_blocks
),
static_cast
<
uint32_t
>
(
out_width
),
static_cast
<
uint32_t
>
(
batch
*
out_height
),
};
auto
runtime
=
OpenCLRuntime
::
Get
();
auto
runtime
=
OpenCLRuntime
::
Get
();
std
::
set
<
std
::
string
>
built_options
;
std
::
set
<
std
::
string
>
built_options
;
...
@@ -44,13 +40,6 @@ static void Pooling(const Tensor *input,
...
@@ -44,13 +40,6 @@ static void Pooling(const Tensor *input,
}
}
auto
pooling_kernel
=
runtime
->
BuildKernel
(
"pooling"
,
"pooling"
,
built_options
);
auto
pooling_kernel
=
runtime
->
BuildKernel
(
"pooling"
,
"pooling"
,
built_options
);
const
uint32_t
kwg_size
=
runtime
->
GetKernelMaxWorkGroupSize
(
pooling_kernel
);
uint32_t
lws
[
3
];
lws
[
0
]
=
std
::
min
<
uint32_t
>
(
channel_blocks
,
kwg_size
);
lws
[
1
]
=
std
::
min
<
uint32_t
>
(
out_width
,
kwg_size
/
lws
[
0
]);
lws
[
2
]
=
std
::
min
<
uint32_t
>
(
out_height
*
batch
,
kwg_size
/
(
lws
[
0
]
*
lws
[
1
]));
uint32_t
idx
=
0
;
uint32_t
idx
=
0
;
pooling_kernel
.
setArg
(
idx
++
,
*
(
static_cast
<
const
cl
::
Image2D
*>
(
input
->
buffer
())));
pooling_kernel
.
setArg
(
idx
++
,
*
(
static_cast
<
const
cl
::
Image2D
*>
(
input
->
buffer
())));
pooling_kernel
.
setArg
(
idx
++
,
static_cast
<
int32_t
>
(
input
->
dim
(
1
)));
pooling_kernel
.
setArg
(
idx
++
,
static_cast
<
int32_t
>
(
input
->
dim
(
1
)));
...
@@ -62,12 +51,60 @@ static void Pooling(const Tensor *input,
...
@@ -62,12 +51,60 @@ static void Pooling(const Tensor *input,
pooling_kernel
.
setArg
(
idx
++
,
pooling_size
);
pooling_kernel
.
setArg
(
idx
++
,
pooling_size
);
pooling_kernel
.
setArg
(
idx
++
,
*
(
static_cast
<
cl
::
Image2D
*>
(
output
->
buffer
())));
pooling_kernel
.
setArg
(
idx
++
,
*
(
static_cast
<
cl
::
Image2D
*>
(
output
->
buffer
())));
cl_int
error
=
runtime
->
command_queue
().
enqueueNDRangeKernel
(
const
uint32_t
gws
[
3
]
=
{
pooling_kernel
,
cl
::
NullRange
,
static_cast
<
uint32_t
>
(
channel_blocks
),
cl
::
NDRange
(
gws
[
0
],
gws
[
1
],
gws
[
2
]),
static_cast
<
uint32_t
>
(
out_width
),
cl
::
NDRange
(
lws
[
0
],
lws
[
1
],
lws
[
2
]),
static_cast
<
uint32_t
>
(
batch
*
out_height
),
NULL
,
OpenCLRuntime
::
Get
()
->
GetDefaultEvent
());
};
MACE_CHECK
(
error
==
CL_SUCCESS
)
<<
error
;
const
uint32_t
kwg_size
=
runtime
->
GetKernelMaxWorkGroupSize
(
pooling_kernel
);
std
::
vector
<
uint32_t
>
lws
(
3
,
0
);
lws
[
0
]
=
std
::
min
<
uint32_t
>
(
channel_blocks
,
kwg_size
);
lws
[
1
]
=
std
::
min
<
uint32_t
>
(
out_width
,
kwg_size
/
lws
[
0
]);
lws
[
2
]
=
std
::
min
<
uint32_t
>
(
out_height
*
batch
,
kwg_size
/
(
lws
[
0
]
*
lws
[
1
]));
auto
params_generator
=
[
&
]()
->
std
::
vector
<
std
::
vector
<
uint32_t
>>
{
std
::
vector
<
uint32_t
>
local_ws
(
3
,
0
);
local_ws
[
0
]
=
std
::
min
<
uint32_t
>
(
channel_blocks
,
kwg_size
);
local_ws
[
1
]
=
std
::
min
<
uint32_t
>
(
out_width
,
kwg_size
/
local_ws
[
0
]);
local_ws
[
2
]
=
std
::
min
<
uint32_t
>
(
out_height
*
batch
,
kwg_size
/
(
local_ws
[
0
]
*
local_ws
[
1
]));
return
{{
4
,
15
,
8
},
//SNPE size
{
local_ws
[
0
],
local_ws
[
1
],
local_ws
[
2
]},
{
kwg_size
/
16
,
4
,
4
},
{
kwg_size
/
32
,
4
,
8
},
{
kwg_size
/
32
,
8
,
4
},
{
kwg_size
/
64
,
8
,
8
},
{
kwg_size
/
64
,
16
,
4
},
{
kwg_size
/
128
,
8
,
16
},
{
kwg_size
/
128
,
16
,
8
},
{
kwg_size
/
128
,
32
,
4
},
{
1
,
kwg_size
/
32
,
32
},
{
1
,
kwg_size
/
64
,
64
},
{
1
,
kwg_size
/
128
,
128
},
{
3
,
15
,
9
},
{
7
,
15
,
9
},
{
9
,
7
,
15
},
{
15
,
7
,
9
},
{
1
,
kwg_size
,
1
}};
};
auto
func
=
[
&
](
const
std
::
vector
<
uint32_t
>
&
params
)
->
cl_int
{
cl_int
error
=
runtime
->
command_queue
().
enqueueNDRangeKernel
(
pooling_kernel
,
cl
::
NullRange
,
cl
::
NDRange
(
gws
[
0
],
gws
[
1
],
gws
[
2
]),
cl
::
NDRange
(
params
[
0
],
params
[
1
],
params
[
2
]),
NULL
,
OpenCLRuntime
::
Get
()
->
GetDefaultEvent
());
MACE_CHECK
(
error
==
CL_SUCCESS
)
<<
"Error code: "
<<
error
;
return
error
;
};
std
::
stringstream
ss
;
ss
<<
"pooling_opencl_kernel_"
<<
output
->
dim
(
0
)
<<
"_"
<<
output
->
dim
(
1
)
<<
"_"
<<
output
->
dim
(
2
)
<<
"_"
<<
output
->
dim
(
3
);
Tuner
<
uint32_t
>::
Get
()
->
template
TuneOrRun
<
cl_int
>(
ss
.
str
(),
lws
,
params_generator
,
func
);
}
}
template
<
typename
T
>
template
<
typename
T
>
...
...
mace/kernels/opencl/relu_opencl.cc
浏览文件 @
11a838dc
...
@@ -50,8 +50,13 @@ void ReluFunctor<DeviceType::OPENCL, T>::operator()(const Tensor *input,
...
@@ -50,8 +50,13 @@ void ReluFunctor<DeviceType::OPENCL, T>::operator()(const Tensor *input,
static_cast
<
uint32_t
>
(
height
*
batch
)};
static_cast
<
uint32_t
>
(
height
*
batch
)};
const
std
::
vector
<
uint32_t
>
lws
=
{
8
,
16
,
8
};
const
std
::
vector
<
uint32_t
>
lws
=
{
8
,
16
,
8
};
const
uint32_t
kwg_size
=
runtime
->
GetKernelMaxWorkGroupSize
(
relu_kernel
);
const
uint32_t
kwg_size
=
runtime
->
GetKernelMaxWorkGroupSize
(
relu_kernel
);
auto
params_generator
=
[
&
kwg_size
]()
->
std
::
vector
<
std
::
vector
<
uint32_t
>>
{
auto
params_generator
=
[
&
]()
->
std
::
vector
<
std
::
vector
<
uint32_t
>>
{
std
::
vector
<
uint32_t
>
local_ws
(
3
,
0
);
local_ws
[
0
]
=
std
::
min
<
uint32_t
>
(
channel_blocks
,
kwg_size
);
local_ws
[
1
]
=
std
::
min
<
uint32_t
>
(
width
,
kwg_size
/
local_ws
[
0
]);
local_ws
[
2
]
=
std
::
min
<
uint32_t
>
(
height
*
batch
,
kwg_size
/
(
local_ws
[
0
]
*
local_ws
[
1
]));
return
{{
4
,
15
,
8
},
//SNPE size
return
{{
4
,
15
,
8
},
//SNPE size
{
local_ws
[
0
],
local_ws
[
1
],
local_ws
[
2
]},
{
kwg_size
/
16
,
4
,
4
},
{
kwg_size
/
16
,
4
,
4
},
{
kwg_size
/
32
,
4
,
8
},
{
kwg_size
/
32
,
4
,
8
},
{
kwg_size
/
32
,
8
,
4
},
{
kwg_size
/
32
,
8
,
4
},
...
...
mace/kernels/opencl/resize_bilinear_opencl.cc
浏览文件 @
11a838dc
...
@@ -7,6 +7,7 @@
...
@@ -7,6 +7,7 @@
#include "mace/kernels/resize_bilinear.h"
#include "mace/kernels/resize_bilinear.h"
#include "mace/kernels/opencl/helper.h"
#include "mace/kernels/opencl/helper.h"
#include "mace/utils/utils.h"
#include "mace/utils/utils.h"
#include "mace/utils/tuner.h"
namespace
mace
{
namespace
mace
{
namespace
kernels
{
namespace
kernels
{
...
@@ -44,8 +45,6 @@ void ResizeBilinearFunctor<DeviceType::OPENCL, T>::operator()(
...
@@ -44,8 +45,6 @@ void ResizeBilinearFunctor<DeviceType::OPENCL, T>::operator()(
built_options
.
emplace
(
"-DCMD_DATA_TYPE="
+
DtToUpstreamCLCMDDt
(
dt
));
built_options
.
emplace
(
"-DCMD_DATA_TYPE="
+
DtToUpstreamCLCMDDt
(
dt
));
auto
rb_kernel
=
runtime
->
BuildKernel
(
"resize_bilinear"
,
"resize_bilinear_nocache"
,
built_options
);
auto
rb_kernel
=
runtime
->
BuildKernel
(
"resize_bilinear"
,
"resize_bilinear_nocache"
,
built_options
);
const
uint32_t
kwg_size
=
runtime
->
GetKernelMaxWorkGroupSize
(
rb_kernel
);
uint32_t
idx
=
0
;
uint32_t
idx
=
0
;
rb_kernel
.
setArg
(
idx
++
,
*
(
static_cast
<
const
cl
::
Image2D
*>
(
input
->
buffer
())));
rb_kernel
.
setArg
(
idx
++
,
*
(
static_cast
<
const
cl
::
Image2D
*>
(
input
->
buffer
())));
rb_kernel
.
setArg
(
idx
++
,
*
(
static_cast
<
cl
::
Image2D
*>
(
output
->
buffer
())));
rb_kernel
.
setArg
(
idx
++
,
*
(
static_cast
<
cl
::
Image2D
*>
(
output
->
buffer
())));
...
@@ -55,17 +54,52 @@ void ResizeBilinearFunctor<DeviceType::OPENCL, T>::operator()(
...
@@ -55,17 +54,52 @@ void ResizeBilinearFunctor<DeviceType::OPENCL, T>::operator()(
rb_kernel
.
setArg
(
idx
++
,
static_cast
<
int32_t
>
(
in_width
));
rb_kernel
.
setArg
(
idx
++
,
static_cast
<
int32_t
>
(
in_width
));
rb_kernel
.
setArg
(
idx
++
,
static_cast
<
int32_t
>
(
out_height
));
rb_kernel
.
setArg
(
idx
++
,
static_cast
<
int32_t
>
(
out_height
));
auto
command_queue
=
runtime
->
command_queue
();
const
uint32_t
gws
[
3
]
=
{
static_cast
<
uint32_t
>
(
channel_blocks
),
static_cast
<
uint32_t
>
(
out_width
),
static_cast
<
uint32_t
>
(
out_height
*
batch
)};
const
std
::
vector
<
uint32_t
>
lws
=
{
8
,
16
,
8
};
const
uint32_t
kwg_size
=
runtime
->
GetKernelMaxWorkGroupSize
(
rb_kernel
);
auto
params_generator
=
[
&
]()
->
std
::
vector
<
std
::
vector
<
uint32_t
>>
{
std
::
vector
<
uint32_t
>
local_ws
(
3
,
0
);
local_ws
[
0
]
=
std
::
min
<
uint32_t
>
(
channel_blocks
,
kwg_size
);
local_ws
[
1
]
=
std
::
min
<
uint32_t
>
(
out_width
,
kwg_size
/
local_ws
[
0
]);
local_ws
[
2
]
=
std
::
min
<
uint32_t
>
(
out_height
*
batch
,
kwg_size
/
(
local_ws
[
0
]
*
local_ws
[
1
]));
return
{{
4
,
15
,
8
},
//SNPE size
{
local_ws
[
0
],
local_ws
[
1
],
local_ws
[
2
]},
{
kwg_size
/
16
,
4
,
4
},
{
kwg_size
/
32
,
4
,
8
},
{
kwg_size
/
32
,
8
,
4
},
{
kwg_size
/
64
,
8
,
8
},
{
kwg_size
/
64
,
16
,
4
},
{
kwg_size
/
128
,
8
,
16
},
{
kwg_size
/
128
,
16
,
8
},
{
kwg_size
/
128
,
32
,
4
},
{
1
,
kwg_size
/
32
,
32
},
{
1
,
kwg_size
/
64
,
64
},
{
1
,
kwg_size
/
128
,
128
},
{
1
,
kwg_size
,
1
}};
};
auto
func
=
[
&
](
const
std
::
vector
<
uint32_t
>
&
params
)
->
cl_int
{
cl_int
error
=
runtime
->
command_queue
().
enqueueNDRangeKernel
(
rb_kernel
,
cl
::
NullRange
,
cl
::
NDRange
(
gws
[
0
],
gws
[
1
],
gws
[
2
]),
cl
::
NDRange
(
params
[
0
],
params
[
1
],
params
[
2
]),
NULL
,
OpenCLRuntime
::
Get
()
->
GetDefaultEvent
());
MACE_CHECK
(
error
==
CL_SUCCESS
)
<<
"Error code: "
<<
error
;
return
error
;
};
std
::
stringstream
ss
;
ss
<<
"resize_bilinear_opencl_kernel_"
<<
output
->
dim
(
0
)
<<
"_"
<<
output
->
dim
(
1
)
<<
"_"
<<
output
->
dim
(
2
)
<<
"_"
<<
output
->
dim
(
3
);
Tuner
<
uint32_t
>::
Get
()
->
template
TuneOrRun
<
cl_int
>(
ss
.
str
(),
lws
,
params_generator
,
func
);
cl_int
error
=
command_queue
.
enqueueNDRangeKernel
(
rb_kernel
,
cl
::
NullRange
,
cl
::
NDRange
(
static_cast
<
int32_t
>
(
channel_blocks
),
static_cast
<
int32_t
>
(
out_width
),
static_cast
<
int32_t
>
(
out_height
*
batch
)),
// TODO tuning
cl
::
NDRange
(
1
,
static_cast
<
int32_t
>
(
out_width
>
kwg_size
?
kwg_size
:
out_width
),
1
),
nullptr
,
OpenCLRuntime
::
Get
()
->
GetDefaultEvent
());
MACE_CHECK
(
error
==
CL_SUCCESS
,
error
);
}
}
template
struct
ResizeBilinearFunctor
<
DeviceType
::
OPENCL
,
float
>;
template
struct
ResizeBilinearFunctor
<
DeviceType
::
OPENCL
,
float
>;
...
...
mace/python/tools/tf_converter_lib.py
浏览文件 @
11a838dc
from
mace.proto
import
mace_pb2
from
mace.proto
import
mace_pb2
import
tensorflow
as
tf
import
tensorflow
as
tf
import
numpy
as
np
import
numpy
as
np
from
mace.python.tools.convert_util
import
tf_dtype_2_mace_dtype
# TODO: support NCHW formt, now only support NHWC.
# TODO: support NCHW formt, now only support NHWC.
padding_mode
=
{
padding_mode
=
{
...
@@ -111,18 +110,14 @@ def add_output_transform(name, net_def):
...
@@ -111,18 +110,14 @@ def add_output_transform(name, net_def):
epsilon_arg
.
name
=
'buffer_type'
epsilon_arg
.
name
=
'buffer_type'
epsilon_arg
.
i
=
buffer_type_map
[
'IN_OUT'
]
epsilon_arg
.
i
=
buffer_type_map
[
'IN_OUT'
]
def
add_output_shape
(
outputs
,
op
):
def
convert_op_outputs
(
mace_op_def
,
tf_op
):
mace_op_def
.
output
.
extend
([
output
.
name
for
output
in
tf_op
.
outputs
])
mace_op_def
.
output_type
.
extend
([
tf_dtype_2_mace_dtype
(
output
.
dtype
)
for
output
in
tf_op
.
outputs
])
output_shapes
=
[]
output_shapes
=
[]
for
output
in
tf_op
.
outputs
:
for
output
in
outputs
:
output_shape
=
mace_pb2
.
OutputShape
()
if
output
.
shape
is
not
None
and
not
output
.
shape
:
output_shape
.
dims
.
extend
(
output
.
shape
.
as_list
()
)
output_shape
=
mace_pb2
.
OutputShape
(
)
output_shapes
.
append
(
output_shape
)
output_shape
.
dims
.
extend
(
output
.
shape
.
as_list
()
)
mace_op_def
.
output_shape
.
extend
(
output_shapes
)
output_shapes
.
append
(
output_shape
)
op
.
output_shape
.
extend
(
output_shapes
)
def
convert_ops
(
unresolved_ops
,
dt
,
net_def
,
device
):
def
convert_ops
(
unresolved_ops
,
dt
,
net_def
,
device
):
ops_count
=
len
(
unresolved_ops
)
ops_count
=
len
(
unresolved_ops
)
...
@@ -185,7 +180,8 @@ def convert_ops(unresolved_ops, dt, net_def, device):
...
@@ -185,7 +180,8 @@ def convert_ops(unresolved_ops, dt, net_def, device):
final_op
=
relu_op
final_op
=
relu_op
resolved_count
=
4
resolved_count
=
4
convert_op_outputs
(
op_def
,
final_op
)
op_def
.
output
.
extend
([
output
.
name
for
output
in
final_op
.
outputs
])
add_output_shape
(
final_op
.
outputs
,
op_def
)
elif
first_op
.
type
==
'FusedBatchNorm'
:
elif
first_op
.
type
==
'FusedBatchNorm'
:
op_def
.
name
=
first_op
.
name
op_def
.
name
=
first_op
.
name
...
@@ -199,9 +195,7 @@ def convert_ops(unresolved_ops, dt, net_def, device):
...
@@ -199,9 +195,7 @@ def convert_ops(unresolved_ops, dt, net_def, device):
op_def
.
input
.
extend
([
input
.
name
for
input
in
first_op
.
inputs
])
op_def
.
input
.
extend
([
input
.
name
for
input
in
first_op
.
inputs
])
op_def
.
output
.
extend
([
first_op
.
outputs
[
0
].
name
])
op_def
.
output
.
extend
([
first_op
.
outputs
[
0
].
name
])
output_shape
=
mace_pb2
.
OutputShape
()
add_output_shape
(
first_op
.
outputs
,
op_def
)
output_shape
.
dims
.
extend
(
first_op
.
outputs
[
0
].
shape
.
as_list
())
op_def
.
output_shape
.
extend
([
output_shape
])
epsilon_arg
=
op_def
.
arg
.
add
()
epsilon_arg
=
op_def
.
arg
.
add
()
epsilon_arg
.
name
=
'epsilon'
epsilon_arg
.
name
=
'epsilon'
...
@@ -217,31 +211,42 @@ def convert_ops(unresolved_ops, dt, net_def, device):
...
@@ -217,31 +211,42 @@ def convert_ops(unresolved_ops, dt, net_def, device):
mul_2_op
=
unresolved_ops
[
4
]
mul_2_op
=
unresolved_ops
[
4
]
sub_op
=
unresolved_ops
[
5
]
sub_op
=
unresolved_ops
[
5
]
add_1_op
=
unresolved_ops
[
6
]
add_1_op
=
unresolved_ops
[
6
]
#
print (mul_op.type, mul_2_op.type, mul_1_op.type, sub_op.type)
print
(
mul_op
.
type
,
mul_2_op
.
type
,
mul_1_op
.
type
,
sub_op
.
type
)
if
mul_op
.
type
!=
'Mul'
or
mul_2_op
.
type
!=
'Mul'
or
\
if
mul_op
.
type
!=
'Mul'
or
mul_2_op
.
type
!=
'Mul'
or
\
mul_1_op
.
type
!=
'Mul'
or
sub_op
.
type
!=
'Sub'
or
add_1_op
.
type
!=
'Add'
:
mul_1_op
.
type
!=
'Mul'
or
sub_op
.
type
!=
'Sub'
or
add_1_op
.
type
!=
'Add'
:
raise
Exception
(
'Invalid BatchNorm Op'
)
raise
Exception
(
'Invalid BatchNorm Op'
)
get_input_tensor
(
mul_1_op
,
0
)
input_name
=
get_input_tensor
(
mul_1_op
,
0
).
name
input_name
=
get_input_tensor
(
mul_1_op
,
0
).
name
gamma
=
get_input_tensor
(
mul_op
,
1
).
name
gamma
=
get_input_tensor
(
mul_op
,
1
).
name
beta
=
get_input_tensor
(
sub_op
,
0
).
name
beta
=
get_input_tensor
(
sub_op
,
0
).
name
mean
=
get_input_tensor
(
mul_2_op
,
0
).
name
mean
=
get_input_tensor
(
mul_2_op
,
0
).
name
variance
=
get_input_tensor
(
add_op
,
0
).
name
variance
=
get_input_tensor
(
add_op
,
0
).
name
epsilon
=
get_input_tensor
(
add_op
,
1
).
name
op_def
.
name
=
first_op
.
name
[:
-
4
]
# remove /add
op_def
.
name
=
first_op
.
name
[:
-
4
]
# remove /add
op_def
.
type
=
'BatchNorm'
op_def
.
type
=
'BatchNorm'
op_def
.
input
.
extend
([
input_name
,
gamma
,
beta
,
mean
,
variance
,
epsilon
])
if
device
==
'gpu'
:
convert_op_outputs
(
op_def
,
add_1_op
)
op_def
.
input
.
extend
([
input_name
])
for
tensor_name
in
[
gamma
,
beta
,
mean
,
variance
]:
output_name
=
add_buffer_to_image
(
tensor_name
,
"ARGUMENT"
,
dt
,
net_def
)
op_def
.
input
.
extend
([
output_name
])
else
:
op_def
.
input
.
extend
([
input_name
,
gamma
,
beta
,
mean
,
variance
])
op_def
.
output
.
extend
([
output
.
name
for
output
in
add_1_op
.
outputs
])
add_output_shape
(
add_1_op
.
outputs
,
op_def
)
epsilon_arg
=
op_def
.
arg
.
add
()
epsilon_arg
.
name
=
'epsilon'
epsilon_arg
.
f
=
get_input_tensor
(
add_op
,
1
).
eval
().
astype
(
np
.
float
)
data_format_arg
=
op_def
.
arg
.
add
()
data_format_arg
.
name
=
'data_format'
data_format_arg
.
s
=
'NHWC'
resolved_count
=
7
resolved_count
=
7
elif
first_op
.
type
==
'Relu6'
:
elif
first_op
.
type
==
'Relu6'
:
op_def
.
name
=
first_op
.
name
op_def
.
name
=
first_op
.
name
op_def
.
type
=
'Relu'
op_def
.
type
=
'Relu'
op_def
.
input
.
extend
([
input
.
name
for
input
in
first_op
.
inputs
])
op_def
.
input
.
extend
([
input
.
name
for
input
in
first_op
.
inputs
])
convert_op_outputs
(
op_def
,
first_op
)
op_def
.
output
.
extend
([
output
.
name
for
output
in
first_op
.
outputs
]
)
add_output_shape
(
first_op
.
outputs
,
op_def
)
max_limit_arg
=
op_def
.
arg
.
add
()
max_limit_arg
=
op_def
.
arg
.
add
()
max_limit_arg
.
name
=
'max_limit'
max_limit_arg
.
name
=
'max_limit'
max_limit_arg
.
f
=
6
max_limit_arg
.
f
=
6
...
@@ -249,8 +254,8 @@ def convert_ops(unresolved_ops, dt, net_def, device):
...
@@ -249,8 +254,8 @@ def convert_ops(unresolved_ops, dt, net_def, device):
op_def
.
name
=
first_op
.
name
op_def
.
name
=
first_op
.
name
op_def
.
type
=
'Pooling'
op_def
.
type
=
'Pooling'
op_def
.
input
.
extend
([
input
.
name
for
input
in
first_op
.
inputs
])
op_def
.
input
.
extend
([
input
.
name
for
input
in
first_op
.
inputs
])
convert_op_outputs
(
op_def
,
first_op
)
op_def
.
output
.
extend
([
output
.
name
for
output
in
first_op
.
outputs
]
)
add_output_shape
(
first_op
.
outputs
,
op_def
)
pooling_type_arg
=
op_def
.
arg
.
add
()
pooling_type_arg
=
op_def
.
arg
.
add
()
pooling_type_arg
.
name
=
'pooling_type'
pooling_type_arg
.
name
=
'pooling_type'
pooling_type_arg
.
i
=
pooling_type_mode
[
first_op
.
type
]
pooling_type_arg
.
i
=
pooling_type_mode
[
first_op
.
type
]
...
@@ -270,31 +275,46 @@ def convert_ops(unresolved_ops, dt, net_def, device):
...
@@ -270,31 +275,46 @@ def convert_ops(unresolved_ops, dt, net_def, device):
op_def
.
name
=
first_op
.
name
op_def
.
name
=
first_op
.
name
op_def
.
type
=
"AddN"
op_def
.
type
=
"AddN"
op_def
.
input
.
extend
([
input
.
name
for
input
in
first_op
.
inputs
])
op_def
.
input
.
extend
([
input
.
name
for
input
in
first_op
.
inputs
])
convert_op_outputs
(
op_def
,
first_op
)
op_def
.
output
.
extend
([
output
.
name
for
output
in
first_op
.
outputs
])
add_output_shape
(
first_op
.
outputs
,
op_def
)
elif
first_op
.
type
==
'ConcatV2'
:
elif
first_op
.
type
==
'ConcatV2'
:
op_def
.
name
=
first_op
.
name
op_def
.
name
=
first_op
.
name
op_def
.
type
=
"Concat"
op_def
.
type
=
"Concat"
op_def
.
input
.
extend
([
first_op
.
inputs
[
i
].
name
for
i
in
xrange
(
2
)])
op_def
.
input
.
extend
([
first_op
.
inputs
[
i
].
name
for
i
in
xrange
(
2
)])
op_def
.
output
.
extend
([
output
.
name
for
output
in
first_op
.
outputs
])
axis_arg
=
op_def
.
arg
.
add
()
axis_arg
=
op_def
.
arg
.
add
()
axis_arg
.
name
=
'axis'
axis_arg
.
name
=
'axis'
axis_arg
.
i
=
get_input_tensor
(
first_op
,
2
).
eval
().
astype
(
np
.
int32
)
axis_arg
.
i
=
get_input_tensor
(
first_op
,
2
).
eval
().
astype
(
np
.
int32
)
convert_op_outputs
(
op_def
,
first_op
)
add_output_shape
(
first_op
.
outputs
,
op_def
)
elif
first_op
.
type
==
'ResizeBilinear'
:
elif
first_op
.
type
==
'ResizeBilinear'
:
op_def
.
name
=
first_op
.
name
op_def
.
name
=
first_op
.
name
op_def
.
type
=
"ResizeBilinear"
op_def
.
type
=
"ResizeBilinear"
op_def
.
input
.
extend
([
first_op
.
inputs
[
0
].
name
])
op_def
.
input
.
extend
([
first_op
.
inputs
[
0
].
name
])
op_def
.
output
.
extend
([
output
.
name
for
output
in
first_op
.
outputs
])
size_arg
=
op_def
.
arg
.
add
()
size_arg
=
op_def
.
arg
.
add
()
size_arg
.
name
=
'size'
size_arg
.
name
=
'size'
size_arg
.
ints
.
extend
(
get_input_tensor
(
first_op
,
1
).
eval
().
astype
(
np
.
int32
).
flat
)
size_arg
.
ints
.
extend
(
get_input_tensor
(
first_op
,
1
).
eval
().
astype
(
np
.
int32
).
flat
)
size_arg
=
op_def
.
arg
.
add
()
size_arg
=
op_def
.
arg
.
add
()
size_arg
.
name
=
'align_corners'
size_arg
.
name
=
'align_corners'
size_arg
.
i
=
first_op
.
get_attr
(
'align_corners'
)
size_arg
.
i
=
first_op
.
get_attr
(
'align_corners'
)
convert_op_outputs
(
op_def
,
first_op
)
add_output_shape
(
first_op
.
outputs
,
op_def
)
elif
first_op
.
type
in
[
'Relu'
,
'SpaceToBatchND'
,
'BatchToSpaceND'
,
'BiasAdd'
]:
elif
first_op
.
type
==
'BiasAdd'
:
op_def
.
name
=
first_op
.
name
op_def
.
type
=
first_op
.
type
op_def
.
input
.
extend
([
first_op
.
inputs
[
0
].
name
])
if
device
==
'gpu'
:
output_name
=
add_buffer_to_image
(
first_op
.
inputs
[
1
].
name
,
"ARGUMENT"
,
dt
,
net_def
)
op_def
.
input
.
extend
([
output_name
])
else
:
op_def
.
input
.
extend
([
first_op
.
inputs
[
1
].
name
])
op_def
.
output
.
extend
([
output
.
name
for
output
in
first_op
.
outputs
])
add_output_shape
(
first_op
.
outputs
,
op_def
)
elif
first_op
.
type
in
[
'Relu'
,
'SpaceToBatchND'
,
'BatchToSpaceND'
]:
op_def
.
name
=
first_op
.
name
op_def
.
name
=
first_op
.
name
op_def
.
type
=
first_op
.
type
op_def
.
type
=
first_op
.
type
op_def
.
input
.
extend
([
input
.
name
for
input
in
first_op
.
inputs
])
op_def
.
input
.
extend
([
input
.
name
for
input
in
first_op
.
inputs
])
convert_op_outputs
(
op_def
,
first_op
)
op_def
.
output
.
extend
([
output
.
name
for
output
in
first_op
.
outputs
])
add_output_shape
(
first_op
.
outputs
,
op_def
)
else
:
else
:
raise
Exception
(
'Unknown Op: %s, type: %s'
%
(
first_op
.
name
,
first_op
.
type
))
raise
Exception
(
'Unknown Op: %s, type: %s'
%
(
first_op
.
name
,
first_op
.
type
))
pass
pass
...
...
tools/validate.py
浏览文件 @
11a838dc
...
@@ -4,6 +4,7 @@ import os
...
@@ -4,6 +4,7 @@ import os
import
os.path
import
os.path
import
tensorflow
as
tf
import
tensorflow
as
tf
import
numpy
as
np
import
numpy
as
np
from
scipy
import
spatial
from
tensorflow
import
gfile
from
tensorflow
import
gfile
...
@@ -34,9 +35,12 @@ def load_data(file):
...
@@ -34,9 +35,12 @@ def load_data(file):
def
valid_output
(
out_shape
,
mace_out_file
,
tf_out_value
):
def
valid_output
(
out_shape
,
mace_out_file
,
tf_out_value
):
mace_out_value
=
load_data
(
mace_out_file
)
mace_out_value
=
load_data
(
mace_out_file
)
if
mace_out_value
.
size
!=
0
:
if
mace_out_value
.
size
!=
0
:
similarity
=
(
1
-
spatial
.
distance
.
cosine
(
tf_out_value
.
flat
,
mace_out_value
))
print
'MACE VS TF similarity: '
,
similarity
if
similarity
>
0.999
:
print
'=======================Passed! Haha======================'
mace_out_value
=
mace_out_value
.
reshape
(
out_shape
)
mace_out_value
=
mace_out_value
.
reshape
(
out_shape
)
np
.
testing
.
assert_allclose
(
mace_out_value
,
tf_out_value
,
rtol
=
0.05
)
np
.
testing
.
assert_allclose
(
mace_out_value
,
tf_out_value
,
rtol
=
0.05
)
print
'=======================Passed! Haha======================'
else
:
else
:
print
'=======================Skip empty node==================='
print
'=======================Skip empty node==================='
...
@@ -62,7 +66,7 @@ def run_model(input_shape):
...
@@ -62,7 +66,7 @@ def run_model(input_shape):
input_value
=
input_value
.
reshape
(
input_shape
)
input_value
=
input_value
.
reshape
(
input_shape
)
output_value
=
session
.
run
(
output_node
,
feed_dict
=
{
input_node
:
[
input_value
]})
output_value
=
session
.
run
(
output_node
,
feed_dict
=
{
input_node
:
[
input_value
]})
# output_value.astype(np.float32).tofile( os.path.dirname(FLAGS.input_file) + '/tf_weigh
t')
output_value
.
astype
(
np
.
float32
).
tofile
(
os
.
path
.
dirname
(
FLAGS
.
input_file
)
+
'/tf_ou
t'
)
return
output_value
return
output_value
def
main
(
unused_args
):
def
main
(
unused_args
):
...
...
tools/validate_gcn.sh
浏览文件 @
11a838dc
...
@@ -2,10 +2,10 @@
...
@@ -2,10 +2,10 @@
# Must run at root dir of mace project.
# Must run at root dir of mace project.
set
+x
set
+x
Usage
()
{
Usage
()
{
echo
'Usage: bash tools/validate_gcn.sh tf_model_
fil
e'
echo
'Usage: bash tools/validate_gcn.sh tf_model_
path image_siz
e'
}
}
if
[
$#
!=
1
]
;
then
if
[
$#
!=
2
]
;
then
Usage
Usage
exit
-1
exit
-1
fi
fi
...
@@ -19,12 +19,13 @@ OUTPUT_FILE_NAME='gcn.out'
...
@@ -19,12 +19,13 @@ OUTPUT_FILE_NAME='gcn.out'
OUTPUT_LIST_FILE
=
'gcn.list'
OUTPUT_LIST_FILE
=
'gcn.list'
PHONE_DATA_DIR
=
"/data/local/tmp/
${
MACE_MODEL_NAME
}
"
PHONE_DATA_DIR
=
"/data/local/tmp/
${
MACE_MODEL_NAME
}
"
KERNEL_DIR
=
"
${
PHONE_DATA_DIR
}
/cl/"
KERNEL_DIR
=
"
${
PHONE_DATA_DIR
}
/cl/"
IMAGE_SIZE
=
$2
# Step 1: Generate input data
# Step 1: Generate input data
echo
"Step 1: Generate input data"
echo
"Step 1: Generate input data"
python tools/validate.py
--generate_data
true
--random_seed
1
\
python tools/validate.py
--generate_data
true
--random_seed
1
\
--input_file
=
${
MODEL_DIR
}
/
${
INPUT_FILE_NAME
}
\
--input_file
=
${
MODEL_DIR
}
/
${
INPUT_FILE_NAME
}
\
--input_shape
=
512,512,3
--input_shape
=
"
${
IMAGE_SIZE
}
,
${
IMAGE_SIZE
}
,3"
# Step 2: convert tf model to mace model
# Step 2: convert tf model to mace model
echo
"Step 2: convert tf model to mace model and optimize memory"
echo
"Step 2: convert tf model to mace model and optimize memory"
...
@@ -56,14 +57,15 @@ adb push bazel-bin/mace/examples/mace_run ${PHONE_DATA_DIR}
...
@@ -56,14 +57,15 @@ adb push bazel-bin/mace/examples/mace_run ${PHONE_DATA_DIR}
num_threads
=
${
1
:-
4
}
num_threads
=
${
1
:-
4
}
adb </dev/null shell
MACE_RUN_PARAMETER_PATH
=
${
PHONE_DATA_DIR
}
/mace_run.config
\
adb </dev/null shell
MACE_CPP_MIN_VLOG_LEVEL
=
0
\
MACE_RUN_PARAMETER_PATH
=
${
PHONE_DATA_DIR
}
/mace_run.config
\
MACE_KERNEL_PATH
=
$KERNEL_DIR
\
MACE_KERNEL_PATH
=
$KERNEL_DIR
\
OMP_NUM_THREADS
=
$num_threads
\
OMP_NUM_THREADS
=
$num_threads
\
${
PHONE_DATA_DIR
}
/mace_run
\
${
PHONE_DATA_DIR
}
/mace_run
\
--model
=
${
PHONE_DATA_DIR
}
/
${
MACE_OPT_MODEL_NAME
}
\
--model
=
${
PHONE_DATA_DIR
}
/
${
MACE_OPT_MODEL_NAME
}
\
--input
=
mace_input_node
\
--input
=
mace_input_node
\
--output
=
mace_output_node
\
--output
=
mace_output_node
\
--input_shape
=
1,512,512,3
\
--input_shape
=
"1,
${
IMAGE_SIZE
}
,
${
IMAGE_SIZE
}
,3"
\
--input_file
=
${
PHONE_DATA_DIR
}
/
${
INPUT_FILE_NAME
}
\
--input_file
=
${
PHONE_DATA_DIR
}
/
${
INPUT_FILE_NAME
}
\
--output_file
=
${
PHONE_DATA_DIR
}
/
${
OUTPUT_FILE_NAME
}
\
--output_file
=
${
PHONE_DATA_DIR
}
/
${
OUTPUT_FILE_NAME
}
\
--device
=
OPENCL
\
--device
=
OPENCL
\
...
@@ -81,4 +83,5 @@ python tools/validate.py --model_file ${TF_MODEL_FILE_PATH} \
...
@@ -81,4 +83,5 @@ python tools/validate.py --model_file ${TF_MODEL_FILE_PATH} \
--mace_out_file
${
MODEL_DIR
}
/
${
OUTPUT_FILE_NAME
}
\
--mace_out_file
${
MODEL_DIR
}
/
${
OUTPUT_FILE_NAME
}
\
--input_node
input
\
--input_node
input
\
--output_node
GCN/br_result_2/fcn_br
\
--output_node
GCN/br_result_2/fcn_br
\
--output_shape
1,512,512,2
--input_shape
"
${
IMAGE_SIZE
}
,
${
IMAGE_SIZE
}
,3"
\
--output_shape
"1,
${
IMAGE_SIZE
}
,
${
IMAGE_SIZE
}
,2"
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录