提交 a3a158c5 编写于 作者: C caoying03

Merge branch 'develop' into fix_nce

#!/usr/bin/env python
from paddle.trainer_config_helpers import *
height = 224
width = 224
num_class = 1000
batch_size = get_config_arg('batch_size', int, 64)
layer_num = get_config_arg("layer_num", int, 50)
is_test = get_config_arg("is_test", bool, False)
args = {'height': height, 'width': width, 'color': True, 'num_class': num_class}
define_py_data_sources2(
"train.list", None, module="provider", obj="process", args=args)
settings(
batch_size=batch_size,
learning_rate=0.01 / batch_size,
learning_method=MomentumOptimizer(0.9),
regularization=L2Regularization(0.0005 * batch_size))
#######################Network Configuration #############
def conv_bn_layer(name,
input,
filter_size,
num_filters,
stride,
padding,
channels=None,
active_type=ReluActivation()):
"""
A wrapper for conv layer with batch normalization layers.
Note:
conv layer has no activation.
"""
tmp = img_conv_layer(
name=name + "_conv",
input=input,
filter_size=filter_size,
num_channels=channels,
num_filters=num_filters,
stride=stride,
padding=padding,
act=LinearActivation(),
bias_attr=False)
return batch_norm_layer(
name=name + "_bn", input=tmp, act=active_type, use_global_stats=is_test)
def bottleneck_block(name, input, num_filters1, num_filters2):
"""
A wrapper for bottlenect building block in ResNet.
Last conv_bn_layer has no activation.
Addto layer has activation of relu.
"""
last_name = conv_bn_layer(
name=name + '_branch2a',
input=input,
filter_size=1,
num_filters=num_filters1,
stride=1,
padding=0)
last_name = conv_bn_layer(
name=name + '_branch2b',
input=last_name,
filter_size=3,
num_filters=num_filters1,
stride=1,
padding=1)
last_name = conv_bn_layer(
name=name + '_branch2c',
input=last_name,
filter_size=1,
num_filters=num_filters2,
stride=1,
padding=0,
active_type=LinearActivation())
return addto_layer(
name=name + "_addto", input=[input, last_name], act=ReluActivation())
def mid_projection(name, input, num_filters1, num_filters2, stride=2):
"""
A wrapper for middile projection in ResNet.
projection shortcuts are used for increasing dimensions,
and other shortcuts are identity
branch1: projection shortcuts are used for increasing
dimensions, has no activation.
branch2x: bottleneck building block, shortcuts are identity.
"""
# stride = 2
branch1 = conv_bn_layer(
name=name + '_branch1',
input=input,
filter_size=1,
num_filters=num_filters2,
stride=stride,
padding=0,
active_type=LinearActivation())
last_name = conv_bn_layer(
name=name + '_branch2a',
input=input,
filter_size=1,
num_filters=num_filters1,
stride=stride,
padding=0)
last_name = conv_bn_layer(
name=name + '_branch2b',
input=last_name,
filter_size=3,
num_filters=num_filters1,
stride=1,
padding=1)
last_name = conv_bn_layer(
name=name + '_branch2c',
input=last_name,
filter_size=1,
num_filters=num_filters2,
stride=1,
padding=0,
active_type=LinearActivation())
return addto_layer(
name=name + "_addto", input=[branch1, last_name], act=ReluActivation())
img = data_layer(name='image', size=height * width * 3)
def deep_res_net(res2_num=3, res3_num=4, res4_num=6, res5_num=3):
"""
A wrapper for 50,101,152 layers of ResNet.
res2_num: number of blocks stacked in conv2_x
res3_num: number of blocks stacked in conv3_x
res4_num: number of blocks stacked in conv4_x
res5_num: number of blocks stacked in conv5_x
"""
# For ImageNet
# conv1: 112x112
tmp = conv_bn_layer(
"conv1",
input=img,
filter_size=7,
channels=3,
num_filters=64,
stride=2,
padding=3)
tmp = img_pool_layer(name="pool1", input=tmp, pool_size=3, stride=2)
# conv2_x: 56x56
tmp = mid_projection(
name="res2_1", input=tmp, num_filters1=64, num_filters2=256, stride=1)
for i in xrange(2, res2_num + 1, 1):
tmp = bottleneck_block(
name="res2_" + str(i), input=tmp, num_filters1=64, num_filters2=256)
# conv3_x: 28x28
tmp = mid_projection(
name="res3_1", input=tmp, num_filters1=128, num_filters2=512)
for i in xrange(2, res3_num + 1, 1):
tmp = bottleneck_block(
name="res3_" + str(i),
input=tmp,
num_filters1=128,
num_filters2=512)
# conv4_x: 14x14
tmp = mid_projection(
name="res4_1", input=tmp, num_filters1=256, num_filters2=1024)
for i in xrange(2, res4_num + 1, 1):
tmp = bottleneck_block(
name="res4_" + str(i),
input=tmp,
num_filters1=256,
num_filters2=1024)
# conv5_x: 7x7
tmp = mid_projection(
name="res5_1", input=tmp, num_filters1=512, num_filters2=2048)
for i in xrange(2, res5_num + 1, 1):
tmp = bottleneck_block(
name="res5_" + str(i),
input=tmp,
num_filters1=512,
num_filters2=2048)
tmp = img_pool_layer(
name='avgpool',
input=tmp,
pool_size=7,
stride=1,
pool_type=AvgPooling())
return fc_layer(input=tmp, size=num_class, act=SoftmaxActivation())
if layer_num == 50:
resnet = deep_res_net(3, 4, 6, 3)
elif layer_num == 101:
resnet = deep_res_net(3, 4, 23, 3)
elif layer_num == 152:
resnet = deep_res_net(3, 8, 36, 3)
else:
print("Wrong layer number.")
lbl = data_layer(name="label", size=num_class)
loss = cross_entropy(name='loss', input=resnet, label=lbl)
inputs(img, lbl)
outputs(loss)
...@@ -5,22 +5,23 @@ function train() { ...@@ -5,22 +5,23 @@ function train() {
export OMP_DYNAMIC="FALSE" export OMP_DYNAMIC="FALSE"
export KMP_AFFINITY="granularity=fine,compact,0,0" export KMP_AFFINITY="granularity=fine,compact,0,0"
topology=$1 topology=$1
bs=$2 layer_num=$2
use_mkldnn=$3 bs=$3
if [ $3 == "True" ]; then use_mkldnn=$4
if [ $4 == "True" ]; then
thread=1 thread=1
log="logs/${topology}-mkldnn-${bs}.log" log="logs/${topology}-${layer_num}-mkldnn-${bs}.log"
elif [ $3 == "False" ]; then elif [ $4 == "False" ]; then
thread=`nproc` thread=`nproc`
# each trainer_count use only 1 core to avoid conflict # each trainer_count use only 1 core to avoid conflict
export OMP_NUM_THREADS=1 export OMP_NUM_THREADS=1
export MKL_NUM_THREADS=1 export MKL_NUM_THREADS=1
log="logs/${topology}-${thread}mklml-${bs}.log" log="logs/${topology}-${layer_num}-${thread}mklml-${bs}.log"
else else
echo "Wrong input $3, use True or False." echo "Wrong input $3, use True or False."
exit 0 exit 0
fi fi
args="batch_size=${bs}" args="batch_size=${bs},layer_num=${layer_num}"
config="${topology}.py" config="${topology}.py"
paddle train --job=time \ paddle train --job=time \
--config=$config \ --config=$config \
...@@ -40,12 +41,9 @@ if [ ! -d "logs" ]; then ...@@ -40,12 +41,9 @@ if [ ! -d "logs" ]; then
mkdir logs mkdir logs
fi fi
#========== mkldnn ==========# for use_mkldnn in True False; do
train vgg 64 True for batchsize in 64 128 256; do
train vgg 128 True train vgg 19 $batchsize $use_mkldnn
train vgg 256 True train resnet 50 $batchsize $use_mkldnn
done
#========== mklml ===========# done
train vgg 64 False
train vgg 128 False
train vgg 256 False
...@@ -13,7 +13,7 @@ define_py_data_sources2( ...@@ -13,7 +13,7 @@ define_py_data_sources2(
settings( settings(
batch_size=batch_size, batch_size=batch_size,
learning_rate=0.01 / batch_size, learning_rate=0.001 / batch_size,
learning_method=MomentumOptimizer(0.9), learning_method=MomentumOptimizer(0.9),
regularization=L2Regularization(0.0005 * batch_size)) regularization=L2Regularization(0.0005 * batch_size))
......
...@@ -46,16 +46,20 @@ IF(${CBLAS_PROVIDER} STREQUAL "MKLML") ...@@ -46,16 +46,20 @@ IF(${CBLAS_PROVIDER} STREQUAL "MKLML")
MESSAGE(STATUS "Build MKLDNN with ${MKLDNN_MKLROOT}") MESSAGE(STATUS "Build MKLDNN with ${MKLDNN_MKLROOT}")
ENDIF() ENDIF()
SET(MKLDNN_CFLAG "${CMAKE_C_FLAGS} -Wno-error=strict-overflow")
SET(MKLDNN_CXXFLAG "${CMAKE_CXX_FLAGS} -Wno-error=strict-overflow")
ExternalProject_Add( ExternalProject_Add(
${MKLDNN_PROJECT} ${MKLDNN_PROJECT}
${EXTERNAL_PROJECT_LOG_ARGS} ${EXTERNAL_PROJECT_LOG_ARGS}
DEPENDS ${MKLDNN_DEPENDS} DEPENDS ${MKLDNN_DEPENDS}
GIT_REPOSITORY "https://github.com/01org/mkl-dnn.git" GIT_REPOSITORY "https://github.com/01org/mkl-dnn.git"
GIT_TAG "v0.10" GIT_TAG "v0.11"
PREFIX ${MKLDNN_SOURCES_DIR} PREFIX ${MKLDNN_SOURCES_DIR}
UPDATE_COMMAND "" UPDATE_COMMAND ""
CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=${MKLDNN_INSTALL_DIR} CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=${MKLDNN_INSTALL_DIR}
CMAKE_ARGS -DMKLROOT=${MKLDNN_MKLROOT} CMAKE_ARGS -DMKLROOT=${MKLDNN_MKLROOT}
CMAKE_ARGS -DCMAKE_C_FLAGS=${MKLDNN_CFLAG}
CMAKE_ARGS -DCMAKE_CXX_FLAGS=${MKLDNN_CXXFLAG}
CMAKE_CACHE_ARGS -DCMAKE_INSTALL_PREFIX:PATH=${MKLDNN_INSTALL_DIR} CMAKE_CACHE_ARGS -DCMAKE_INSTALL_PREFIX:PATH=${MKLDNN_INSTALL_DIR}
-DMKLROOT:PATH=${MKLDNN_MKLROOT} -DMKLROOT:PATH=${MKLDNN_MKLROOT}
) )
......
...@@ -27,8 +27,8 @@ ENDIF() ...@@ -27,8 +27,8 @@ ENDIF()
INCLUDE(ExternalProject) INCLUDE(ExternalProject)
SET(MKLML_PROJECT "extern_mklml") SET(MKLML_PROJECT "extern_mklml")
SET(MKLML_VER "mklml_lnx_2018.0.20170720") SET(MKLML_VER "mklml_lnx_2018.0.1.20171007")
SET(MKLML_URL "https://github.com/01org/mkl-dnn/releases/download/v0.10/${MKLML_VER}.tgz") SET(MKLML_URL "https://github.com/01org/mkl-dnn/releases/download/v0.11/${MKLML_VER}.tgz")
SET(MKLML_SOURCE_DIR "${THIRD_PARTY_PATH}/mklml") SET(MKLML_SOURCE_DIR "${THIRD_PARTY_PATH}/mklml")
SET(MKLML_DOWNLOAD_DIR "${MKLML_SOURCE_DIR}/src/${MKLML_PROJECT}") SET(MKLML_DOWNLOAD_DIR "${MKLML_SOURCE_DIR}/src/${MKLML_PROJECT}")
SET(MKLML_DST_DIR "mklml") SET(MKLML_DST_DIR "mklml")
......
...@@ -2,112 +2,9 @@ ...@@ -2,112 +2,9 @@
Data Reader Interface and DataSets Data Reader Interface and DataSets
================================== ==================================
.. toctree::
:maxdepth: 1
DataTypes data/data_reader.rst
========= data/image.rst
data/dataset.rst
.. automodule:: paddle.v2.data_type
:members:
:noindex:
DataFeeder
==========
.. automodule:: paddle.v2.data_feeder
:members:
:noindex:
Reader
======
.. automodule:: paddle.v2.reader
:members:
:noindex:
.. automodule:: paddle.v2.reader.creator
:members:
:noindex:
minibatch
=========
.. automodule:: paddle.v2.minibatch
:members:
:noindex:
Dataset
=======
.. automodule:: paddle.v2.dataset
:members:
:noindex:
mnist
+++++
.. automodule:: paddle.v2.dataset.mnist
:members:
:noindex:
cifar
+++++
.. automodule:: paddle.v2.dataset.cifar
:members:
:noindex:
conll05
+++++++
.. automodule:: paddle.v2.dataset.conll05
:members: get_dict,get_embedding,test
:noindex:
imdb
++++
.. automodule:: paddle.v2.dataset.imdb
:members:
:noindex:
imikolov
++++++++
.. automodule:: paddle.v2.dataset.imikolov
:members:
:noindex:
movielens
+++++++++
.. automodule:: paddle.v2.dataset.movielens
:members:
:noindex:
.. autoclass:: paddle.v2.dataset.movielens.MovieInfo
:noindex:
.. autoclass:: paddle.v2.dataset.movielens.UserInfo
:noindex:
sentiment
+++++++++
.. automodule:: paddle.v2.dataset.sentiment
:members:
:noindex:
uci_housing
+++++++++++
.. automodule:: paddle.v2.dataset.uci_housing
:members:
:noindex:
wmt14
+++++
.. automodule:: paddle.v2.dataset.wmt14
:members:
:noindex:
=====================
Data Reader Interface
=====================
DataTypes
=========
.. automodule:: paddle.v2.data_type
:members:
:noindex:
DataFeeder
==========
.. automodule:: paddle.v2.data_feeder
:members:
:noindex:
Reader
======
.. automodule:: paddle.v2.reader
:members:
:noindex:
.. automodule:: paddle.v2.reader.creator
:members:
:noindex:
minibatch
=========
.. automodule:: paddle.v2.minibatch
:members:
:noindex:
Dataset
=======
.. automodule:: paddle.v2.dataset
:members:
:noindex:
mnist
+++++
.. automodule:: paddle.v2.dataset.mnist
:members:
:noindex:
cifar
+++++
.. automodule:: paddle.v2.dataset.cifar
:members:
:noindex:
conll05
+++++++
.. automodule:: paddle.v2.dataset.conll05
:members: get_dict,get_embedding,test
:noindex:
imdb
++++
.. automodule:: paddle.v2.dataset.imdb
:members:
:noindex:
imikolov
++++++++
.. automodule:: paddle.v2.dataset.imikolov
:members:
:noindex:
movielens
+++++++++
.. automodule:: paddle.v2.dataset.movielens
:members:
:noindex:
.. autoclass:: paddle.v2.dataset.movielens.MovieInfo
:noindex:
.. autoclass:: paddle.v2.dataset.movielens.UserInfo
:noindex:
sentiment
+++++++++
.. automodule:: paddle.v2.dataset.sentiment
:members:
:noindex:
uci_housing
+++++++++++
.. automodule:: paddle.v2.dataset.uci_housing
:members:
:noindex:
wmt14
+++++
.. automodule:: paddle.v2.dataset.wmt14
:members:
:noindex:
Image Interface
===============
.. automodule:: paddle.v2.image
:members:
...@@ -55,6 +55,6 @@ After float16 class is available, some of the future items are below: ...@@ -55,6 +55,6 @@ After float16 class is available, some of the future items are below:
- Update pybind/tensor_py.h to bind c++ float16 with numpy float16. - Update pybind/tensor_py.h to bind c++ float16 with numpy float16.
- Modify `IndicateDataType()` method in `framework/operator.h` to make it compatible with float16. - Modify `GetKernelType()` method in `framework/operator.h` to make it compatible with float16.
- Create a type-casting operator that can convert the data type in tensor between float16 and other types. - Create a type-casting operator that can convert the data type in tensor between float16 and other types.
# Design: Sequence Decoder Generating LoDTensors
In tasks such as machine translation and image to text,
a [sequence decoder](https://github.com/PaddlePaddle/book/blob/develop/08.machine_translation/README.md) is necessary to generate sequences.
This documentation describes how to implement the sequence decoder as an operator.
## Beam Search based Decoder
The [beam search algorithm](https://en.wikipedia.org/wiki/Beam_search) is necessary when generating sequences,
it is a heuristic search algorithm that explores the paths by expanding the most promising node in a limited set.
In the old version of PaddlePaddle, a C++ class `RecurrentGradientMachine` implements the general sequence decoder based on beam search,
due to the complexity, the implementation relays on a lot of special data structures,
quite trivial and hard to be customized by users.
There are a lot of heuristic tricks in the sequence generation tasks,
so the flexibility of sequence decoder is very important to users.
During PaddlePaddle's refactoring work,
some new concept is proposed such as [LoDTensor](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/lod_tensor.md) and [TensorArray](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/tensor_array.md) that can better support sequence usage,
and they can help to make the implementation of beam search based sequence decoder **more transparent and modular** .
For example, the RNN sates, candidates IDs and probabilities of beam search can be represented as `LoDTensors`;
the selected candidate's IDs in each time step can be stored in a `TensorArray`, and `Packed` to the sentences translated.
## Changing LoD's absolute offset to relative offsets
The current `LoDTensor` is designed to store levels of variable-length sequences,
it stores several arrays of integers each represents a level.
The integers in each level represents the begin and end (not inclusive) offset of a sequence **in the underlying tensor**,
let's call this format the **absolute-offset LoD** for clear.
The relative-offset LoD can fast retrieve any sequence but fails to represent empty sequences, for example, a two-level LoD is as follows
```python
[[0, 3, 9]
[0, 2, 3, 3, 3, 9]]
```
The first level tells that there are two sequences:
- the first's offset is `[0, 3)`
- the second's offset is `[3, 9)`
while on the second level, there are several empty sequences that both begin and end at `3`.
It is impossible to tell how many empty second-level sequences exist in the first-level sequences.
There are many scenarios that relay on empty sequence representation,
such as machine translation or image to text, one instance has no translations or the empty candidate set for a prefix.
So let's introduce another format of LoD,
it stores **the offsets of the lower level sequences** and is called **relative-offset** LoD.
For example, to represent the same sequences of the above data
```python
[[0, 3, 6]
[0, 2, 3, 3, 3, 9]]
```
the first level represents that there are two sequences,
their offsets in the second-level LoD is `[0, 3)` and `[3, 5)`.
The second level is the same with the relative offset example because the lower level is a tensor.
It is easy to find out the second sequence in the first-level LoD has two empty sequences.
The following demos are based on relative-offset LoD.
## Usage in a simple machine translation model
Let's start from a simple machine translation model that is simplified from [machine translation chapter](https://github.com/PaddlePaddle/book/tree/develop/08.machine_translation) to draw a simple blueprint of what a sequence decoder can do and how to use it.
The model has an encoder that learns the semantic vector from a sequence,
and a decoder which uses the sequence decoder to generate new sentences.
**Encoder**
```python
import paddle as pd
dict_size = 8000
source_dict_size = dict_size
target_dict_size = dict_size
word_vector_dim = 128
encoder_dim = 128
decoder_dim = 128
beam_size = 5
max_length = 120
# encoder
src_word_id = pd.data(
name='source_language_word',
type=pd.data.integer_value_sequence(source_dict_dim))
src_embedding = pd.embedding(size=source_dict_size, size=word_vector_dim)
src_word_vec = pd.lookup(src_embedding, src_word_id)
encoder_out_seq = pd.gru(input=src_word_vec, size=encoder_dim)
encoder_ctx = pd.last_seq(encoder_out_seq)
# encoder_ctx_proj is the learned semantic vector
encoder_ctx_proj = pd.fc(
encoder_ctx, size=decoder_dim, act=pd.activation.Tanh(), bias=None)
```
**Decoder**
```python
def generate():
decoder = pd.while_loop()
with decoder.step():
decoder_mem = decoder.memory(init=encoder_ctx) # mark the memory
generated_ids = decoder.memory() # TODO init to batch_size <s>s
generated_scores = decoder.memory() # TODO init to batch_size 1s or 0s
target_word = pd.lookup(trg_embedding, gendrated_ids)
# expand encoder_ctx's batch to fit target_word's lod
# for example
# decoder_mem.lod is
# [[0 1 3],
# [0 1 3 6]]
# its tensor content is [a1 a2 a3 a4 a5]
# which means there are 2 sentences to translate
# - the first sentence has 1 translation prefixes, the offsets are [0, 1)
# - the second sentence has 2 translation prefixes, the offsets are [1, 3) and [3, 6)
# the target_word.lod is
# [[0, 1, 6]
# [0, 2, 4, 7, 9 12]]
# which means 2 sentences to translate, each has 1 and 5 prefixes
# the first prefix has 2 candidates
# the following has 2, 3, 2, 3 candidates
# the encoder_ctx_expanded's content will be
# [a1 a1 a2 a2 a3 a3 a3 a4 a4 a5 a5 a5]
encoder_ctx_expanded = pd.lod_expand(encoder_ctx, target_word)
decoder_input = pd.fc(
act=pd.activation.Linear(),
input=[target_word, encoder_ctx],
size=3 * decoder_dim)
gru_out, cur_mem = pd.gru_step(
decoder_input, mem=decoder_mem, size=decoder_dim)
scores = pd.fc(
gru_out,
size=trg_dic_size,
bias=None,
act=pd.activation.Softmax())
# K is an config
topk_scores, topk_ids = pd.top_k(scores, K)
topk_generated_scores = pd.add_scalar(topk_scores, generated_scores)
selected_ids, selected_generation_scores = decoder.beam_search(
topk_ids, topk_generated_scores)
# update the states
decoder_mem.update(cur_mem) # tells how to update state
generated_ids.update(selected_ids)
generated_scores.update(selected_generation_scores)
decoder.output(selected_ids)
decoder.output(selected_generation_scores)
translation_ids, translation_scores = decoder()
```
The `decoder.beam_search` is a operator that given the candidates and the scores of translations including the candidates,
return the result of the beam search algorithm.
In this way, users can customize anything on the inputs or outputs of beam search, for example, two ways to prune some translation prefixes
1. meke the correspondind elements in `topk_generated_scores` zero or some small values, beam_search will discard this candidate.
2. remove some specific candidate in `selected_ids`
3. get the final `translation_ids`, remove the translation sequence in it.
The implementation of sequence decoder can reuse the C++ class [RNNAlgorithm](https://github.com/Superjom/Paddle/blob/68cac3c0f8451fe62a4cdf156747d6dc0ee000b3/paddle/operators/dynamic_recurrent_op.h#L30),
so the python syntax is quite similar to a [RNN](https://github.com/Superjom/Paddle/blob/68cac3c0f8451fe62a4cdf156747d6dc0ee000b3/doc/design/block.md#blocks-with-for-and-rnnop).
Both of them are two-level `LoDTensors`
- the first level represents `batch_size` of (source) sentences;
- the second level represents the candidate ID sets for translation prefix.
for example, 3 source sentences to translate, and has 2, 3, 1 candidates.
Unlike an RNN, in sequence decoder, the previous state and the current state have different LoD and shape,
a `lod_expand` operator is used to expand the LoD of the previous state to fit the current state.
For example, the previous state
* LoD is `[0, 1, 3][0, 2, 5, 6]`
* content of tensor is `a1 a2 b1 b2 b3 c1`
the current state stored in `encoder_ctx_expanded`
* LoD is `[0, 2, 7][0 3 5 8 9 11 11]`
* the content is
- a1 a1 a1 (a1 has 3 candidates, so the state should be copied 3 times for each candidates)
- a2 a2
- b1 b1 b1
- b2
- b3 b3
- None (c1 has 0 candidates, so c1 is dropped)
Benefit from the relative offset LoD, empty candidate set can be represented naturally.
the status in each time step can be stored in `TensorArray`, and `Pack`ed to a final LoDTensor, the corresponding syntax is
```python
decoder.output(selected_ids)
decoder.output(selected_generation_scores)
```
the `selected_ids` is the candidate ids for the prefixes,
it will be `Packed` by `TensorArray` to a two-level `LoDTensor`,
the first level represents the source sequences,
the second level represents generated sequences.
Pack the `selected_scores` will get a `LoDTensor` that stores scores of each candidate of translations.
Pack the `selected_generation_scores` will get a `LoDTensor`, and each tail is the probability of the translation.
## LoD and shape changes during decoding
<p align="center">
<img src="./images/LOD-and-shape-changes-during-decoding.jpg"/>
</p>
According the image above, the only phrase to change LoD is beam search.
## Beam search design
The beam search algorthm will be implemented as one method of the sequence decoder, it has 3 inputs
1. `topk_ids`, top K candidate ids for each prefix.
2. `topk_scores`, the corresponding scores for `topk_ids`
3. `generated_scores`, the score of the prefixes.
All of the are LoDTensors, so that the sequence affilication is clear.
Beam search will keep a beam for each prefix and select a smaller candidate set for each prefix.
It will return three variables
1. `selected_ids`, the final candidate beam search function selected for the next step.
2. `selected_scores`, the scores for the candidates.
3. `generated_scores`, the updated scores for each prefixes (with the new candidates appended).
## Introducing the LoD-based `Pack` and `Unpack` methods in `TensorArray`
The `selected_ids`, `selected_scores` and `generated_scores` are LoDTensors,
and they exist in each time step,
so it is natural to store them in arrays.
Currently, PaddlePaddle has a module called `TensorArray` which can store an array of tensors,
the results of beam search are better to store in a `TensorArray`.
The `Pack` and `UnPack` in `TensorArray` are used to package tensors in the array to a `LoDTensor` or split the `LoDTensor` to an array of tensors.
It needs some extensions to support pack or unpack an array of `LoDTensors`.
...@@ -21,7 +21,7 @@ ...@@ -21,7 +21,7 @@
#include "paddle/framework/var_desc.h" #include "paddle/framework/var_desc.h"
#include "paddle/operators/net_op.h" #include "paddle/operators/net_op.h"
USE_OP(fill_constant); USE_NO_KERNEL_OP(fill_constant);
namespace paddle { namespace paddle {
namespace framework { namespace framework {
......
...@@ -34,6 +34,21 @@ inline DataType ToDataType(std::type_index type) { ...@@ -34,6 +34,21 @@ inline DataType ToDataType(std::type_index type) {
} }
} }
inline std::type_index ToTypeIndex(DataType type) {
switch (type) {
case DataType::FP32:
return typeid(float);
case DataType::FP64:
return typeid(double);
case DataType::INT32:
return typeid(int);
case DataType::INT64:
return typeid(int64_t);
default:
PADDLE_THROW("Not support type %d", type);
}
}
template <typename Visitor> template <typename Visitor>
inline void VisitDataType(DataType type, Visitor visitor) { inline void VisitDataType(DataType type, Visitor visitor) {
switch (type) { switch (type) {
......
...@@ -79,6 +79,13 @@ DDim make_ddim(const std::vector<int64_t>& dims) { ...@@ -79,6 +79,13 @@ DDim make_ddim(const std::vector<int64_t>& dims) {
return result; return result;
} }
DDim make_ddim(const std::vector<int>& dims) {
std::vector<int64_t> res(dims.size());
std::transform(dims.begin(), dims.end(), res.begin(),
[](int d) { return static_cast<int64_t>(d); });
return make_ddim(res);
}
/// @cond HIDDEN /// @cond HIDDEN
// XXX For some reason, putting this in an anonymous namespace causes errors // XXX For some reason, putting this in an anonymous namespace causes errors
class DynamicMutableIndexer : public boost::static_visitor<int64_t&> { class DynamicMutableIndexer : public boost::static_visitor<int64_t&> {
...@@ -117,7 +124,7 @@ int64_t DDim::operator[](int idx) const { ...@@ -117,7 +124,7 @@ int64_t DDim::operator[](int idx) const {
return boost::apply_visitor(DynamicConstIndexer(idx), var); return boost::apply_visitor(DynamicConstIndexer(idx), var);
} }
int64_t DDim::size() const { return arity(*this); } int DDim::size() const { return arity(*this); }
bool DDim::operator==(DDim d) const { bool DDim::operator==(DDim d) const {
if (var.which() != d.getVar().which()) { if (var.which() != d.getVar().which()) {
......
...@@ -71,7 +71,7 @@ struct DDim { ...@@ -71,7 +71,7 @@ struct DDim {
DDim operator*(DDim d) const; DDim operator*(DDim d) const;
int64_t size() const; int size() const;
}; };
/** /**
...@@ -81,6 +81,8 @@ struct DDim { ...@@ -81,6 +81,8 @@ struct DDim {
*/ */
DDim make_ddim(const std::vector<int64_t>& dims); DDim make_ddim(const std::vector<int64_t>& dims);
DDim make_ddim(const std::vector<int>& dims);
/** /**
* \brief Make a DDim from an initializer list * \brief Make a DDim from an initializer list
* *
......
...@@ -31,6 +31,7 @@ void LoDRankTable::Reset(const LoD& lod, size_t level) { ...@@ -31,6 +31,7 @@ void LoDRankTable::Reset(const LoD& lod, size_t level) {
TableItem item; TableItem item;
item.index = i; item.index = i;
item.length = vec[i + 1] - vec[i]; item.length = vec[i + 1] - vec[i];
VLOG(10) << "Add item to rank table " << item.index << " " << item.length;
items_.emplace_back(item); items_.emplace_back(item);
} }
// NOTE(yuyang18): // NOTE(yuyang18):
......
...@@ -27,6 +27,20 @@ ...@@ -27,6 +27,20 @@
namespace paddle { namespace paddle {
namespace framework { namespace framework {
std::ostream& operator<<(std::ostream& os, const LoD& lod) {
os << "{";
for (auto& v : lod) {
os << "{";
for (auto& i : v) {
os << i << ",";
}
os << "}";
}
os << "}";
return os;
}
LoD SliceLevels(const LoD& in, size_t level_begin, size_t level_end) { LoD SliceLevels(const LoD& in, size_t level_begin, size_t level_end) {
LoD new_lod; LoD new_lod;
new_lod.reserve(level_end - level_begin); new_lod.reserve(level_end - level_begin);
...@@ -136,37 +150,35 @@ void LoDTensor::ShrinkInLevel(size_t level, size_t elem_begin, ...@@ -136,37 +150,35 @@ void LoDTensor::ShrinkInLevel(size_t level, size_t elem_begin,
ShareDataWith(Slice(begin, end)); ShareDataWith(Slice(begin, end));
} }
void GetFineGrainedLoDLength(const LoD& lod, size_t start_idx, size_t end_idx, using LoDAndOffset = std::pair<LoD, std::pair<size_t, size_t>>;
std::vector<std::vector<size_t>>* lod_length, LoDAndOffset GetSubLoDAndAbsoluteOffset(const LoD& lod, size_t start_idx,
size_t* start_offset) { size_t end_idx, size_t start_level) {
lod_length->clear(); LoD sub_lod;
PADDLE_ENFORCE(start_idx < lod.size() - 1,
"start_idx should be >= 0 and < lod.size() - 1."); for (size_t level_idx = start_level; level_idx < lod.size(); ++level_idx) {
PADDLE_ENFORCE(end_idx < lod.size(), PADDLE_ENFORCE_LE(start_idx, end_idx);
"end_idx should be >= 0 and < lod.size()."); PADDLE_ENFORCE_LT(end_idx, lod[level_idx].size());
PADDLE_ENFORCE_LE(start_idx, end_idx,
"start_idx should be less than end_idx.");
for (size_t level_idx = 0; level_idx < lod.size(); ++level_idx) {
std::vector<size_t> level_lens; std::vector<size_t> level_lens;
for (size_t i = start_idx; i < end_idx; ++i) { for (size_t i = start_idx; i < end_idx; ++i) {
level_lens.push_back(lod[level_idx][i + 1] - lod[level_idx][i]); level_lens.push_back(lod[level_idx][i + 1] - lod[level_idx][i]);
} }
lod_length->emplace_back(level_lens); sub_lod.emplace_back(level_lens);
start_idx = lod[level_idx][start_idx]; start_idx = lod[level_idx][start_idx];
end_idx = lod[level_idx][end_idx]; end_idx = lod[level_idx][end_idx];
} }
*start_offset = start_idx;
return LoDAndOffset{sub_lod, {start_idx, end_idx}};
} }
void AppendLoD(LoD* lod, const std::vector<std::vector<size_t>>& lod_length) { void AppendLoD(LoD* lod, const LoD& lod_length) {
PADDLE_ENFORCE_EQ( PADDLE_ENFORCE(
lod->size(), lod_length.size(), lod->empty() || lod->size() == lod_length.size(),
"The lod_length should has the same size with the appended lod."); "The lod_length should has the same size with the appended lod.");
if (lod->empty()) {
*lod = LoD(lod_length.size(), std::vector<size_t>({0}));
}
for (size_t i = 0; i < lod->size(); ++i) { for (size_t i = 0; i < lod->size(); ++i) {
auto& level = (*lod)[i]; auto& level = (*lod)[i];
if (level.empty()) {
level.push_back(0);
}
for (size_t len : lod_length[i]) { for (size_t len : lod_length[i]) {
level.push_back(level.back() + len); level.push_back(level.back() + len);
} }
......
...@@ -56,6 +56,8 @@ using Vector = thrust::host_vector< ...@@ -56,6 +56,8 @@ using Vector = thrust::host_vector<
*/ */
using LoD = std::vector<Vector<size_t>>; using LoD = std::vector<Vector<size_t>>;
std::ostream& operator<<(std::ostream& os, const LoD& lod);
/* /*
* Slice levels from a LoD. * Slice levels from a LoD.
* NOTE the lowest level should always be the absolute offsets of the underlying * NOTE the lowest level should always be the absolute offsets of the underlying
...@@ -181,11 +183,10 @@ LoDTensor LodExpand(const LoDTensor& source, const LoD& lod, size_t level, ...@@ -181,11 +183,10 @@ LoDTensor LodExpand(const LoDTensor& source, const LoD& lod, size_t level,
return tensor; return tensor;
} }
void GetFineGrainedLoDLength(const LoD& lod, size_t start_idx, size_t end_idx, std::pair<LoD, std::pair<size_t, size_t>> GetSubLoDAndAbsoluteOffset(
std::vector<std::vector<size_t>>* lod_length, const LoD& lod, size_t start_idx, size_t end_idx, size_t start_level);
size_t* start_offset);
void AppendLoD(LoD* lod, const std::vector<std::vector<size_t>>& lod_length); void AppendLoD(LoD* lod, const LoD& lod_length);
} // namespace framework } // namespace framework
} // namespace paddle } // namespace paddle
...@@ -146,43 +146,44 @@ TEST(LodExpand, test) { ...@@ -146,43 +146,44 @@ TEST(LodExpand, test) {
TEST(LoD, GetFineGrainedLoDLength) { TEST(LoD, GetFineGrainedLoDLength) {
LoD lod; LoD lod;
lod.push_back(std::vector<size_t>{0, 2, 4, 5}); lod.push_back(std::vector<size_t>({0, 2, 4, 5}));
lod.push_back(std::vector<size_t>{0, 1, 6, 8, 10, 11}); lod.push_back(std::vector<size_t>({0, 1, 6, 8, 10, 11}));
lod.push_back( lod.push_back(
std::vector<size_t>{0, 2, 5, 7, 10, 12, 15, 17, 20, 24, 26, 29}); std::vector<size_t>({0, 2, 5, 7, 10, 12, 15, 17, 20, 24, 26, 29}));
std::vector<std::vector<size_t>> lod_length; auto lod_and_offset =
size_t start_offset; paddle::framework::GetSubLoDAndAbsoluteOffset(lod, 1, 2, 0);
paddle::framework::GetFineGrainedLoDLength(lod, 1, 2, &lod_length, LoD lod_length = lod_and_offset.first;
&start_offset); size_t start_offset = lod_and_offset.second.first;
size_t end_offset = lod_and_offset.second.second;
std::vector<std::vector<size_t>> expected; LoD expected;
expected.push_back(std::vector<size_t>{2}); expected.push_back(std::vector<size_t>{2});
expected.push_back(std::vector<size_t>{2, 2}); expected.push_back(std::vector<size_t>{2, 2});
expected.push_back(std::vector<size_t>{2, 3, 4, 2}); expected.push_back(std::vector<size_t>{2, 3, 4, 2});
EXPECT_EQ(lod_length, expected); EXPECT_EQ(lod_length, expected);
EXPECT_EQ(start_offset, 15UL); EXPECT_EQ(start_offset, 15UL);
EXPECT_EQ(end_offset, 26UL);
} }
TEST(LoD, AppendLoD) { TEST(LoD, AppendLoD) {
std::vector<std::vector<size_t>> lod_lens; LoD lod_lens;
lod_lens.push_back(std::vector<size_t>{2}); lod_lens.push_back(std::vector<size_t>({2}));
lod_lens.push_back(std::vector<size_t>{2, 2}); lod_lens.push_back(std::vector<size_t>({2, 2}));
lod_lens.push_back(std::vector<size_t>{2, 3, 4, 2}); lod_lens.push_back(std::vector<size_t>({2, 3, 4, 2}));
LoD origin; LoD origin;
origin.push_back(std::vector<size_t>{0, 2}); origin.push_back(std::vector<size_t>({0, 2}));
origin.push_back(std::vector<size_t>{0, 1, 6}); origin.push_back(std::vector<size_t>({0, 1, 6}));
origin.push_back(std::vector<size_t>{0, 2, 5, 7, 10, 12, 15}); origin.push_back(std::vector<size_t>({0, 2, 5, 7, 10, 12, 15}));
paddle::framework::AppendLoD(&origin, lod_lens); paddle::framework::AppendLoD(&origin, lod_lens);
LoD expected; LoD expected;
expected.push_back(std::vector<size_t>{0, 2, 4}); expected.push_back(std::vector<size_t>({0, 2, 4}));
expected.push_back(std::vector<size_t>{0, 1, 6, 8, 10}); expected.push_back(std::vector<size_t>({0, 1, 6, 8, 10}));
expected.push_back( expected.push_back(
std::vector<size_t>{0, 2, 5, 7, 10, 12, 15, 17, 20, 24, 26}); std::vector<size_t>({0, 2, 5, 7, 10, 12, 15, 17, 20, 24, 26}));
EXPECT_EQ(origin, expected); EXPECT_EQ(origin, expected);
} }
......
...@@ -92,8 +92,7 @@ struct OpKernelRegistrarFunctor<PlaceType, false, I, KernelTypes...> { ...@@ -92,8 +92,7 @@ struct OpKernelRegistrarFunctor<PlaceType, false, I, KernelTypes...> {
void operator()(const char* op_type) const { void operator()(const char* op_type) const {
using T = typename KERNEL_TYPE::ELEMENT_TYPE; using T = typename KERNEL_TYPE::ELEMENT_TYPE;
OperatorWithKernel::OpKernelKey key(ToDataType(std::type_index(typeid(T))), OpKernelType key(ToDataType(std::type_index(typeid(T))), PlaceType());
PlaceType());
OperatorWithKernel::AllOpKernels()[op_type][key].reset(new KERNEL_TYPE); OperatorWithKernel::AllOpKernels()[op_type][key].reset(new KERNEL_TYPE);
constexpr auto size = std::tuple_size<std::tuple<KernelTypes...>>::value; constexpr auto size = std::tuple_size<std::tuple<KernelTypes...>>::value;
......
...@@ -254,8 +254,7 @@ std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>( ...@@ -254,8 +254,7 @@ std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
return res; return res;
} }
std::ostream& operator<<(std::ostream& os, std::ostream& operator<<(std::ostream& os, const OpKernelType& kernel_key) {
const OperatorWithKernel::OpKernelKey& kernel_key) {
os << "place[" << kernel_key.place_ << "]:data_type[" << kernel_key.data_type_ os << "place[" << kernel_key.place_ << "]:data_type[" << kernel_key.data_type_
<< "]"; << "]";
return os; return os;
...@@ -432,7 +431,7 @@ void OperatorWithKernel::Run(const Scope& scope, ...@@ -432,7 +431,7 @@ void OperatorWithKernel::Run(const Scope& scope,
// check if op[type] have kernel for kernel_key // check if op[type] have kernel for kernel_key
OpKernelMap& kernels = kernels_iter->second; OpKernelMap& kernels = kernels_iter->second;
auto kernel_key = OpKernelKey(IndicateDataType(ctx), dev_ctx); auto kernel_key = GetKernelType(ctx);
auto kernel_iter = kernels.find(kernel_key); auto kernel_iter = kernels.find(kernel_key);
if (kernel_iter == kernels.end()) { if (kernel_iter == kernels.end()) {
...@@ -444,6 +443,38 @@ void OperatorWithKernel::Run(const Scope& scope, ...@@ -444,6 +443,38 @@ void OperatorWithKernel::Run(const Scope& scope,
// throws errors if have. // throws errors if have.
dev_ctx.Finish(); dev_ctx.Finish();
} }
OpKernelType OperatorWithKernel::GetKernelType(
const ExecutionContext& ctx) const {
return OpKernelType(IndicateDataType(ctx), ctx.device_context());
}
DataType OperatorWithKernel::IndicateDataType(
const ExecutionContext& ctx) const {
auto& scope = ctx.scope();
int data_type = -1;
for (auto& input : this->inputs_) {
for (auto& ipt_name : input.second) {
auto* var = scope.FindVar(ipt_name);
if (var != nullptr) {
const Tensor* t = nullptr;
if (var->IsType<Tensor>()) {
t = &var->Get<Tensor>();
} else if (var->IsType<LoDTensor>()) {
t = &var->Get<LoDTensor>();
} else if (var->IsType<SelectedRows>()) {
t = &(var->Get<SelectedRows>().value());
}
if (t != nullptr) {
int tmp = static_cast<int>(ToDataType(t->type()));
PADDLE_ENFORCE(tmp == data_type || data_type == -1,
"DataType of Paddle Op %s must be the same.", Type());
data_type = tmp;
}
}
}
}
PADDLE_ENFORCE(data_type != -1, "DataType should be indicated by input");
return static_cast<DataType>(data_type);
}
} // namespace framework } // namespace framework
} // namespace paddle } // namespace paddle
...@@ -345,27 +345,10 @@ class OpKernel : public OpKernelBase { ...@@ -345,27 +345,10 @@ class OpKernel : public OpKernelBase {
using ELEMENT_TYPE = T; using ELEMENT_TYPE = T;
}; };
class OperatorWithKernel : public OperatorBase { struct OpKernelType {
public: struct Hash {
struct OpKernelKey {
platform::Place place_;
DataType data_type_;
OpKernelKey(DataType data_type, platform::Place place)
: place_(place), data_type_(data_type) {}
OpKernelKey(DataType data_type, const platform::DeviceContext& dev_ctx)
: place_(dev_ctx.GetPlace()), data_type_(data_type) {}
bool operator==(const OpKernelKey& o) const {
return platform::places_are_same_class(place_, o.place_) &&
data_type_ == o.data_type_;
}
};
struct OpKernelHash {
std::hash<int> hash_; std::hash<int> hash_;
size_t operator()(const OpKernelKey& key) const { size_t operator()(const OpKernelType& key) const {
int place = key.place_.which(); int place = key.place_.which();
int data_type = static_cast<int>(key.data_type_); int data_type = static_cast<int>(key.data_type_);
int pre_hash = data_type << NUM_PLACE_TYPE_LIMIT_IN_BIT | int pre_hash = data_type << NUM_PLACE_TYPE_LIMIT_IN_BIT |
...@@ -374,9 +357,26 @@ class OperatorWithKernel : public OperatorBase { ...@@ -374,9 +357,26 @@ class OperatorWithKernel : public OperatorBase {
} }
}; };
platform::Place place_;
DataType data_type_;
OpKernelType(DataType data_type, platform::Place place)
: place_(place), data_type_(data_type) {}
OpKernelType(DataType data_type, const platform::DeviceContext& dev_ctx)
: place_(dev_ctx.GetPlace()), data_type_(data_type) {}
bool operator==(const OpKernelType& o) const {
return platform::places_are_same_class(place_, o.place_) &&
data_type_ == o.data_type_;
}
};
class OperatorWithKernel : public OperatorBase {
public:
using OpKernelMap = using OpKernelMap =
std::unordered_map<OpKernelKey, std::unique_ptr<OpKernelBase>, std::unordered_map<OpKernelType, std::unique_ptr<OpKernelBase>,
OpKernelHash>; OpKernelType::Hash>;
OperatorWithKernel(const std::string& type, const VariableNameMap& inputs, OperatorWithKernel(const std::string& type, const VariableNameMap& inputs,
const VariableNameMap& outputs, const AttributeMap& attrs) const VariableNameMap& outputs, const AttributeMap& attrs)
...@@ -404,40 +404,15 @@ class OperatorWithKernel : public OperatorBase { ...@@ -404,40 +404,15 @@ class OperatorWithKernel : public OperatorBase {
} }
protected: protected:
virtual OpKernelType GetKernelType(const ExecutionContext& ctx) const;
private:
// indicate kernel DataType by input data. Defaultly all input data must be // indicate kernel DataType by input data. Defaultly all input data must be
// same. // same.
virtual DataType IndicateDataType(const ExecutionContext& ctx) const { DataType IndicateDataType(const ExecutionContext& ctx) const;
auto& scope = ctx.scope();
int data_type = -1;
for (auto& input : this->inputs_) {
for (auto& ipt_name : input.second) {
auto* var = scope.FindVar(ipt_name);
if (var != nullptr) {
const Tensor* t = nullptr;
if (var->IsType<Tensor>()) {
t = &var->Get<Tensor>();
} else if (var->IsType<LoDTensor>()) {
t = &var->Get<LoDTensor>();
} else if (var->IsType<SelectedRows>()) {
t = &(var->Get<SelectedRows>().value());
}
if (t != nullptr) {
int tmp = static_cast<int>(ToDataType(t->type()));
PADDLE_ENFORCE(tmp == data_type || data_type == -1,
"DataType of Paddle Op %s must be the same.",
Type());
data_type = tmp;
}
}
}
}
PADDLE_ENFORCE(data_type != -1, "DataType should be indicated by input");
return static_cast<DataType>(data_type);
}
}; };
std::ostream& operator<<(std::ostream& os, std::ostream& operator<<(std::ostream& os, const OpKernelType& kernel_key);
const OperatorWithKernel::OpKernelKey& kernel_key);
extern bool OpSupportGPU(const std::string& op_type); extern bool OpSupportGPU(const std::string& op_type);
......
...@@ -114,8 +114,8 @@ class OpWithKernelTest : public OperatorWithKernel { ...@@ -114,8 +114,8 @@ class OpWithKernelTest : public OperatorWithKernel {
protected: protected:
void InferShape(framework::InferShapeContext* ctx) const override {} void InferShape(framework::InferShapeContext* ctx) const override {}
DataType IndicateDataType(const ExecutionContext& ctx) const override { OpKernelType GetKernelType(const ExecutionContext& ctx) const override {
return DataType::FP32; return OpKernelType(DataType::FP32, ctx.device_context());
} }
}; };
......
...@@ -45,7 +45,8 @@ void VarDescBind::SetLoDLevel(int32_t lod_level) { ...@@ -45,7 +45,8 @@ void VarDescBind::SetLoDLevel(int32_t lod_level) {
desc_.mutable_tensor_array()->set_lod_level(lod_level); desc_.mutable_tensor_array()->set_lod_level(lod_level);
break; break;
default: default:
PADDLE_THROW("Tensor type=%d does not support LoDLevel", desc_.type()); PADDLE_THROW("Tensor type=%d does not support LoDLevel",
desc_.tensor_array().lod_level());
} }
} }
...@@ -56,7 +57,8 @@ int32_t VarDescBind::GetLodLevel() const { ...@@ -56,7 +57,8 @@ int32_t VarDescBind::GetLodLevel() const {
case VarDesc::LOD_TENSOR_ARRAY: case VarDesc::LOD_TENSOR_ARRAY:
return desc_.tensor_array().lod_level(); return desc_.tensor_array().lod_level();
default: default:
PADDLE_THROW("Tensor type=%d does not support LoDLevel", desc_.type()); PADDLE_THROW("Tensor type=%d does not support LoDLevel",
desc_.tensor_array().lod_level());
} }
} }
......
...@@ -45,6 +45,7 @@ if(WITH_GPU) ...@@ -45,6 +45,7 @@ if(WITH_GPU)
add_simple_unittest(BlockExpandOpTest) add_simple_unittest(BlockExpandOpTest)
add_simple_unittest(CropOpTest) add_simple_unittest(CropOpTest)
add_simple_unittest(SwitchOpTest) add_simple_unittest(SwitchOpTest)
add_simple_unittest(ScaleSubRegionOpTest)
endif() endif()
add_simple_unittest(Im2ColTest) add_simple_unittest(Im2ColTest)
......
...@@ -110,6 +110,7 @@ public: ...@@ -110,6 +110,7 @@ public:
function2_(FunctionBase::funcRegistrar_.createByType(name2)) { function2_(FunctionBase::funcRegistrar_.createByType(name2)) {
function1_->init(config); function1_->init(config);
function2_->init(config); function2_->init(config);
initArgsCallback_ = nullptr;
} }
~Compare2Function() {} ~Compare2Function() {}
...@@ -170,6 +171,10 @@ public: ...@@ -170,6 +171,10 @@ public:
*seq2_)); *seq2_));
} }
void registerInitCallback(std::function<void(BufferArg&, size_t)> callback) {
initArgsCallback_ = callback;
}
// output need only contains shape, do not contains data. // output need only contains shape, do not contains data.
void addOutputs(const BufferArg& output, ArgType argType = ASSIGN_TO) { void addOutputs(const BufferArg& output, ArgType argType = ASSIGN_TO) {
size_t size = size_t size =
...@@ -340,6 +345,10 @@ protected: ...@@ -340,6 +345,10 @@ protected:
initArg(*func1Inputs_[i]); initArg(*func1Inputs_[i]);
} }
if (initArgsCallback_ != nullptr) {
initArgsCallback_(*func1Inputs_[i], i);
}
copyArg_(*func1Inputs_[i], *func2Inputs_[i]); copyArg_(*func1Inputs_[i], *func2Inputs_[i]);
} }
} }
...@@ -386,6 +395,7 @@ protected: ...@@ -386,6 +395,7 @@ protected:
std::shared_ptr<SequenceIdArg> seq1_; std::shared_ptr<SequenceIdArg> seq1_;
std::shared_ptr<SequenceIdArg> seq2_; std::shared_ptr<SequenceIdArg> seq2_;
test::CopyArgument<DType1, DType2> copyArg_; test::CopyArgument<DType1, DType2> copyArg_;
std::function<void(BufferArg&, size_t)> initArgsCallback_;
}; };
class CpuGpuFuncCompare class CpuGpuFuncCompare
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "ScaleSubRegionOp.h"
#include "paddle/function/TensorShape.h"
namespace paddle {
template <>
void ScaleSubRegion<DEVICE_TYPE_CPU>(real* outputs,
const real* inputs,
const real* indices,
const TensorShape shape,
const FuncConfig& conf) {
real value = conf.get<real>("value");
int number = shape[0];
int channel = shape[1];
int height = shape[2];
int width = shape[3];
memcpy(outputs, inputs, number * channel * height * width * sizeof(real));
for (int n = 0; n < number; ++n) {
// indices start from 1
int offset = n * 6;
for (int c = indices[offset] - 1; c < indices[offset + 1]; ++c) {
for (int h = indices[offset + 2] - 1; h < indices[offset + 3]; ++h) {
for (int w = indices[offset + 4] - 1; w < indices[offset + 5]; ++w) {
int idx = ((n * channel + c) * height + h) * width + w;
outputs[idx] *= value;
}
}
}
}
}
template <>
void ScaleSubRegionGrad<DEVICE_TYPE_CPU>(const real* inGrad,
real* outGrad,
const real* indices,
const TensorShape shape,
const FuncConfig& conf) {
real value = conf.get<real>("value");
int number = shape[0];
int channel = shape[1];
int height = shape[2];
int width = shape[3];
for (int n = 0; n < number; ++n) {
for (int c = 0; c < channel; ++c) {
for (int h = 0; h < height; ++h) {
for (int w = 0; w < width; ++w) {
int idx = ((n * channel + c) * height + h) * width + w;
int offset = n * 6;
if (c >= (indices[offset] - 1) && c <= (indices[offset + 1] - 1) &&
h >= (indices[offset + 2] - 1) &&
h <= (indices[offset + 3] - 1) &&
w >= (indices[offset + 4] - 1) &&
w <= (indices[offset + 5] - 1)) {
outGrad[idx] += inGrad[idx] * value;
} else {
outGrad[idx] += inGrad[idx];
}
}
}
}
}
}
/**
* \brief For each instance, ScaleSubRegion can be used to multiply a value to
* a specified sub continuous region. By providing start index and end
* index for C/H/W, you can specify the location and shape of the region.
*
* Argument in this Function:
* \param inputs A 4-D tensor with shape [N, C, H, W], only one input.
* \param indices A 2-D tensor with shape [N, 6], indicates the sub region.
* \param outputs A 4-D tensor with same shape as inputs, output value.
*/
template <DeviceType Device>
class ScaleSubRegionFunc : public FunctionBase {
public:
void init(const FuncConfig& config) override { conf_ = config; }
void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
CHECK_EQ(2UL, inputs.size());
CHECK_EQ(1UL, outputs.size());
CHECK_EQ(outputs[0].getArgType(), ASSIGN_TO);
TensorShape shape = inputs[0].shape();
ScaleSubRegion<Device>(outputs[0].data<real>(),
inputs[0].data<real>(),
inputs[1].data<real>(),
shape,
conf_);
}
private:
FuncConfig conf_;
};
/**
* \brief The backward propagation of ScaleSubRegion Function.
*
* Argument in this Function:
* \param inputs A 4-D tensor with shape [N, C, H, W], output gradient.
* \param indices A 2-D tensor with shape [N, 6], indicates the sub region.
* \param outputs A 4-D tensor with shape [N, C, H, W], gradient of input value.
*/
template <DeviceType Device>
class ScaleSubRegionGradFunc : public FunctionBase {
public:
void init(const FuncConfig& config) override { conf_ = config; }
void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
CHECK_EQ(2UL, inputs.size());
CHECK_EQ(1UL, outputs.size());
CHECK_EQ(outputs[0].getArgType(), ADD_TO);
TensorShape shape = inputs[0].shape();
ScaleSubRegionGrad<Device>(inputs[0].data<real>(),
outputs[0].data<real>(),
inputs[1].data<real>(),
shape,
conf_);
}
private:
FuncConfig conf_;
};
REGISTER_TYPED_FUNC(ScaleSubRegion, CPU, ScaleSubRegionFunc);
REGISTER_TYPED_FUNC(ScaleSubRegionGrad, CPU, ScaleSubRegionGradFunc);
#ifdef PADDLE_WITH_CUDA
REGISTER_TYPED_FUNC(ScaleSubRegion, GPU, ScaleSubRegionFunc);
REGISTER_TYPED_FUNC(ScaleSubRegionGrad, GPU, ScaleSubRegionGradFunc);
#endif
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "Function.h"
namespace paddle {
/**
* \brief Function to multiply a value to values in specified sub continuous
* region. Indices must be provided to indcate the location and shape of
* the region and the multiplied value is passed by configure variable.
*
*
* \param[out] outputs Output value.
* \param[in] inputs Input data which contains NCHW information.
* \param[in] indices Indices data to indcate the sub region.
* \param[in] shape Tensor shape of input value.
* \param[in] conf Configure variable which contains the multiplied value.
*/
template <DeviceType Device>
void ScaleSubRegion(real* outputs,
const real* inputs,
const real* indices,
const TensorShape shape,
const FuncConfig& conf);
/**
* \brief Backward propagation function of ScaleSubRegion.
*
* \param[out] inGrad Gradients of previous layer.
* \param[in] outGrad Output gradient.
* \param[in] indices Indices data.
* \param[in] shape The Shape of input tensor.
* \param[in] conf Configure variable.
*/
template <DeviceType Device>
void ScaleSubRegionGrad(const real* inGrad,
real* outGrad,
const real* indices,
const TensorShape shape,
const FuncConfig& conf);
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "ScaleSubRegionOp.h"
#include "hl_base.h"
namespace paddle {
__global__ void KeScaleSubRegion(real* outputs,
const real* inputs,
const real* indices,
real value,
int channel,
int height,
int width,
int nthreads) {
const int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < nthreads) {
const int w = idx % width;
const int h = (idx / width) % height;
const int c = (idx / width / height) % channel;
const int n = idx / width / height / channel;
const int offset = n * 6;
if (c >= (indices[offset] - 1) && c <= (indices[offset + 1] - 1) &&
h >= (indices[offset + 2] - 1) && h <= (indices[offset + 3] - 1) &&
w >= (indices[offset + 4] - 1) && w <= (indices[offset + 5] - 1)) {
outputs[idx] = inputs[idx] * value;
} else {
outputs[idx] = inputs[idx];
}
}
}
template <>
void ScaleSubRegion<DEVICE_TYPE_GPU>(real* outputs,
const real* inputs,
const real* indices,
const TensorShape shape,
const FuncConfig& conf) {
real value = conf.get<real>("value");
int number = shape[0];
int channel = shape[1];
int height = shape[2];
int width = shape[3];
size_t nth = number * channel * height * width;
int blockSize = 1024;
int gridSize = (nth + blockSize - 1) / blockSize;
KeScaleSubRegion<<<gridSize, blockSize, 0, STREAM_DEFAULT>>>(
outputs, inputs, indices, value, channel, height, width, nth);
CHECK_SYNC("ScaleSubRegion");
}
__global__ void KeScaleSubRegionDiff(const real* inGrad,
real* outGrad,
const real* indices,
real value,
int channel,
int height,
int width,
int nthreads) {
const int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < nthreads) {
const int w = idx % width;
const int h = (idx / width) % height;
const int c = (idx / width / height) % channel;
const int n = idx / width / height / channel;
const int offset = n * 6;
if (c >= (indices[offset] - 1) && c <= (indices[offset + 1] - 1) &&
h >= (indices[offset + 2] - 1) && h <= (indices[offset + 3] - 1) &&
w >= (indices[offset + 4] - 1) && w <= (indices[offset + 5] - 1)) {
outGrad[idx] += inGrad[idx] * value;
} else {
outGrad[idx] += inGrad[idx];
}
}
}
template <>
void ScaleSubRegionGrad<DEVICE_TYPE_GPU>(const real* inGrad,
real* outGrad,
const real* indices,
const TensorShape shape,
const FuncConfig& conf) {
real value = conf.get<real>("value");
int number = shape[0];
int channel = shape[1];
int height = shape[2];
int width = shape[3];
size_t nth = number * channel * height * width;
int blockSize = 1024;
int gridSize = (nth + blockSize - 1) / blockSize;
KeScaleSubRegionDiff<<<gridSize, blockSize, 0, STREAM_DEFAULT>>>(
inGrad, outGrad, indices, value, channel, height, width, nth);
CHECK_SYNC("ScaleSubRegionGrad");
}
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include "FunctionTest.h"
namespace paddle {
TEST(ScaleSubRegion, real) {
for (size_t numSamples : {5, 32}) {
for (size_t channels : {5, 32}) {
for (size_t imgSizeH : {5, 33}) {
for (size_t imgSizeW : {5, 32}) {
for (real value : {-0.5, 0.0, 0.5}) {
for (bool firstHalf : {false, true}) {
VLOG(3) << " numSamples=" << numSamples
<< " channels=" << channels << " imgSizeH=" << imgSizeH
<< " imgSizeW=" << imgSizeW;
for (bool testGrad : {false, true}) {
CpuGpuFuncCompare compare(
testGrad ? "ScaleSubRegionGrad" : "ScaleSubRegion",
FuncConfig().set<real>("value", value));
TensorShape shape{numSamples, channels, imgSizeH, imgSizeW};
TensorShape indicesShape{numSamples, 6};
compare.addInputs(BufferArg(VALUE_TYPE_FLOAT, shape));
compare.addInputs(BufferArg(VALUE_TYPE_FLOAT, indicesShape));
compare.registerInitCallback([=](BufferArg& arg, size_t index) {
if (index == 1) {
real* data = (real*)arg.data();
for (size_t i = 0; i < numSamples; ++i) {
size_t offset = i * 6;
data[offset] = firstHalf ? 1 : channels / 2;
data[offset + 1] = firstHalf ? channels / 2 : channels;
data[offset + 2] = firstHalf ? 1 : imgSizeH / 2;
data[offset + 3] = firstHalf ? imgSizeH / 2 : imgSizeH;
data[offset + 4] = firstHalf ? 1 : imgSizeW / 2;
data[offset + 5] = firstHalf ? imgSizeW / 2 : imgSizeW;
}
}
});
compare.addOutputs(
BufferArg(
VALUE_TYPE_FLOAT, shape, testGrad ? ADD_TO : ASSIGN_TO),
testGrad ? ADD_TO : ASSIGN_TO);
compare.run();
}
}
}
}
}
}
}
}
} // namespace paddle
...@@ -62,16 +62,14 @@ void MKLDNNAddtoLayer::resetFwd(std::vector<primitive>& pipeline, ...@@ -62,16 +62,14 @@ void MKLDNNAddtoLayer::resetFwd(std::vector<primitive>& pipeline,
MKLDNNMatrixPtr& wgt, MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias, MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out) { MKLDNNMatrixPtr& out) {
if (biases_) { resetFwdBuffers(inVals_, bias, out);
LOG(FATAL) << "not implemented yet";
}
resetFwdBuffers(inVals_, out);
in = inVals_[0]; in = inVals_[0];
std::shared_ptr<sum::primitive_desc> fwdPD; std::shared_ptr<sum::primitive_desc> fwdPD;
resetFwdPD(fwdPD, inVals_, out); std::shared_ptr<sum::primitive_desc> biasPD;
resetFwdPD(fwdPD, biasPD, inVals_, bias, out);
resetFwdPipeline(pipeline, fwdPD, inVals_, out); resetFwdPipeline(pipeline, fwdPD, biasPD, inVals_, bias, out);
} }
void MKLDNNAddtoLayer::resetBwd(std::vector<primitive>& pipeline, void MKLDNNAddtoLayer::resetBwd(std::vector<primitive>& pipeline,
...@@ -79,7 +77,7 @@ void MKLDNNAddtoLayer::resetBwd(std::vector<primitive>& pipeline, ...@@ -79,7 +77,7 @@ void MKLDNNAddtoLayer::resetBwd(std::vector<primitive>& pipeline,
MKLDNNMatrixPtr& wgt, MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias, MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out) { MKLDNNMatrixPtr& out) {
resetBwdBuffers(inGrads_, out); resetBwdBuffers(inGrads_, bias, out);
in = inGrads_[0]; in = inGrads_[0];
// backward only need share output grad to input grad // backward only need share output grad to input grad
...@@ -89,6 +87,20 @@ void MKLDNNAddtoLayer::resetBwd(std::vector<primitive>& pipeline, ...@@ -89,6 +87,20 @@ void MKLDNNAddtoLayer::resetBwd(std::vector<primitive>& pipeline,
inputLayers_[i]->getOutputGrad()->setData(inGrads_[i]->getData()); inputLayers_[i]->getOutputGrad()->setData(inGrads_[i]->getData());
} }
} }
// backward bias
bwdBias_ = nullptr;
if (bias) {
std::vector<float> scales(bs_, 1.0);
std::vector<memory::primitive_desc> srcPDs(bs_, bias->getPrimitiveDesc());
auto biasPD = sum::primitive_desc(bias->getMemoryDesc(), scales, srcPDs);
std::vector<primitive::at> srcs;
for (size_t i = 0; i < grads_.size(); ++i) {
srcs.push_back(*(grads_[i]));
}
bwdBias_.reset(new sum(biasPD, srcs, *bias));
pipeline.push_back(*bwdBias_);
}
} }
void MKLDNNAddtoLayer::updateWeights(const UpdateCallback& callback) { void MKLDNNAddtoLayer::updateWeights(const UpdateCallback& callback) {
...@@ -97,7 +109,25 @@ void MKLDNNAddtoLayer::updateWeights(const UpdateCallback& callback) { ...@@ -97,7 +109,25 @@ void MKLDNNAddtoLayer::updateWeights(const UpdateCallback& callback) {
} }
} }
void MKLDNNAddtoLayer::prepareBias(MKLDNNMatrixPtr& bias,
const MatrixPtr& biasMat,
const MKLDNNMatrixPtr& out,
std::vector<MKLDNNMatrixPtr>& outs) {
auto pd = MKLDNNMatrix::createPrimitiveDesc(
{(int)layerSize_}, memory::format::x, engine_);
bias = MKLDNNMatrix::create(pd, biasMat);
outs.clear();
real* data = out->getData();
CHECK_EQ(bs_ * layerSize_, out->getElementCnt());
for (int i = 0; i < bs_; ++i) {
MatrixPtr tmp =
Matrix::create(data + i * layerSize_, 1, layerSize_, false, false);
outs.push_back(MKLDNNMatrix::create(bias->getPrimitiveDesc(), tmp));
}
}
void MKLDNNAddtoLayer::resetFwdBuffers(std::vector<MKLDNNMatrixPtr>& inputs, void MKLDNNAddtoLayer::resetFwdBuffers(std::vector<MKLDNNMatrixPtr>& inputs,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out) { MKLDNNMatrixPtr& out) {
inputs.resize(inputLayers_.size()); inputs.resize(inputLayers_.size());
for (size_t i = 0; i < inputs.size(); i++) { for (size_t i = 0; i < inputs.size(); i++) {
...@@ -110,12 +140,20 @@ void MKLDNNAddtoLayer::resetFwdBuffers(std::vector<MKLDNNMatrixPtr>& inputs, ...@@ -110,12 +140,20 @@ void MKLDNNAddtoLayer::resetFwdBuffers(std::vector<MKLDNNMatrixPtr>& inputs,
} }
resetOutValue(out, inputs[0]->getPrimitiveDesc()); resetOutValue(out, inputs[0]->getPrimitiveDesc());
if (biases_ && biases_->getW()) {
prepareBias(bias, biases_->getW(), out, vals_);
} else {
bias = nullptr;
}
} }
void MKLDNNAddtoLayer::resetFwdPD(std::shared_ptr<sum::primitive_desc>& pd, void MKLDNNAddtoLayer::resetFwdPD(std::shared_ptr<sum::primitive_desc>& pd,
std::shared_ptr<sum::primitive_desc>& biasPD,
std::vector<MKLDNNMatrixPtr>& inputs, std::vector<MKLDNNMatrixPtr>& inputs,
MKLDNNMatrixPtr bias,
MKLDNNMatrixPtr out) { MKLDNNMatrixPtr out) {
std::vector<double> scales(inputs.size(), 1.0); std::vector<float> scales(inputs.size(), 1.0);
std::vector<memory::primitive_desc> srcPDs; std::vector<memory::primitive_desc> srcPDs;
for (size_t i = 0; i < inputs.size(); i++) { for (size_t i = 0; i < inputs.size(); i++) {
srcPDs.push_back(inputs[i]->getPrimitiveDesc()); srcPDs.push_back(inputs[i]->getPrimitiveDesc());
...@@ -123,12 +161,23 @@ void MKLDNNAddtoLayer::resetFwdPD(std::shared_ptr<sum::primitive_desc>& pd, ...@@ -123,12 +161,23 @@ void MKLDNNAddtoLayer::resetFwdPD(std::shared_ptr<sum::primitive_desc>& pd,
CHECK(out); CHECK(out);
pd.reset(new sum::primitive_desc(out->getMemoryDesc(), scales, srcPDs)); pd.reset(new sum::primitive_desc(out->getMemoryDesc(), scales, srcPDs));
CHECK_PRIMITIVE_DESC_EQ(out, pd->dst_primitive_desc()); CHECK_PRIMITIVE_DESC_EQ(out, pd->dst_primitive_desc());
biasPD = nullptr;
if (bias) {
std::vector<float> scales(2, 1.0);
std::vector<memory::primitive_desc> srcPDs(2, bias->getPrimitiveDesc());
biasPD.reset(
new sum::primitive_desc(bias->getMemoryDesc(), scales, srcPDs));
CHECK_PRIMITIVE_DESC_EQ(bias, biasPD->dst_primitive_desc());
}
} }
void MKLDNNAddtoLayer::resetFwdPipeline( void MKLDNNAddtoLayer::resetFwdPipeline(
std::vector<primitive>& pipeline, std::vector<primitive>& pipeline,
std::shared_ptr<sum::primitive_desc>& pd, std::shared_ptr<sum::primitive_desc>& pd,
std::shared_ptr<sum::primitive_desc>& biasPD,
std::vector<MKLDNNMatrixPtr>& inputs, std::vector<MKLDNNMatrixPtr>& inputs,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out) { MKLDNNMatrixPtr& out) {
std::vector<primitive::at> srcs; std::vector<primitive::at> srcs;
for (size_t i = 0; i < inputs.size(); i++) { for (size_t i = 0; i < inputs.size(); i++) {
...@@ -136,9 +185,23 @@ void MKLDNNAddtoLayer::resetFwdPipeline( ...@@ -136,9 +185,23 @@ void MKLDNNAddtoLayer::resetFwdPipeline(
} }
fwd_.reset(new sum(*pd, srcs, *out)); fwd_.reset(new sum(*pd, srcs, *out));
pipeline.push_back(*fwd_); pipeline.push_back(*fwd_);
fwdBias_.clear();
if (biasPD == nullptr || bias == nullptr) {
return;
}
fwdBias_.resize(vals_.size());
for (size_t i = 0; i < vals_.size(); ++i) {
std::vector<primitive::at> srcs;
srcs.push_back(*(vals_[i]));
srcs.push_back(*bias);
fwdBias_[i].reset(new sum(*biasPD, srcs, *vals_[i]));
pipeline.push_back(*fwdBias_[i]);
}
} }
void MKLDNNAddtoLayer::resetBwdBuffers(std::vector<MKLDNNMatrixPtr>& inputs, void MKLDNNAddtoLayer::resetBwdBuffers(std::vector<MKLDNNMatrixPtr>& inputs,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out) { MKLDNNMatrixPtr& out) {
CHECK(outVal_); CHECK(outVal_);
resetOutGrad(out, outVal_->getPrimitiveDesc()); resetOutGrad(out, outVal_->getPrimitiveDesc());
...@@ -149,6 +212,12 @@ void MKLDNNAddtoLayer::resetBwdBuffers(std::vector<MKLDNNMatrixPtr>& inputs, ...@@ -149,6 +212,12 @@ void MKLDNNAddtoLayer::resetBwdBuffers(std::vector<MKLDNNMatrixPtr>& inputs,
resetInGrad(inputs[i], inVal_->getPrimitiveDesc(), i); resetInGrad(inputs[i], inVal_->getPrimitiveDesc(), i);
CHECK_PRIMITIVE_DESC_EQ(inputs[i], out->getPrimitiveDesc()); CHECK_PRIMITIVE_DESC_EQ(inputs[i], out->getPrimitiveDesc());
} }
if (biases_ && biases_->getWGrad()) {
prepareBias(bias, biases_->getWGrad(), out, grads_);
} else {
bias = nullptr;
}
} }
} // namespace paddle } // namespace paddle
...@@ -32,9 +32,15 @@ protected: ...@@ -32,9 +32,15 @@ protected:
// layer size == ic * ih * iw == oc * oh *ow, and can not be changed // layer size == ic * ih * iw == oc * oh *ow, and can not be changed
size_t layerSize_; size_t layerSize_;
// TODO(TJ): this part has not been optimized by MKL-DNN
std::unique_ptr<Weight> biases_; std::unique_ptr<Weight> biases_;
// buffers for adding bias
std::vector<MKLDNNMatrixPtr> vals_;
std::vector<MKLDNNMatrixPtr> grads_;
// primitives for adding bias
std::vector<std::shared_ptr<mkldnn::primitive>> fwdBias_;
std::shared_ptr<mkldnn::primitive> bwdBias_;
public: public:
explicit MKLDNNAddtoLayer(const LayerConfig& config) : MKLDNNLayer(config) {} explicit MKLDNNAddtoLayer(const LayerConfig& config) : MKLDNNLayer(config) {}
...@@ -91,20 +97,34 @@ protected: ...@@ -91,20 +97,34 @@ protected:
* reset pipeline. * reset pipeline.
*/ */
void resetFwdBuffers(std::vector<MKLDNNMatrixPtr>& inputs, void resetFwdBuffers(std::vector<MKLDNNMatrixPtr>& inputs,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out); MKLDNNMatrixPtr& out);
void resetFwdPD(std::shared_ptr<mkldnn::sum::primitive_desc>& pd, void resetFwdPD(std::shared_ptr<mkldnn::sum::primitive_desc>& pd,
std::shared_ptr<mkldnn::sum::primitive_desc>& biasPD,
std::vector<MKLDNNMatrixPtr>& inputs, std::vector<MKLDNNMatrixPtr>& inputs,
MKLDNNMatrixPtr bias,
MKLDNNMatrixPtr out); MKLDNNMatrixPtr out);
void resetFwdPipeline(std::vector<mkldnn::primitive>& pipeline, void resetFwdPipeline(std::vector<mkldnn::primitive>& pipeline,
std::shared_ptr<mkldnn::sum::primitive_desc>& pd, std::shared_ptr<mkldnn::sum::primitive_desc>& pd,
std::shared_ptr<mkldnn::sum::primitive_desc>& biasPD,
std::vector<MKLDNNMatrixPtr>& inputs, std::vector<MKLDNNMatrixPtr>& inputs,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out); MKLDNNMatrixPtr& out);
/** /**
* Backward functions: reset buffers(inputs, output, bias) * Backward functions: reset buffers(inputs, output, bias)
*/ */
void resetBwdBuffers(std::vector<MKLDNNMatrixPtr>& inputs, void resetBwdBuffers(std::vector<MKLDNNMatrixPtr>& inputs,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out); MKLDNNMatrixPtr& out);
/**
* prepare for bias
*/
void prepareBias(MKLDNNMatrixPtr& bias,
const MatrixPtr& biasMat,
const MKLDNNMatrixPtr& out,
std::vector<MKLDNNMatrixPtr>& outs);
}; };
} // namespace paddle } // namespace paddle
...@@ -60,18 +60,16 @@ void MKLDNNFcLayer::convertWeightsFromPaddle() { ...@@ -60,18 +60,16 @@ void MKLDNNFcLayer::convertWeightsFromPaddle() {
} }
CHECK(wgtVal_) << "should have been initialized"; CHECK(wgtVal_) << "should have been initialized";
bool hasNoSpatial_ = ih_ == 1 && iw_ == 1;
auto targetDim = wgtVal_->getDims(); auto targetDim = wgtVal_->getDims();
auto srcFmt = hasNoSpatial_ ? format::io : format::ihwo; auto srcFmt = targetDim.size() == 2 ? format::io : format::ihwo;
wgtVal_->reorderDataFrom(wgtVal_, srcFmt, targetDim); wgtVal_->reorderDataFrom(wgtVal_, srcFmt, targetDim);
hasInitedWgt_ = true; hasInitedWgt_ = true;
} }
void MKLDNNFcLayer::convertWeightsToPaddle() { void MKLDNNFcLayer::convertWeightsToPaddle() {
CHECK(wgtVal_) << "should have been initialized"; CHECK(wgtVal_) << "should have been initialized";
bool hasNoSpatial_ = ih_ == 1 && iw_ == 1;
auto targetDim = wgtVal_->getDims(); auto targetDim = wgtVal_->getDims();
auto dstFmt = hasNoSpatial_ ? format::io : format::ihwo; auto dstFmt = targetDim.size() == 2 ? format::io : format::ihwo;
wgtVal_->reorderDataTo(wgtVal_, dstFmt, targetDim); wgtVal_->reorderDataTo(wgtVal_, dstFmt, targetDim);
} }
......
...@@ -181,21 +181,17 @@ void MKLDNNLayer::resetInValue( ...@@ -181,21 +181,17 @@ void MKLDNNLayer::resetInValue(
auto extPD = MKLDNNMatrix::createPrimitiveDesc( auto extPD = MKLDNNMatrix::createPrimitiveDesc(
{bs_, ic_, ih_, iw_}, format::nchw, engine_); {bs_, ic_, ih_, iw_}, format::nchw, engine_);
const MatrixPtr& inMat = inputLayers_[inputIdx]->getOutputValue(); const MatrixPtr& inMat = inputLayers_[inputIdx]->getOutputValue();
in = std::dynamic_pointer_cast<MKLDNNMatrix>(inMat); extInVal_ = std::dynamic_pointer_cast<MKLDNNMatrix>(inMat);
CHECK_EQ(inputIsOnlyMKLDNN(), in != nullptr); CHECK_EQ(inputIsOnlyMKLDNN(), extInVal_ != nullptr);
if (in == nullptr || in->getFormat() == format::nc) { if (extInVal_ == nullptr || extInVal_->getFormat() == format::nc) {
in = MKLDNNMatrix::create(extPD, inMat); extInVal_ = MKLDNNMatrix::create(extPD, inMat);
}
extInVal_ = isPaddleFormat(in->getFormat()) ? in : nullptr;
if (in->getFormat() == format::nc) {
CHECK(ih_ == 1 && iw_ == 1);
} }
in = extInVal_;
if (nullptr == intPD || in->getPrimitiveDesc() == *intPD) { if (nullptr == intPD || in->getPrimitiveDesc() == *intPD) {
return; return;
} }
// need create reorder // need create reorder
in = MKLDNNMatrix::create(*intPD); in = MKLDNNMatrix::create(*intPD);
extInVal_ = extInVal_ ? extInVal_ : MKLDNNMatrix::create(extPD, inMat);
cvtInVal_ = MKLDNNMatrix::createReorder(extInVal_, in); cvtInVal_ = MKLDNNMatrix::createReorder(extInVal_, in);
CHECK(cvtInVal_) << "should not be emptry"; CHECK(cvtInVal_) << "should not be emptry";
} }
...@@ -291,7 +287,7 @@ void MKLDNNLayer::resetMergeGrad(MKLDNNMatrixPtr& out) { ...@@ -291,7 +287,7 @@ void MKLDNNLayer::resetMergeGrad(MKLDNNMatrixPtr& out) {
return; return;
} }
CHECK(out) << "should have reset internal ouput grad"; CHECK(out) << "should have reset internal ouput grad";
std::vector<double> scales(outputMap_.size(), 1.0); std::vector<float> scales(outputMap_.size(), 1.0);
std::vector<memory::primitive_desc> srcPDs; std::vector<memory::primitive_desc> srcPDs;
std::vector<primitive::at> srcs; std::vector<primitive::at> srcs;
for (auto it = outputMap_.begin(); it != outputMap_.end(); ++it) { for (auto it = outputMap_.begin(); it != outputMap_.end(); ++it) {
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "ScaleSubRegionLayer.h"
#include "paddle/utils/Stat.h"
namespace paddle {
REGISTER_LAYER(scale_sub_region, ScaleSubRegionLayer);
bool ScaleSubRegionLayer::init(const LayerMap& layerMap,
const ParameterMap& parameterMap) {
Layer::init(layerMap, parameterMap);
CHECK_EQ(static_cast<int>(inputLayers_.size()), 2);
auto& conf = config_.inputs(0).scale_sub_region_conf();
value_ = conf.value();
createFunction(forward_, "ScaleSubRegion", FuncConfig().set("value", value_));
createFunction(
backward_, "ScaleSubRegionGrad", FuncConfig().set("value", value_));
return true;
}
void ScaleSubRegionLayer::forward(PassType passType) {
Layer::forward(passType);
auto in0 = getInput(0);
imgH_ = in0.getFrameHeight();
imgW_ = in0.getFrameWidth();
if (imgH_ == 0 || imgW_ == 0) {
auto& conf = config_.inputs(0).scale_sub_region_conf();
imgH_ = conf.image_conf().img_size_y();
imgW_ = conf.image_conf().img_size();
}
MatrixPtr imgV = in0.value;
size_t batchSize = imgV->getHeight();
size_t spatialSize = imgH_ * imgW_;
channelsNum_ = imgV->getWidth() / spatialSize;
shape_ = TensorShape({batchSize, channelsNum_, imgH_, imgW_});
resetOutput(batchSize, imgV->getWidth());
auto out = getOutput();
out.setFrameHeight(imgH_);
out.setFrameWidth(imgW_);
MatrixPtr indicesV = getInputValue(1);
indicesShape_ = TensorShape({batchSize, 6});
REGISTER_TIMER_INFO("ScaleSubRegionForward", getName().c_str());
BufferArgs inArgs;
BufferArgs outArgs;
inArgs.addArg(*imgV, shape_);
inArgs.addArg(*indicesV, indicesShape_);
outArgs.addArg(*out.value, shape_, ASSIGN_TO);
forward_[0]->calc(inArgs, outArgs);
}
void ScaleSubRegionLayer::backward(const UpdateCallback& callback) {
REGISTER_TIMER_INFO("ScaleSubRegionBackward", getName().c_str());
BufferArgs inArgs;
BufferArgs outArgs;
inArgs.addArg(*getOutputGrad(), shape_);
inArgs.addArg(*getInputValue(1), indicesShape_);
outArgs.addArg(*getInputGrad(0), shape_, ADD_TO);
backward_[0]->calc(inArgs, outArgs);
}
} // namespace paddle
...@@ -13,25 +13,40 @@ See the License for the specific language governing permissions and ...@@ -13,25 +13,40 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#pragma once #pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h" #include "Layer.h"
namespace paddle { namespace paddle {
namespace operators {
/**
template <typename Place, typename T> * \brief For each instance, this layer can be used to multiply a value to a
class FillConstantOpKernel : public framework::OpKernel<T> { * specified sub continuous region. By providing start index and end
public: * index for C/H/W, you can specify the location and shape of the
void Compute(const framework::ExecutionContext& ctx) const override { * region.
auto* out = ctx.Output<framework::Tensor>("Out"); *
out->mutable_data<T>(ctx.GetPlace()); * input_0: Input value.
auto value = ctx.Attr<float>("value"); * input_1: Indices value to specify the location an shape of the
* region.
auto out_eigen = framework::EigenVector<T>::Flatten(*out); */
auto place = ctx.GetEigenDevice<Place>(); class ScaleSubRegionLayer : public Layer {
out_eigen.device(place) = out_eigen.constant(static_cast<T>(value)); public:
} explicit ScaleSubRegionLayer(const LayerConfig& config) : Layer(config) {}
~ScaleSubRegionLayer() {}
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
void forward(PassType passType);
void backward(const UpdateCallback& callback = nullptr);
protected:
TensorShape shape_;
TensorShape indicesShape_;
size_t imgH_;
size_t imgW_;
size_t channelsNum_;
real value_;
}; };
} // namespace operators
} // namespace paddle } // namespace paddle
...@@ -2358,6 +2358,38 @@ TEST(Layer, ScaleShiftLayer) { ...@@ -2358,6 +2358,38 @@ TEST(Layer, ScaleShiftLayer) {
} }
} }
TEST(Layer, ScaleSubRegionLayer) {
const size_t batchSize = 64;
const size_t size = 4096;
TestConfig config;
config.layerConfig.set_type("scale_sub_region");
config.inputDefs.push_back({INPUT_DATA, "input", size, 0});
MatrixPtr indicesV = Matrix::create(batchSize, 6, false, false);
auto* data = indicesV->getData();
for (size_t i = 0; i < batchSize; ++i) {
data[i * 2] = 2;
data[i * 2 + 1] = 4;
data[i * 2 + 2] = 16;
data[i * 2 + 3] = 32;
data[i * 2 + 4] = 16;
data[i * 2 + 5] = 32;
}
config.inputDefs.push_back({INPUT_SELF_DEFINE_DATA, "indices", indicesV, {}});
LayerInputConfig* input = config.layerConfig.add_inputs();
ScaleSubRegionConfig* scaleSubRegionConf =
input->mutable_scale_sub_region_conf();
ImageConfig* imgConf = scaleSubRegionConf->mutable_image_conf();
imgConf->set_img_size(32);
imgConf->set_img_size_y(32);
imgConf->set_channels(4);
scaleSubRegionConf->set_value(2.0);
config.layerConfig.add_inputs();
for (auto useGpu : {false, true}) {
testLayerGrad(config, "scale_sub_region", batchSize, false, useGpu, false);
}
}
int main(int argc, char** argv) { int main(int argc, char** argv) {
testing::InitGoogleTest(&argc, argv); testing::InitGoogleTest(&argc, argv);
initMain(argc, argv); initMain(argc, argv);
......
...@@ -300,13 +300,8 @@ void testAddtoLayer(const testImageDesc& pm, const size_t nInputs) { ...@@ -300,13 +300,8 @@ void testAddtoLayer(const testImageDesc& pm, const size_t nInputs) {
TestConfig dnnConfig; TestConfig dnnConfig;
getAddtoConfig(dnnConfig, pm, nInputs); getAddtoConfig(dnnConfig, pm, nInputs);
dnnConfig.layerConfig.set_type("mkldnn_addto"); dnnConfig.layerConfig.set_type("mkldnn_addto");
// TODO(TJ): test with bias for (auto withBias : {false, true}) {
for (auto withBias : {false}) { dnnConfig.biasSize = withBias ? pm.ic * pm.ih * pm.iw : 0;
if (withBias) {
dnnConfig.biasSize = pm.ic * pm.ih * pm.iw;
} else {
dnnConfig.biasSize = 0;
}
RUN_MKLDNN_TEST_LAYER(dnnConfig, "addto", pm) RUN_MKLDNN_TEST_LAYER(dnnConfig, "addto", pm)
} }
} }
......
...@@ -169,7 +169,7 @@ void TensorCheck(AssertEq compare, ...@@ -169,7 +169,7 @@ void TensorCheck(AssertEq compare,
count++; count++;
} }
} }
EXPECT_EQ(count, 0) << "There are " << count << " different element."; EXPECT_EQ(count, 0) << "There are " << count << " different elements.";
} }
template <typename AssertEq, typename Tensor1, typename Tensor2> template <typename AssertEq, typename Tensor1, typename Tensor2>
......
...@@ -170,6 +170,8 @@ set(DEPS_OPS ...@@ -170,6 +170,8 @@ set(DEPS_OPS
sequence_conv_op sequence_conv_op
sequence_pool_op sequence_pool_op
lod_rank_table_op lod_rank_table_op
lod_tensor_to_array_op
array_to_lod_tensor_op
lstm_op lstm_op
tensor_array_read_write_op tensor_array_read_write_op
gru_op) gru_op)
...@@ -182,6 +184,8 @@ op_library(sum_op DEPS net_op selected_rows_functor) ...@@ -182,6 +184,8 @@ op_library(sum_op DEPS net_op selected_rows_functor)
op_library(pool_op DEPS pooling) op_library(pool_op DEPS pooling)
op_library(pool_with_index_op DEPS pooling) op_library(pool_with_index_op DEPS pooling)
op_library(lod_rank_table_op SRCS lod_rank_table_op.cc DEPS lod_rank_table) op_library(lod_rank_table_op SRCS lod_rank_table_op.cc DEPS lod_rank_table)
op_library(lod_tensor_to_array_op SRCS lod_tensor_to_array_op.cc DEPS lod_rank_table_op)
op_library(array_to_lod_tensor_op SRCS array_to_lod_tensor_op.cc DEPS lod_rank_table_op)
op_library(tensor_array_read_write_op SRCS tensor_array_read_write_op.cc) op_library(tensor_array_read_write_op SRCS tensor_array_read_write_op.cc)
if(WITH_GPU) if(WITH_GPU)
op_library(nccl_op DEPS nccl_common) op_library(nccl_op DEPS nccl_common)
...@@ -191,8 +195,13 @@ op_library(sequence_pool_op DEPS sequence_pooling) ...@@ -191,8 +195,13 @@ op_library(sequence_pool_op DEPS sequence_pooling)
op_library(lstm_op DEPS sequence2batch lstm_compute) op_library(lstm_op DEPS sequence2batch lstm_compute)
op_library(conv_transpose_op DEPS vol2col) op_library(conv_transpose_op DEPS vol2col)
op_library(gru_op DEPS sequence2batch gru_compute) op_library(gru_op DEPS sequence2batch gru_compute)
op_library(dynamic_recurrent_op SRCS dynamic_recurrent_op.cc rnn/recurrent_op_utils.cc if(WITH_TESTING)
DEPS net_op tensor_array) op_library(dynamic_recurrent_op SRCS dynamic_recurrent_op.cc rnn/recurrent_op_utils.cc
DEPS net_op tensor_array gtest)
else()
op_library(dynamic_recurrent_op SRCS dynamic_recurrent_op.cc rnn/recurrent_op_utils.cc
DEPS net_op tensor_array)
endif()
op_library(recurrent_op SRCS recurrent_op.cc DEPS executor) op_library(recurrent_op SRCS recurrent_op.cc DEPS executor)
list(REMOVE_ITEM GENERAL_OPS ${DEPS_OPS}) list(REMOVE_ITEM GENERAL_OPS ${DEPS_OPS})
......
...@@ -47,10 +47,11 @@ class AccuracyOp : public framework::OperatorWithKernel { ...@@ -47,10 +47,11 @@ class AccuracyOp : public framework::OperatorWithKernel {
} }
protected: protected:
// IndicateDataType framework::OpKernelType GetKernelType(
framework::DataType IndicateDataType(
const framework::ExecutionContext &ctx) const override { const framework::ExecutionContext &ctx) const override {
return framework::ToDataType(ctx.Input<Tensor>("Out")->type()); return framework::OpKernelType(
framework::ToDataType(ctx.Input<Tensor>("Out")->type()),
ctx.device_context());
} }
}; };
......
...@@ -65,7 +65,7 @@ class AccuracyOpCUDAKernel : public framework::OpKernel<T> { ...@@ -65,7 +65,7 @@ class AccuracyOpCUDAKernel : public framework::OpKernel<T> {
size_t num_samples = inference->dims()[0]; size_t num_samples = inference->dims()[0];
size_t infer_width = inference->dims()[1]; size_t infer_width = inference->dims()[1];
cudaMemset((void**)&accuracy_data, 0, sizeof(float)); PADDLE_ENFORCE(cudaMemset(accuracy_data, 0, sizeof(float)));
if (num_samples == 0) { if (num_samples == 0) {
return; return;
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/lod_tensor_array.h"
#include "paddle/framework/op_registry.h"
namespace paddle {
namespace operators {
class ArrayOp : public framework::OperatorBase {
public:
ArrayOp(const std::string &type, const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: OperatorBase(type, inputs, outputs, attrs) {}
protected:
size_t GetOffset(const framework::Scope &scope,
const platform::DeviceContext &dev_ctx) const {
auto *i = scope.FindVar(Input("I"));
PADDLE_ENFORCE(i != nullptr, "I must be set");
auto &i_tensor = i->Get<framework::LoDTensor>();
PADDLE_ENFORCE_EQ(i_tensor.numel(), 1);
size_t offset;
if (platform::is_gpu_place(i_tensor.place())) {
// FIXME: Avoid copy from GPU to CPU
framework::Tensor t;
t.CopyFrom(i_tensor, platform::CPUPlace(), dev_ctx);
dev_ctx.Wait();
offset = static_cast<size_t>(*t.data<int64_t>());
} else {
offset = static_cast<size_t>(*i_tensor.data<int64_t>());
}
return offset;
}
};
} // namespace operators
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <numeric>
#include "paddle/framework/lod_rank_table.h"
#include "paddle/framework/lod_tensor_array.h"
#include "paddle/framework/op_registry.h"
#include "paddle/memory/memcpy.h"
namespace paddle {
namespace operators {
using LoD = framework::LoD;
class ArrayToLoDTensorOp : public framework::OperatorBase {
public:
ArrayToLoDTensorOp(const std::string &type,
const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: OperatorBase(type, inputs, outputs, attrs) {}
void Run(const framework::Scope &scope,
const platform::DeviceContext &dev_ctx) const override {
auto &x = scope.FindVar(Input("X"))->Get<framework::LoDTensorArray>();
auto &rank_table =
scope.FindVar(Input("RankTable"))->Get<framework::LoDRankTable>();
auto *out =
scope.FindVar(Output("Out"))->GetMutable<framework::LoDTensor>();
// Check dims, place and data type of input's elements and infer output's
// dim
PADDLE_ENFORCE(!x.empty(), "There's no element in the input array.");
int rank = x[0].dims().size();
platform::Place place = x[0].place();
std::type_index data_type = x[0].type();
framework::DDim ins_dims = framework::slice_ddim(x[0].dims(), 1, rank);
int64_t batch_size = x[0].dims()[0];
for (size_t i = 1; i < x.size(); ++i) {
PADDLE_ENFORCE_EQ(framework::slice_ddim(x[i].dims(), 1, rank), ins_dims,
"The dimension of the %zu'th element in LoDTensorArray "
"differs from previous ones.",
i);
PADDLE_ENFORCE(platform::places_are_same_class(x[i].place(), place),
"The place class of the %zu'th element in LoDTensorArray "
"differs from previous ones.",
i);
PADDLE_ENFORCE(x[i].type() == data_type,
"The date type of the %zu'th element in LoDTensorArray "
"differs from previous ones.",
i);
batch_size += x[i].dims()[0];
}
auto ins_dim_vec = framework::vectorize(ins_dims);
ins_dim_vec.insert(ins_dim_vec.begin(), batch_size);
framework::DDim out_dims = framework::make_ddim(ins_dim_vec);
out->Resize(out_dims);
out->mutable_data(place, data_type);
auto &table_items = rank_table.items();
std::vector<size_t> table_item_idx(table_items.size());
// table_item_idx = range(table_items_idx.size())
std::iota(table_item_idx.begin(), table_item_idx.end(), 0);
std::sort(table_item_idx.begin(), table_item_idx.end(),
[&](size_t a, size_t b) {
return table_items[a].index < table_items[b].index;
});
// Build LoDTensor `out`
framework::LoD *out_lod = out->mutable_lod();
out_lod->clear();
size_t out_offset = 0;
auto prefix_lod = rank_table.coarse_lod();
prefix_lod.emplace_back();
auto &cur_level_lod = prefix_lod.back();
cur_level_lod.push_back(0);
for (size_t idx : table_item_idx) {
cur_level_lod.push_back(cur_level_lod.back() + table_items[idx].length);
for (size_t x_idx = 0; x_idx < table_items[idx].length; ++x_idx) {
auto lod_and_offset = framework::GetSubLoDAndAbsoluteOffset(
x[x_idx].lod(), idx, idx + 1, 0);
auto &lod_length = lod_and_offset.first;
framework::AppendLoD(out_lod, lod_length);
size_t start_offset = lod_and_offset.second.first;
size_t end_offset = lod_and_offset.second.second;
VLOG(10) << "idx=" << idx << " x_idx=" << x_idx << " ["
<< ", " << end_offset << "]";
// Copy data
PADDLE_ENFORCE_GE(end_offset, start_offset);
size_t len = end_offset - start_offset;
if (len == 0) {
continue;
}
out->Slice(out_offset, out_offset + len)
.CopyFrom(x[x_idx].Slice(start_offset, end_offset), place, dev_ctx);
out_offset += len;
}
}
out_lod->insert(out_lod->begin(), prefix_lod.begin(), prefix_lod.end());
}
};
class ArrayToLoDTensorOpProtoMaker : public framework::OpProtoAndCheckerMaker {
public:
ArrayToLoDTensorOpProtoMaker(framework::OpProto *proto,
framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X",
"(std::vector<LodTensor>) A vector of tensors that is going to "
"be casted to a big LoDTensor.");
AddInput("RankTable",
"(LoDRankTable) RankTable provides the coarse lod infomation to "
"build the output LoDTensor. See "
"'paddle/framework/lod_rank_table.h' for more details.");
AddOutput("Out", "(LoDTensor) The LoDTensor formed by input tensor array.");
AddComment(
R"DOC(This Op build a big LoDTensor from a std::vector<LoDTensor>
and a LoDRankTable. It is supposed to be used in getting dynamic RNN's
outputs back to a normal LoDTensor. The std::vector<LoDTensor>
would be the output of RNN Op and the LoDRankTable would be build
with RNN's input.)DOC");
}
};
class ArrayToLoDTensorInferShape : public framework::InferShapeBase {
public:
void operator()(framework::InferShapeContext *context) const override {
PADDLE_ENFORCE(context->HasInput("X"),
"ArrayToLoDTensorOp must has input X.");
PADDLE_ENFORCE(context->HasInput("RankTable"),
"ArrayToLoDTensorOp must has input RankTable.");
context->SetOutputDim("Out", context->GetInputDim("X"));
}
};
class ArrayToLoDTensorGradMaker : public framework::SingleGradOpDescMaker {
public:
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
protected:
std::unique_ptr<framework::OpDescBind> Apply() const override {
auto *grad_op = new framework::OpDescBind();
grad_op->SetType("lod_tensor_to_array");
grad_op->SetInput("X", OutputGrad("Out"));
grad_op->SetInput("RankTable", Input("RankTable"));
grad_op->SetOutput("Out", InputGrad("X"));
grad_op->SetAttrMap(Attrs());
return std::unique_ptr<framework::OpDescBind>(grad_op);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(array_to_lod_tensor, ops::ArrayToLoDTensorOp,
ops::ArrayToLoDTensorOpProtoMaker,
ops::ArrayToLoDTensorInferShape,
ops::ArrayToLoDTensorGradMaker);
...@@ -39,10 +39,11 @@ class AucOp : public framework::OperatorWithKernel { ...@@ -39,10 +39,11 @@ class AucOp : public framework::OperatorWithKernel {
} }
protected: protected:
// IndicateDataType framework::OpKernelType GetKernelType(
framework::DataType IndicateDataType(
const framework::ExecutionContext &ctx) const override { const framework::ExecutionContext &ctx) const override {
return framework::ToDataType(ctx.Input<Tensor>("Out")->type()); return framework::OpKernelType(
framework::ToDataType(ctx.Input<Tensor>("Out")->type()),
ctx.device_context());
} }
}; };
......
...@@ -303,7 +303,8 @@ class BatchNormGradOp : public framework::OperatorWithKernel { ...@@ -303,7 +303,8 @@ class BatchNormGradOp : public framework::OperatorWithKernel {
ctx->SetOutputDim(framework::GradVarName("Bias"), {C}); ctx->SetOutputDim(framework::GradVarName("Bias"), {C});
} }
framework::DataType IndicateDataType( protected:
framework::OpKernelType GetKernelType(
const framework::ExecutionContext &ctx) const override { const framework::ExecutionContext &ctx) const override {
const auto *var = ctx.InputVar(framework::GradVarName("Y")); const auto *var = ctx.InputVar(framework::GradVarName("Y"));
if (var == nullptr) { if (var == nullptr) {
...@@ -318,7 +319,8 @@ class BatchNormGradOp : public framework::OperatorWithKernel { ...@@ -318,7 +319,8 @@ class BatchNormGradOp : public framework::OperatorWithKernel {
if (t == nullptr) { if (t == nullptr) {
PADDLE_THROW("can't find Y@GRAD"); PADDLE_THROW("can't find Y@GRAD");
} }
return framework::ToDataType(t->type()); return framework::OpKernelType(framework::ToDataType(t->type()),
ctx.device_context());
} }
}; };
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/clip_by_norm_op.h"
namespace paddle {
namespace operators {
class ClipByNormOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"),
"Input(X) of ClipByNormOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Out"),
"Output(Out) of ClipByNormOp should not be null.");
auto max_norm = ctx->Attrs().Get<float>("max_norm");
PADDLE_ENFORCE_GT(max_norm, 0, "max_norm should be greater than 0.");
auto x_dims = ctx->GetInputDim("X");
ctx->SetOutputDim("Out", x_dims);
ctx->ShareLoD("X", /*->*/ "Out");
}
};
class ClipByNormOpMaker : public framework::OpProtoAndCheckerMaker {
public:
ClipByNormOpMaker(framework::OpProto* proto,
framework::OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X",
"(Tensor) The input of clip_by_norm op."
"The number of dimensions must be between [1, 9].");
AddOutput("Out",
"(Tensor) The output of clip_by_norm op with shape as input(X)");
AddAttr<float>("max_norm", "(float) The maximum norm value.");
AddComment(R"DOC(
ClipByNorm operator limits the L2 norm of the input 'X' within 'max_norm'.
If the L2 norm of 'X' is less than or equal to 'max_norm', 'Out' will be
the same as 'X'. If the L2 norm of 'X' is greater than 'max_norm', 'X' will
be linearly scaled to make the L2 norm of 'Out' equal to 'max_norm', as
shown in the following formula:
'Out' = 'max_norm' * 'X' / norm('X'),
where norm('X') represents the L2 norm of 'X'.
)DOC");
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(clip_by_norm, ops::ClipByNormOp,
ops::ClipByNormOpMaker);
REGISTER_OP_CPU_KERNEL(
clip_by_norm, ops::ClipByNormKernel<paddle::platform::CPUPlace, float>);
...@@ -12,13 +12,8 @@ ...@@ -12,13 +12,8 @@
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#define EIGEN_USE_GPU #include "paddle/operators/clip_by_norm_op.h"
#include "paddle/framework/op_registry.h"
#include "paddle/operators/fill_constant_op.h"
namespace ops = paddle::operators; namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL( REGISTER_OP_GPU_KERNEL(
fill_constant, ops::FillConstantOpKernel<paddle::platform::GPUPlace, float>, clip_by_norm, ops::ClipByNormKernel<paddle::platform::GPUPlace, float>);
ops::FillConstantOpKernel<paddle::platform::GPUPlace, double>,
ops::FillConstantOpKernel<paddle::platform::GPUPlace, int>,
ops::FillConstantOpKernel<paddle::platform::GPUPlace, int64_t>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
#include "paddle/platform/transform.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
template <typename Place, typename T>
class ClipByNormKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto max_norm = context.Attr<T>("max_norm");
auto* input = context.Input<Tensor>("X");
auto* output = context.Output<Tensor>("Out");
output->mutable_data<T>(context.GetPlace());
auto x = EigenVector<T>::Flatten(*input);
auto out = EigenVector<T>::Flatten(*output);
auto x_norm = x.square().sum().sqrt();
auto place = context.GetEigenDevice<Place>();
auto temp = (x_norm <= max_norm).template cast<T>().eval();
auto scaling = temp + (static_cast<T>(1) - temp) * max_norm / x_norm;
Eigen::array<int, 1> one_dim{{1}};
Eigen::DSizes<int, 1> m_dsize(input->numel());
out.device(place) = x * scaling.reshape(one_dim).broadcast(m_dsize);
}
};
} // namespace operators
} // namespace paddle
...@@ -14,6 +14,7 @@ ...@@ -14,6 +14,7 @@
#include "paddle/operators/compare_op.h" #include "paddle/operators/compare_op.h"
#include "paddle/framework/op_registry.h" #include "paddle/framework/op_registry.h"
namespace paddle { namespace paddle {
namespace operators { namespace operators {
template <typename OpComment> template <typename OpComment>
...@@ -61,19 +62,34 @@ class CompareOpInferShape : public framework::InferShapeBase { ...@@ -61,19 +62,34 @@ class CompareOpInferShape : public framework::InferShapeBase {
} }
}; };
class CompareOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
framework::OpKernelType GetKernelType(
const framework::ExecutionContext &ctx) const override {
framework::OpKernelType kt = OperatorWithKernel::GetKernelType(ctx);
// CompareOp kernel's device type is decided by input tensor place
kt.place_ = ctx.Input<framework::LoDTensor>("X")->place();
return kt;
}
};
} // namespace operators } // namespace operators
} // namespace paddle } // namespace paddle
#define REGISTER_LOGICAL_OP(op_type, _equation) \ #define REGISTER_LOGICAL_OP(op_type, _equation) \
struct _##op_type##Comment { \ struct _##op_type##Comment { \
static char type[]; \ static char type[]; \
static char equation[]; \ static char equation[]; \
}; \ }; \
char _##op_type##Comment::type[]{#op_type}; \ char _##op_type##Comment::type[]{#op_type}; \
char _##op_type##Comment::equation[]{_equation}; \ char _##op_type##Comment::equation[]{_equation}; \
REGISTER_OP_WITH_KERNEL( \ REGISTER_OPERATOR( \
op_type, ::paddle::operators::CompareOpProtoMaker<_##op_type##Comment>, \ op_type, ::paddle::operators::CompareOp, \
::paddle::operators::CompareOpInferShape<_##op_type##Comment>, \ ::paddle::operators::CompareOpProtoMaker<_##op_type##Comment>, \
::paddle::operators::CompareOpInferShape<_##op_type##Comment>, \
::paddle::framework::EmptyGradOpMaker); ::paddle::framework::EmptyGradOpMaker);
REGISTER_LOGICAL_OP(less_than, "Out = X < Y"); REGISTER_LOGICAL_OP(less_than, "Out = X < Y");
......
...@@ -120,9 +120,11 @@ class CRFDecodingOp : public framework::OperatorWithKernel { ...@@ -120,9 +120,11 @@ class CRFDecodingOp : public framework::OperatorWithKernel {
} }
protected: protected:
framework::DataType IndicateDataType( framework::OpKernelType GetKernelType(
const framework::ExecutionContext& ctx) const override { const framework::ExecutionContext& ctx) const override {
return framework::ToDataType(ctx.Input<LoDTensor>("Emission")->type()); return framework::OpKernelType(
framework::ToDataType(ctx.Input<LoDTensor>("Emission")->type()),
ctx.device_context());
} }
}; };
} // namespace operators } // namespace operators
......
...@@ -51,9 +51,11 @@ class CrossEntropyOp : public framework::OperatorWithKernel { ...@@ -51,9 +51,11 @@ class CrossEntropyOp : public framework::OperatorWithKernel {
protected: protected:
// Explicitly set that the data type of computation kernel of cross_entropy // Explicitly set that the data type of computation kernel of cross_entropy
// is determined by its input "X". // is determined by its input "X".
framework::DataType IndicateDataType( framework::OpKernelType GetKernelType(
const framework::ExecutionContext& ctx) const override { const framework::ExecutionContext& ctx) const override {
return framework::ToDataType(ctx.Input<Tensor>("X")->type()); return framework::OpKernelType(
framework::ToDataType(ctx.Input<Tensor>("X")->type()),
ctx.device_context());
} }
}; };
...@@ -98,9 +100,11 @@ class CrossEntropyGradientOp : public framework::OperatorWithKernel { ...@@ -98,9 +100,11 @@ class CrossEntropyGradientOp : public framework::OperatorWithKernel {
protected: protected:
// Explicitly set that the data type of computation kernel of cross_entropy // Explicitly set that the data type of computation kernel of cross_entropy
// is determined by its input "X". // is determined by its input "X".
framework::DataType IndicateDataType( framework::OpKernelType GetKernelType(
const framework::ExecutionContext& ctx) const override { const framework::ExecutionContext& ctx) const override {
return framework::ToDataType(ctx.Input<Tensor>("X")->type()); return framework::OpKernelType(
framework::ToDataType(ctx.Input<Tensor>("X")->type()),
ctx.device_context());
} }
}; };
......
...@@ -49,9 +49,11 @@ class FillConstantBatchSizeLikeOp : public framework::OperatorWithKernel { ...@@ -49,9 +49,11 @@ class FillConstantBatchSizeLikeOp : public framework::OperatorWithKernel {
} }
protected: protected:
framework::DataType IndicateDataType( framework::OpKernelType GetKernelType(
const framework::ExecutionContext &ctx) const override { const framework::ExecutionContext &ctx) const override {
return static_cast<framework::DataType>(ctx.Attr<int>("data_type")); return framework::OpKernelType(
static_cast<framework::DataType>(ctx.Attr<int>("data_type")),
ctx.device_context());
} }
}; };
...@@ -73,10 +75,10 @@ class FillConstantBatchSizeLikeOpMaker ...@@ -73,10 +75,10 @@ class FillConstantBatchSizeLikeOpMaker
"with the specified value"); "with the specified value");
AddAttr<std::vector<int>>("shape", "(vector<int>) The shape of the output"); AddAttr<std::vector<int>>("shape", "(vector<int>) The shape of the output");
AddAttr<int>("input_dim_idx", AddAttr<int>("input_dim_idx",
"(int, default 0) the index of input's batch size dimension") "(int, default 0) The index of input's batch size dimension")
.SetDefault(0); .SetDefault(0);
AddAttr<int>("output_dim_idx", AddAttr<int>("output_dim_idx",
"(int, default 0) the index of output's batch size dimension") "(int, default 0) The index of output's batch size dimension")
.SetDefault(0); .SetDefault(0);
AddAttr<float>("value", "(float, default 0) The value to be filled") AddAttr<float>("value", "(float, default 0) The value to be filled")
.SetDefault(0.0f); .SetDefault(0.0f);
......
...@@ -12,32 +12,41 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ...@@ -12,32 +12,41 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/operators/fill_constant_op.h" #include "paddle/framework/data_type.h"
#include "paddle/framework/op_registry.h"
#include "paddle/operators/math/math_function.h"
namespace paddle { namespace paddle {
namespace operators { namespace operators {
class FillConstantOp : public framework::OperatorWithKernel { class FillConstantInferShape : public framework::InferShapeBase {
public: public:
using framework::OperatorWithKernel::OperatorWithKernel; void operator()(framework::InferShapeContext *ctx) const override {
void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE(ctx->HasOutput("Out"), PADDLE_ENFORCE(ctx->HasOutput("Out"),
"Output(Out) of FillConstantOp should not be null."); "Output(Out) of FillConstantOp should not be null.");
auto &shape = ctx->Attrs().Get<std::vector<int>>("shape"); auto &shape = ctx->Attrs().Get<std::vector<int>>("shape");
std::vector<int64_t> shape_int64(shape.size(), 0); ctx->SetOutputDim("Out", framework::make_ddim(shape));
std::transform(shape.begin(), shape.end(), shape_int64.begin(),
[](int a) { return static_cast<int64_t>(a); });
auto dims = framework::make_ddim(shape_int64);
ctx->SetOutputDim("Out", dims);
} }
};
protected: class FillConstantOp : public framework::OperatorBase {
framework::DataType IndicateDataType( public:
const framework::ExecutionContext &ctx) const override { using framework::OperatorBase::OperatorBase;
int data_type = ctx.Attr<int>("data_type"); void Run(const framework::Scope &scope,
VLOG(10) << " FillConstant data_type = " << data_type; const platform::DeviceContext &dev_ctx) const override {
return static_cast<framework::DataType>(data_type); auto data_type = static_cast<framework::DataType>(Attr<int>("data_type"));
auto value = Attr<float>("value");
auto force_cpu = Attr<bool>("force_cpu");
auto &out =
*scope.FindVar(Output("Out"))->GetMutable<framework::LoDTensor>();
out.Resize(framework::make_ddim(Attr<std::vector<int>>("shape")));
if (force_cpu) {
auto cpu = platform::CPUPlace();
out.mutable_data(cpu, framework::ToTypeIndex(data_type));
} else {
out.mutable_data(dev_ctx.GetPlace(), framework::ToTypeIndex(data_type));
}
math::set_constant(dev_ctx, &out, value);
} }
}; };
...@@ -53,6 +62,11 @@ class FillConstantOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -53,6 +62,11 @@ class FillConstantOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr<std::vector<int>>("shape", "(vector<int>) The shape of the output"); AddAttr<std::vector<int>>("shape", "(vector<int>) The shape of the output");
AddAttr<float>("value", "(float, default 0) The value to be filled") AddAttr<float>("value", "(float, default 0) The value to be filled")
.SetDefault(0.0f); .SetDefault(0.0f);
AddAttr<bool>("force_cpu",
"(bool, default false) Force fill output variable to cpu "
"memory. Otherwise, fill output variable to the running "
"device")
.SetDefault(false);
AddOutput("Out", AddOutput("Out",
"(Tensor) Tensor of specified shape will be filled " "(Tensor) Tensor of specified shape will be filled "
"with the specified value"); "with the specified value");
...@@ -68,10 +82,6 @@ Fill up a variable with specified constant value. ...@@ -68,10 +82,6 @@ Fill up a variable with specified constant value.
} // namespace paddle } // namespace paddle
namespace ops = paddle::operators; namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(fill_constant, ops::FillConstantOp, REGISTER_OPERATOR(fill_constant, ops::FillConstantOp,
ops::FillConstantOpMaker); ops::FillConstantInferShape, ops::FillConstantOpMaker,
REGISTER_OP_CPU_KERNEL( paddle::framework::EmptyGradOpMaker);
fill_constant, ops::FillConstantOpKernel<paddle::platform::CPUPlace, float>,
ops::FillConstantOpKernel<paddle::platform::CPUPlace, double>,
ops::FillConstantOpKernel<paddle::platform::CPUPlace, int>,
ops::FillConstantOpKernel<paddle::platform::CPUPlace, int64_t>);
...@@ -40,9 +40,11 @@ class GatherOp : public framework::OperatorWithKernel { ...@@ -40,9 +40,11 @@ class GatherOp : public framework::OperatorWithKernel {
} }
protected: protected:
framework::DataType IndicateDataType( framework::OpKernelType GetKernelType(
const framework::ExecutionContext& ctx) const override { const framework::ExecutionContext& ctx) const override {
return framework::ToDataType(ctx.Input<Tensor>("X")->type()); return framework::OpKernelType(
framework::ToDataType(ctx.Input<Tensor>("X")->type()),
ctx.device_context());
} }
}; };
...@@ -55,9 +57,11 @@ class GatherGradOp : public framework::OperatorWithKernel { ...@@ -55,9 +57,11 @@ class GatherGradOp : public framework::OperatorWithKernel {
} }
protected: protected:
framework::DataType IndicateDataType( framework::OpKernelType GetKernelType(
const framework::ExecutionContext& ctx) const override { const framework::ExecutionContext& ctx) const override {
return framework::ToDataType(ctx.Input<Tensor>("X")->type()); return framework::OpKernelType(
framework::ToDataType(ctx.Input<Tensor>("X")->type()),
ctx.device_context());
} }
}; };
......
...@@ -57,9 +57,11 @@ class GaussianRandomOp : public framework::OperatorWithKernel { ...@@ -57,9 +57,11 @@ class GaussianRandomOp : public framework::OperatorWithKernel {
} }
protected: protected:
framework::DataType IndicateDataType( framework::OpKernelType GetKernelType(
const framework::ExecutionContext& ctx) const override { const framework::ExecutionContext& ctx) const override {
return static_cast<framework::DataType>(ctx.Attr<int>("data_type")); return framework::OpKernelType(
static_cast<framework::DataType>(ctx.Attr<int>("data_type")),
ctx.device_context());
} }
}; };
......
...@@ -183,9 +183,11 @@ class LinearChainCRFOp : public framework::OperatorWithKernel { ...@@ -183,9 +183,11 @@ class LinearChainCRFOp : public framework::OperatorWithKernel {
protected: protected:
// Explicitly set that the data type of computation kernel of linear_chain_crf // Explicitly set that the data type of computation kernel of linear_chain_crf
// is determined by its input "Emission". // is determined by its input "Emission".
framework::DataType IndicateDataType( framework::OpKernelType GetKernelType(
const framework::ExecutionContext& ctx) const override { const framework::ExecutionContext& ctx) const override {
return framework::ToDataType(ctx.Input<LoDTensor>("Emission")->type()); return framework::OpKernelType(
framework::ToDataType(ctx.Input<LoDTensor>("Emission")->type()),
ctx.device_context());
} }
}; };
...@@ -240,10 +242,13 @@ class LinearChainCRFGradOp : public framework::OperatorWithKernel { ...@@ -240,10 +242,13 @@ class LinearChainCRFGradOp : public framework::OperatorWithKernel {
protected: protected:
// Explicitly set that the data type of output of the linear_chain_crf_grad // Explicitly set that the data type of output of the linear_chain_crf_grad
// operator is determined by its input: gradients of LogLikelihood. // operator is determined by its input: gradients of LogLikelihood.
framework::DataType IndicateDataType( framework::OpKernelType GetKernelType(
const framework::ExecutionContext& ctx) const override { const framework::ExecutionContext& ctx) const override {
return framework::ToDataType( return framework::OpKernelType(
ctx.Input<LoDTensor>(framework::GradVarName("LogLikelihood"))->type()); framework::ToDataType(
ctx.Input<LoDTensor>(framework::GradVarName("LogLikelihood"))
->type()),
ctx.device_context());
} }
}; };
......
...@@ -28,6 +28,7 @@ class LoDRankTableOp : public framework::OperatorBase { ...@@ -28,6 +28,7 @@ class LoDRankTableOp : public framework::OperatorBase {
auto x = scope.FindVar(Input("X"))->Get<framework::LoDTensor>(); auto x = scope.FindVar(Input("X"))->Get<framework::LoDTensor>();
auto *out = auto *out =
scope.FindVar(Output("Out"))->GetMutable<framework::LoDRankTable>(); scope.FindVar(Output("Out"))->GetMutable<framework::LoDRankTable>();
VLOG(10) << "Level = " << static_cast<size_t>(Attr<int>("level"));
out->Reset(x.lod(), static_cast<size_t>(Attr<int>("level"))); out->Reset(x.lod(), static_cast<size_t>(Attr<int>("level")));
} }
}; };
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/framework/lod_rank_table.h"
#include "paddle/framework/lod_tensor_array.h"
#include "paddle/framework/op_registry.h"
namespace paddle {
namespace operators {
struct CopyRange {
size_t begin;
size_t end;
};
class LoDTensorToArrayOp : public framework::OperatorBase {
public:
LoDTensorToArrayOp(const std::string &type,
const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: OperatorBase(type, inputs, outputs, attrs) {}
void Run(const framework::Scope &scope,
const platform::DeviceContext &dev_ctx) const override {
auto &x = scope.FindVar(Input("X"))->Get<framework::LoDTensor>();
auto &rank_table =
scope.FindVar(Input("RankTable"))->Get<framework::LoDRankTable>();
auto &out =
*scope.FindVar(Output("Out"))->GetMutable<framework::LoDTensorArray>();
auto &items = rank_table.items();
auto max_seq_len = items[0].length;
auto rank_level = rank_table.level();
out.resize(max_seq_len);
std::vector<std::vector<CopyRange>> copy_ranges(max_seq_len);
// set out[i] lod
for (size_t t = 0; t < max_seq_len; t++) {
auto &lod = *out[t].mutable_lod();
lod.clear();
for (auto &item : items) {
if (t >= item.length) {
break;
}
size_t start_idx = x.lod()[rank_level][item.index] + t;
auto lod_and_offset = framework::GetSubLoDAndAbsoluteOffset(
x.lod(), start_idx, start_idx + 1, rank_level + 1);
auto &lod_length = lod_and_offset.first;
framework::AppendLoD(&lod, lod_length);
size_t start_offset = lod_and_offset.second.first;
size_t end_offset = lod_and_offset.second.second;
copy_ranges[t].emplace_back(CopyRange{start_offset, end_offset});
}
}
for (size_t i = 0; i < max_seq_len; ++i) {
auto &ranges = copy_ranges[i];
size_t height = std::accumulate(
ranges.begin(), ranges.end(), 0UL,
[](size_t a, const CopyRange &b) { return a + b.end - b.begin; });
auto x_dim = x.dims();
x_dim[0] = static_cast<int64_t>(height);
out[i].Resize(x_dim);
out[i].mutable_data(x.place(), x.type());
size_t offset = 0;
for (auto &each_range : ranges) {
size_t len = each_range.end - each_range.begin;
if (len == 0) {
continue;
}
// out[i][offset: offset+len] = x[each_range.begin: each_range.end]
out[i]
.Slice(static_cast<int>(offset), static_cast<int>(offset + len))
.CopyFrom(x.Slice(static_cast<int>(each_range.begin),
static_cast<int>(each_range.end)),
x.place(), dev_ctx);
offset += len;
}
}
}
};
class LoDTensorToArrayOpProtoMaker : public framework::OpProtoAndCheckerMaker {
public:
LoDTensorToArrayOpProtoMaker(framework::OpProto *proto,
framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "");
AddInput("RankTable", "");
AddOutput("Out", "");
AddComment("");
}
};
class LoDTensorToArrayInferShape : public framework::InferShapeBase {
public:
void operator()(framework::InferShapeContext *context) const override {
PADDLE_ENFORCE(context->HasInput("X"),
"Input(X) of LoDTensorToArrayOp should not be null.");
PADDLE_ENFORCE(
context->HasInput("RankTable"),
"Input(RankTable) of LoDTensorToArrayOp should not be null.");
PADDLE_ENFORCE(context->HasOutput("Out"),
"Output(Out) of LoDTensorToArrayOp should not be null.");
auto x_dim = context->GetInputDim("X");
// The first dim of each LoDTensor in Output can only be set at run-time.;
// We still have to Resize each LoDTensor in Output.
context->SetOutputDim("Out", x_dim);
}
};
class LoDTensorToArrayInferVarType : public framework::VarTypeInference {
public:
void operator()(const framework::OpDescBind &op_desc,
framework::BlockDescBind *block) const override {
for (auto &out_var : op_desc.Output("Out")) {
block->Var(out_var)->SetType(framework::VarDesc::LOD_TENSOR_ARRAY);
}
}
};
class LoDTensorToArrayGradMaker : public framework::SingleGradOpDescMaker {
public:
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
protected:
std::unique_ptr<framework::OpDescBind> Apply() const override {
auto *grad_op = new framework::OpDescBind();
grad_op->SetType("array_to_lod_tensor");
grad_op->SetInput("X", OutputGrad("Out"));
grad_op->SetInput("RankTable", Input("RankTable"));
grad_op->SetOutput("Out", InputGrad("X"));
grad_op->SetAttrMap(Attrs());
return std::unique_ptr<framework::OpDescBind>(grad_op);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(lod_tensor_to_array, ops::LoDTensorToArrayOp,
ops::LoDTensorToArrayOpProtoMaker,
ops::LoDTensorToArrayInferShape,
ops::LoDTensorToArrayInferVarType,
ops::LoDTensorToArrayGradMaker);
...@@ -41,9 +41,11 @@ class LookupTableOp : public framework::OperatorWithKernel { ...@@ -41,9 +41,11 @@ class LookupTableOp : public framework::OperatorWithKernel {
} }
protected: protected:
framework::DataType IndicateDataType( framework::OpKernelType GetKernelType(
const framework::ExecutionContext& ctx) const override { const framework::ExecutionContext& ctx) const override {
return framework::ToDataType(ctx.Input<LoDTensor>("W")->type()); return framework::OpKernelType(
framework::ToDataType(ctx.Input<LoDTensor>("W")->type()),
ctx.device_context());
} }
}; };
...@@ -97,9 +99,11 @@ class LookupTableOpGrad : public framework::OperatorWithKernel { ...@@ -97,9 +99,11 @@ class LookupTableOpGrad : public framework::OperatorWithKernel {
} }
protected: protected:
framework::DataType IndicateDataType( framework::OpKernelType GetKernelType(
const framework::ExecutionContext& ctx) const override { const framework::ExecutionContext& ctx) const override {
return framework::ToDataType(ctx.Input<LoDTensor>("W")->type()); return framework::OpKernelType(
framework::ToDataType(ctx.Input<LoDTensor>("W")->type()),
ctx.device_context());
} }
}; };
......
...@@ -84,10 +84,11 @@ class LSTMOp : public framework::OperatorWithKernel { ...@@ -84,10 +84,11 @@ class LSTMOp : public framework::OperatorWithKernel {
} }
protected: protected:
framework::DataType IndicateDataType( framework::OpKernelType GetKernelType(
const framework::ExecutionContext& ctx) const override { const framework::ExecutionContext& ctx) const override {
return framework::ToDataType( return framework::OpKernelType(
ctx.Input<framework::LoDTensor>("Input")->type()); framework::ToDataType(ctx.Input<framework::LoDTensor>("Input")->type()),
ctx.device_context());
} }
}; };
...@@ -245,10 +246,11 @@ class LSTMGradOp : public framework::OperatorWithKernel { ...@@ -245,10 +246,11 @@ class LSTMGradOp : public framework::OperatorWithKernel {
} }
protected: protected:
framework::DataType IndicateDataType( framework::OpKernelType GetKernelType(
const framework::ExecutionContext& ctx) const override { const framework::ExecutionContext& ctx) const override {
return framework::ToDataType( return framework::OpKernelType(
ctx.Input<framework::LoDTensor>("Input")->type()); framework::ToDataType(ctx.Input<framework::LoDTensor>("Input")->type()),
ctx.device_context());
} }
}; };
......
...@@ -34,10 +34,10 @@ class LstmUnitOp : public framework::OperatorWithKernel { ...@@ -34,10 +34,10 @@ class LstmUnitOp : public framework::OperatorWithKernel {
auto c_prev_dims = ctx->GetInputDim("C_prev"); auto c_prev_dims = ctx->GetInputDim("C_prev");
PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank must be 2."); PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank must be 2.");
PADDLE_ENFORCE(x_dims[0] == c_prev_dims[0], PADDLE_ENFORCE_EQ(x_dims[0], c_prev_dims[0],
"Batch size of inputs and states must be equal"); "Batch size of inputs and states must be equal");
PADDLE_ENFORCE(x_dims[1] == c_prev_dims[1] * 4, PADDLE_ENFORCE_EQ(x_dims[1], c_prev_dims[1] * 4,
"Dimension of FC should equal to prev state * 4"); "Dimension of FC should equal to prev state * 4");
int b_size = c_prev_dims[0]; // batch size int b_size = c_prev_dims[0]; // batch size
int s_dim = c_prev_dims[1]; // state dim int s_dim = c_prev_dims[1]; // state dim
......
...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and ...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/operators/math/math_function.h" #include "paddle/operators/math/math_function.h"
#include "paddle/framework/data_type.h"
namespace paddle { namespace paddle {
namespace operators { namespace operators {
...@@ -233,6 +234,52 @@ void gemv<platform::CPUPlace, double>(const platform::DeviceContext& context, ...@@ -233,6 +234,52 @@ void gemv<platform::CPUPlace, double>(const platform::DeviceContext& context,
template struct SetConstant<platform::CPUPlace, float>; template struct SetConstant<platform::CPUPlace, float>;
struct TensorSetConstant {
TensorSetConstant(framework::Tensor* tensor, float value)
: tensor_(tensor), value_(value) {}
template <typename T>
void operator()() const {
auto cpu = platform::CPUPlace();
auto* begin = tensor_->mutable_data<T>(cpu);
std::fill(begin, begin + tensor_->numel(), static_cast<T>(value_));
}
framework::Tensor* tensor_;
float value_;
};
template <>
void set_constant_with_place<platform::CPUPlace>(
const platform::DeviceContext& context, framework::Tensor* tensor,
float value) {
framework::VisitDataType(framework::ToDataType(tensor->type()),
TensorSetConstant(tensor, value));
}
struct TensorSetConstantWithPlace : public boost::static_visitor<void> {
TensorSetConstantWithPlace(const platform::DeviceContext& context,
framework::Tensor* tensor, float value)
: context_(context), tensor_(tensor), value_(value) {}
template <typename Place>
void operator()(Place place) const {
set_constant_with_place<Place>(context_, tensor_, value_);
}
const platform::DeviceContext& context_;
framework::Tensor* tensor_;
float value_;
};
void set_constant(const platform::DeviceContext& context,
framework::Tensor* tensor, float value) {
TensorSetConstantWithPlace func(context, tensor, value);
#ifdef PADDLE_WITH_CUDA
tensor->place().apply_visitor(func);
#else
func(platform::CPUPlace());
#endif
}
} // namespace math } // namespace math
} // namespace operators } // namespace operators
} // namespace paddle } // namespace paddle
...@@ -12,6 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ...@@ -12,6 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/framework/data_type.h"
#include "paddle/operators/math/math_function.h" #include "paddle/operators/math/math_function.h"
namespace paddle { namespace paddle {
...@@ -232,6 +233,30 @@ void gemv<platform::GPUPlace, double>(const platform::DeviceContext& context, ...@@ -232,6 +233,30 @@ void gemv<platform::GPUPlace, double>(const platform::DeviceContext& context,
template struct SetConstant<platform::GPUPlace, float>; template struct SetConstant<platform::GPUPlace, float>;
struct TensorSetConstant {
TensorSetConstant(const platform::DeviceContext& context,
framework::Tensor* tensor, float value)
: context_(context), tensor_(tensor), value_(value) {}
template <typename T>
void operator()() const {
SetConstant<platform::GPUPlace, T> functor;
functor(context_, tensor_, static_cast<T>(value_));
}
const platform::DeviceContext& context_;
framework::Tensor* tensor_;
float value_;
};
template <>
void set_constant_with_place<platform::GPUPlace>(
const platform::DeviceContext& context, framework::Tensor* tensor,
float value) {
framework::VisitDataType(framework::ToDataType(tensor->type()),
TensorSetConstant(context, tensor, value));
}
} // namespace math } // namespace math
} // namespace operators } // namespace operators
} // namespace paddle } // namespace paddle
...@@ -108,6 +108,13 @@ struct SetConstant { ...@@ -108,6 +108,13 @@ struct SetConstant {
} }
}; };
template <typename Place>
void set_constant_with_place(const platform::DeviceContext& context,
framework::Tensor* tensor, float value);
void set_constant(const platform::DeviceContext& context,
framework::Tensor* tensor, float value);
} // namespace math } // namespace math
} // namespace operators } // namespace operators
} // namespace paddle } // namespace paddle
...@@ -139,3 +139,15 @@ TEST(math_function, gemv) { ...@@ -139,3 +139,15 @@ TEST(math_function, gemv) {
GemvTest<float>(12, 7, true); GemvTest<float>(12, 7, true);
GemvTest<double>(7, 9, true); GemvTest<double>(7, 9, true);
} }
TEST(math_funciton, set_constant) {
paddle::framework::Tensor t;
t.Resize({10, 10});
t.mutable_data<int>(paddle::platform::CPUPlace());
auto* ctx = new paddle::platform::CPUDeviceContext();
paddle::operators::math::set_constant(*ctx, &t, 10);
for (int64_t i = 0; i < t.numel(); ++i) {
PADDLE_ENFORCE_EQ(10, t.data<int>()[i]);
}
delete ctx;
}
...@@ -51,6 +51,7 @@ class MeanGradOp : public framework::OperatorWithKernel { ...@@ -51,6 +51,7 @@ class MeanGradOp : public framework::OperatorWithKernel {
void InferShape(framework::InferShapeContext* ctx) const override { void InferShape(framework::InferShapeContext* ctx) const override {
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X")); ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
ctx->ShareLoD("X", framework::GradVarName("X"));
} }
}; };
......
...@@ -51,9 +51,11 @@ class MultiplexOp : public framework::OperatorWithKernel { ...@@ -51,9 +51,11 @@ class MultiplexOp : public framework::OperatorWithKernel {
} }
protected: protected:
framework::DataType IndicateDataType( framework::OpKernelType GetKernelType(
const framework::ExecutionContext& ctx) const override { const framework::ExecutionContext& ctx) const override {
return framework::ToDataType(ctx.MultiInput<Tensor>("X")[0]->type()); return framework::OpKernelType(
framework::ToDataType(ctx.MultiInput<Tensor>("X")[0]->type()),
ctx.device_context());
} }
}; };
...@@ -107,9 +109,11 @@ class MultiplexGradOp : public framework::OperatorWithKernel { ...@@ -107,9 +109,11 @@ class MultiplexGradOp : public framework::OperatorWithKernel {
} }
protected: protected:
framework::DataType IndicateDataType( framework::OpKernelType GetKernelType(
const framework::ExecutionContext& ctx) const override { const framework::ExecutionContext& ctx) const override {
return framework::ToDataType(ctx.MultiInput<Tensor>("X")[0]->type()); return framework::OpKernelType(
framework::ToDataType(ctx.MultiInput<Tensor>("X")[0]->type()),
ctx.device_context());
} }
}; };
......
...@@ -37,11 +37,11 @@ class PoolCudnnOpKernel : public framework::OpKernel<T> { ...@@ -37,11 +37,11 @@ class PoolCudnnOpKernel : public framework::OpKernel<T> {
const T *input_data = input->data<T>(); const T *input_data = input->data<T>();
T *output_data = output->mutable_data<T>(ctx.GetPlace()); T *output_data = output->mutable_data<T>(ctx.GetPlace());
std::string pooling_type = ctx.Attr<std::string>("poolingType"); std::string pooling_type = ctx.Attr<std::string>("pooling_type");
std::vector<int> ksize = ctx.Attr<std::vector<int>>("ksize"); std::vector<int> ksize = ctx.Attr<std::vector<int>>("ksize");
std::vector<int> strides = ctx.Attr<std::vector<int>>("strides"); std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings"); std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
if (ctx.Attr<bool>("globalPooling")) { if (ctx.Attr<bool>("global_pooling")) {
for (size_t i = 0; i < ksize.size(); ++i) { for (size_t i = 0; i < ksize.size(); ++i) {
paddings[i] = 0; paddings[i] = 0;
ksize[i] = static_cast<int>(input->dims()[i + 2]); ksize[i] = static_cast<int>(input->dims()[i + 2]);
...@@ -92,12 +92,12 @@ class PoolCudnnGradOpKernel : public framework::OpKernel<T> { ...@@ -92,12 +92,12 @@ class PoolCudnnGradOpKernel : public framework::OpKernel<T> {
ctx.Input<Tensor>(framework::GradVarName("Out")); ctx.Input<Tensor>(framework::GradVarName("Out"));
Tensor *input_grad = ctx.Output<Tensor>(framework::GradVarName("X")); Tensor *input_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
std::string pooling_type = ctx.Attr<std::string>("poolingType"); std::string pooling_type = ctx.Attr<std::string>("pooling_type");
std::vector<int> ksize = ctx.Attr<std::vector<int>>("ksize"); std::vector<int> ksize = ctx.Attr<std::vector<int>>("ksize");
std::vector<int> strides = ctx.Attr<std::vector<int>>("strides"); std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings"); std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
if (ctx.Attr<bool>("globalPooling")) { if (ctx.Attr<bool>("global_pooling")) {
for (size_t i = 0; i < ksize.size(); ++i) { for (size_t i = 0; i < ksize.size(); ++i) {
paddings[i] = 0; paddings[i] = 0;
ksize[i] = static_cast<int>(input->dims()[i + 2]); ksize[i] = static_cast<int>(input->dims()[i + 2]);
......
...@@ -29,7 +29,7 @@ void PoolOp::InferShape(framework::InferShapeContext *ctx) const { ...@@ -29,7 +29,7 @@ void PoolOp::InferShape(framework::InferShapeContext *ctx) const {
auto in_x_dims = ctx->GetInputDim("X"); auto in_x_dims = ctx->GetInputDim("X");
std::string pooling_type = ctx->Attrs().Get<std::string>("poolingType"); std::string pooling_type = ctx->Attrs().Get<std::string>("pooling_type");
std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize"); std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize");
std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides"); std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings"); std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
...@@ -37,7 +37,7 @@ void PoolOp::InferShape(framework::InferShapeContext *ctx) const { ...@@ -37,7 +37,7 @@ void PoolOp::InferShape(framework::InferShapeContext *ctx) const {
PADDLE_ENFORCE(in_x_dims.size() == 4 || in_x_dims.size() == 5, PADDLE_ENFORCE(in_x_dims.size() == 4 || in_x_dims.size() == 5,
"Pooling intput should be 4-D or 5-D tensor."); "Pooling intput should be 4-D or 5-D tensor.");
if (ctx->Attrs().Get<bool>("globalPooling")) { if (ctx->Attrs().Get<bool>("global_pooling")) {
ksize.resize(static_cast<size_t>(in_x_dims.size()) - 2); ksize.resize(static_cast<size_t>(in_x_dims.size()) - 2);
for (size_t i = 0; i < ksize.size(); ++i) { for (size_t i = 0; i < ksize.size(); ++i) {
paddings[i] = 0; paddings[i] = 0;
...@@ -83,20 +83,20 @@ Pool2dOpMaker::Pool2dOpMaker(framework::OpProto *proto, ...@@ -83,20 +83,20 @@ Pool2dOpMaker::Pool2dOpMaker(framework::OpProto *proto,
"H is the height of the feature, " "H is the height of the feature, "
"and W is the width of the feature."); "and W is the width of the feature.");
AddAttr<std::string>("poolingType", AddAttr<std::string>("pooling_type",
"(string), pooling type, can be \"max\" for max-pooling " "(string), pooling type, can be \"max\" for max-pooling "
"and \"avg\" for average-pooling.") "and \"avg\" for average-pooling.")
.InEnum({"max", "avg"}); .InEnum({"max", "avg"});
AddAttr<std::vector<int>>("ksize", AddAttr<std::vector<int>>("ksize",
"(vector<int>) The pooling window " "(vector<int>) The pooling window "
"size(height, width) of the pooling operator. " "size(height, width) of the pooling operator. "
"If globalPooling = true, ksize and paddings will " "If global_pooling = true, ksize and paddings will "
"be ignored."); // TODO(Chengduo): Add checker. "be ignored."); // TODO(Chengduo): Add checker.
// (Currently, // (Currently,
// TypedAttrChecker don't support vector type.) // TypedAttrChecker don't support vector type.)
AddAttr<bool>("globalPooling", AddAttr<bool>("global_pooling",
"(bool, default false) Whether to use the global pooling. " "(bool, default false) Whether to use the global pooling. "
"If globalPooling = true, ksize and paddings will be ignored.") "If global_pooling = true, ksize and paddings will be ignored.")
.SetDefault(false); .SetDefault(false);
AddAttr<std::vector<int>>("strides", AddAttr<std::vector<int>>("strides",
"(vector<int>, default {1, 1}), strides(height, " "(vector<int>, default {1, 1}), strides(height, "
...@@ -107,7 +107,7 @@ Pool2dOpMaker::Pool2dOpMaker(framework::OpProto *proto, ...@@ -107,7 +107,7 @@ Pool2dOpMaker::Pool2dOpMaker(framework::OpProto *proto,
"paddings", "paddings",
"(vector<int>, defalut {0,0}), paddings(height, width) of pooling " "(vector<int>, defalut {0,0}), paddings(height, width) of pooling "
"operator." "operator."
"If globalPooling = true, paddings and ksize will be ignored.") "If global_pooling = true, paddings and ksize will be ignored.")
.SetDefault({0, 0}); // TODO(Chengduo): Add checker. (Currently, .SetDefault({0, 0}); // TODO(Chengduo): Add checker. (Currently,
// TypedAttrChecker don't support vector type.) // TypedAttrChecker don't support vector type.)
...@@ -115,7 +115,7 @@ Pool2dOpMaker::Pool2dOpMaker(framework::OpProto *proto, ...@@ -115,7 +115,7 @@ Pool2dOpMaker::Pool2dOpMaker(framework::OpProto *proto,
Pool2d Operator. Pool2d Operator.
The pooling2d operation calculates the output based on The pooling2d operation calculates the output based on
the input, poolingType and ksize, strides, paddings parameters. the input, pooling_type and ksize, strides, paddings parameters.
Input(X) and output(Out) are in NCHW format, where N is batch size, C is the Input(X) and output(Out) are in NCHW format, where N is batch size, C is the
number of channels, H is the height of the feature, and W is the width of the feature. number of channels, H is the height of the feature, and W is the width of the feature.
Parameters(ksize, strides, paddings) are two elements. Parameters(ksize, strides, paddings) are two elements.
...@@ -152,7 +152,7 @@ Pool3dOpMaker::Pool3dOpMaker(framework::OpProto *proto, ...@@ -152,7 +152,7 @@ Pool3dOpMaker::Pool3dOpMaker(framework::OpProto *proto,
"the number of channels, and D, H and W is the depth, height and " "the number of channels, and D, H and W is the depth, height and "
"width of the feature, respectively."); "width of the feature, respectively.");
AddAttr<std::string>("poolingType", AddAttr<std::string>("pooling_type",
"(string) Pooling type, can be \"max\" for max-pooling " "(string) Pooling type, can be \"max\" for max-pooling "
"and \"avg\" for average-pooling.") "and \"avg\" for average-pooling.")
.InEnum({"max", "avg"}); .InEnum({"max", "avg"});
...@@ -160,13 +160,14 @@ Pool3dOpMaker::Pool3dOpMaker(framework::OpProto *proto, ...@@ -160,13 +160,14 @@ Pool3dOpMaker::Pool3dOpMaker(framework::OpProto *proto,
"ksize", "ksize",
"(vector<int>) The pooling window size(depth, height, " "(vector<int>) The pooling window size(depth, height, "
"width) of pooling operator. " "width) of pooling operator. "
"If globalPooling = true, ksize and paddings will " "If global_pooling = true, ksize and paddings will "
"be ignored."); // TODO(Chengduo): Add checker. "be ignored."); // TODO(Chengduo): Add checker.
// (Currently, // (Currently,
// TypedAttrChecker don't support vector type.) // TypedAttrChecker don't support vector type.)
AddAttr<bool>("globalPooling", AddAttr<bool>(
"(bool, default false) Whether to use the global pooling. " "global_pooling",
"If globalPooling = true, ksize and paddings wille be ignored.") "(bool, default false) Whether to use the global pooling. "
"If global_pooling = true, ksize and paddings wille be ignored.")
.SetDefault(false); .SetDefault(false);
AddAttr<std::vector<int>>( AddAttr<std::vector<int>>(
"strides", "strides",
...@@ -178,7 +179,7 @@ Pool3dOpMaker::Pool3dOpMaker(framework::OpProto *proto, ...@@ -178,7 +179,7 @@ Pool3dOpMaker::Pool3dOpMaker(framework::OpProto *proto,
"paddings", "paddings",
"(vector<int>, defalut {0,0,0}), paddings(depth, height, " "(vector<int>, defalut {0,0,0}), paddings(depth, height, "
"width) of pooling operator. " "width) of pooling operator. "
"If globalPooling = true, ksize and paddings will be ignored.") "If global_pooling = true, ksize and paddings will be ignored.")
.SetDefault({0, 0, 0}); // TODO(Chengduo): Add checker. (Currently, .SetDefault({0, 0, 0}); // TODO(Chengduo): Add checker. (Currently,
// TypedAttrChecker don't support vector type.) // TypedAttrChecker don't support vector type.)
...@@ -186,7 +187,7 @@ Pool3dOpMaker::Pool3dOpMaker(framework::OpProto *proto, ...@@ -186,7 +187,7 @@ Pool3dOpMaker::Pool3dOpMaker(framework::OpProto *proto,
Pool3d Operator. Pool3d Operator.
The pooling3d operation calculates the output based on The pooling3d operation calculates the output based on
the input, poolingType, ksize, strides, and paddings parameters. the input, pooling_type, ksize, strides, and paddings parameters.
Input(X) and output(Out) are in NCDHW format, where N is batch Input(X) and output(Out) are in NCDHW format, where N is batch
size, C is the number of channels, and D, H and W are the depth, height and size, C is the number of channels, and D, H and W are the depth, height and
width of the feature, respectively. Parameters(ksize, strides, paddings) width of the feature, respectively. Parameters(ksize, strides, paddings)
......
...@@ -57,11 +57,11 @@ class PoolKernel : public framework::OpKernel<T> { ...@@ -57,11 +57,11 @@ class PoolKernel : public framework::OpKernel<T> {
const Tensor* in_x = context.Input<Tensor>("X"); const Tensor* in_x = context.Input<Tensor>("X");
Tensor* out = context.Output<Tensor>("Out"); Tensor* out = context.Output<Tensor>("Out");
std::string pooling_type = context.Attr<std::string>("poolingType"); std::string pooling_type = context.Attr<std::string>("pooling_type");
std::vector<int> ksize = context.Attr<std::vector<int>>("ksize"); std::vector<int> ksize = context.Attr<std::vector<int>>("ksize");
std::vector<int> strides = context.Attr<std::vector<int>>("strides"); std::vector<int> strides = context.Attr<std::vector<int>>("strides");
std::vector<int> paddings = context.Attr<std::vector<int>>("paddings"); std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
if (context.Attr<bool>("globalPooling")) { if (context.Attr<bool>("global_pooling")) {
for (size_t i = 0; i < ksize.size(); ++i) { for (size_t i = 0; i < ksize.size(); ++i) {
paddings[i] = 0; paddings[i] = 0;
ksize[i] = static_cast<int>(in_x->dims()[i + 2]); ksize[i] = static_cast<int>(in_x->dims()[i + 2]);
...@@ -119,12 +119,12 @@ class PoolGradKernel : public framework::OpKernel<T> { ...@@ -119,12 +119,12 @@ class PoolGradKernel : public framework::OpKernel<T> {
context.Input<Tensor>(framework::GradVarName("Out")); context.Input<Tensor>(framework::GradVarName("Out"));
Tensor* in_x_grad = context.Output<Tensor>(framework::GradVarName("X")); Tensor* in_x_grad = context.Output<Tensor>(framework::GradVarName("X"));
std::string pooling_type = context.Attr<std::string>("poolingType"); std::string pooling_type = context.Attr<std::string>("pooling_type");
std::vector<int> ksize = context.Attr<std::vector<int>>("ksize"); std::vector<int> ksize = context.Attr<std::vector<int>>("ksize");
std::vector<int> strides = context.Attr<std::vector<int>>("strides"); std::vector<int> strides = context.Attr<std::vector<int>>("strides");
std::vector<int> paddings = context.Attr<std::vector<int>>("paddings"); std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
if (context.Attr<bool>("globalPooling")) { if (context.Attr<bool>("global_pooling")) {
for (size_t i = 0; i < ksize.size(); ++i) { for (size_t i = 0; i < ksize.size(); ++i) {
paddings[i] = 0; paddings[i] = 0;
ksize[i] = static_cast<int>(in_x->dims()[i + 2]); ksize[i] = static_cast<int>(in_x->dims()[i + 2]);
......
...@@ -44,7 +44,7 @@ class MaxPoolWithIndexOp : public framework::OperatorWithKernel { ...@@ -44,7 +44,7 @@ class MaxPoolWithIndexOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE(in_x_dims.size() == 4 || in_x_dims.size() == 5, PADDLE_ENFORCE(in_x_dims.size() == 4 || in_x_dims.size() == 5,
"Pooling intput should be 4-D or 5-D tensor."); "Pooling intput should be 4-D or 5-D tensor.");
if (ctx->Attrs().Get<bool>("globalPooling")) { if (ctx->Attrs().Get<bool>("global_pooling")) {
ksize.resize(static_cast<size_t>(in_x_dims.size()) - 2); ksize.resize(static_cast<size_t>(in_x_dims.size()) - 2);
for (size_t i = 0; i < ksize.size(); ++i) { for (size_t i = 0; i < ksize.size(); ++i) {
paddings[i] = 0; paddings[i] = 0;
...@@ -110,14 +110,14 @@ class MaxPool2dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -110,14 +110,14 @@ class MaxPool2dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr<std::vector<int>>("ksize", AddAttr<std::vector<int>>("ksize",
"(vector<int>) The pooling window size(height, " "(vector<int>) The pooling window size(height, "
"width) of pooling operator. " "width) of pooling operator. "
"If globalPooling = true, ksize and paddings " "If global_pooling = true, ksize and paddings "
"will be ignored."); // TODO(Chengduo): Add "will be ignored."); // TODO(Chengduo): Add
// checker. (Currently, // checker. (Currently,
// TypedAttrChecker don't support vector type.) // TypedAttrChecker don't support vector type.)
AddAttr<bool>( AddAttr<bool>(
"globalPooling", "global_pooling",
"(bool, default false) Whether to use the global pooling. " "(bool, default false) Whether to use the global pooling. "
"If globalPooling = true, ksize and paddings will be ignored.") "If global_pooling = true, ksize and paddings will be ignored.")
.SetDefault(false); .SetDefault(false);
AddAttr<std::vector<int>>("strides", AddAttr<std::vector<int>>("strides",
"(vector<int>, default {1, 1}), strides(height, " "(vector<int>, default {1, 1}), strides(height, "
...@@ -128,7 +128,7 @@ class MaxPool2dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -128,7 +128,7 @@ class MaxPool2dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
"paddings", "paddings",
"(vector<int>, defalut {0, 0}), paddings(height, width) of pooling " "(vector<int>, defalut {0, 0}), paddings(height, width) of pooling "
"operator. " "operator. "
"If globalPooling = true, paddings and will be ignored.") "If global_pooling = true, paddings and will be ignored.")
.SetDefault({0, 0}); // TODO(Chengduo): Add checker. (Currently, .SetDefault({0, 0}); // TODO(Chengduo): Add checker. (Currently,
// TypedAttrChecker don't support vector type.) // TypedAttrChecker don't support vector type.)
...@@ -188,14 +188,14 @@ class MaxPool3dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -188,14 +188,14 @@ class MaxPool3dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr<std::vector<int>>("ksize", AddAttr<std::vector<int>>("ksize",
"(vector<int>) The pooling window size(depth, " "(vector<int>) The pooling window size(depth, "
"height, width) of pooling operator. " "height, width) of pooling operator. "
"If globalPooling = true, ksize and paddings " "If global_pooling = true, ksize and paddings "
"will be ignored."); // TODO(Chengduo): Add "will be ignored."); // TODO(Chengduo): Add
// checker. (Currently, // checker. (Currently,
// TypedAttrChecker don't support vector type.) // TypedAttrChecker don't support vector type.)
AddAttr<bool>( AddAttr<bool>(
"globalPooling", "global_pooling",
"(bool, default false) Whether to use the global pooling. " "(bool, default false) Whether to use the global pooling. "
"If globalPooling = true, ksize and paddings will be ignored.") "If global_pooling = true, ksize and paddings will be ignored.")
.SetDefault(false); .SetDefault(false);
AddAttr<std::vector<int>>("strides", AddAttr<std::vector<int>>("strides",
"(vector<int>, default {1,1,1}), strides(depth, " "(vector<int>, default {1,1,1}), strides(depth, "
...@@ -206,7 +206,7 @@ class MaxPool3dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -206,7 +206,7 @@ class MaxPool3dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
"paddings", "paddings",
"(vector, defalut {0,0,0}), paddings(depth, " "(vector, defalut {0,0,0}), paddings(depth, "
"height, width) of pooling operator. " "height, width) of pooling operator. "
"If globalPooling = true, paddings and ksize will be ignored.") "If global_pooling = true, paddings and ksize will be ignored.")
.SetDefault({0, 0, 0}); // TODO(Chengduo): Add checker. (Currently, .SetDefault({0, 0, 0}); // TODO(Chengduo): Add checker. (Currently,
// TypedAttrChecker don't support vector type.) // TypedAttrChecker don't support vector type.)
......
...@@ -35,7 +35,7 @@ class MaxPoolWithIndexKernel : public framework::OpKernel<T> { ...@@ -35,7 +35,7 @@ class MaxPoolWithIndexKernel : public framework::OpKernel<T> {
std::vector<int> ksize = context.Attr<std::vector<int>>("ksize"); std::vector<int> ksize = context.Attr<std::vector<int>>("ksize");
std::vector<int> strides = context.Attr<std::vector<int>>("strides"); std::vector<int> strides = context.Attr<std::vector<int>>("strides");
std::vector<int> paddings = context.Attr<std::vector<int>>("paddings"); std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
if (context.Attr<bool>("globalPooling")) { if (context.Attr<bool>("global_pooling")) {
for (size_t i = 0; i < ksize.size(); ++i) { for (size_t i = 0; i < ksize.size(); ++i) {
paddings[i] = 0; paddings[i] = 0;
ksize[i] = static_cast<int>(in_x->dims()[i + 2]); ksize[i] = static_cast<int>(in_x->dims()[i + 2]);
...@@ -72,7 +72,7 @@ class MaxPoolWithIndexGradKernel : public framework::OpKernel<T> { ...@@ -72,7 +72,7 @@ class MaxPoolWithIndexGradKernel : public framework::OpKernel<T> {
std::vector<int> ksize = context.Attr<std::vector<int>>("ksize"); std::vector<int> ksize = context.Attr<std::vector<int>>("ksize");
std::vector<int> strides = context.Attr<std::vector<int>>("strides"); std::vector<int> strides = context.Attr<std::vector<int>>("strides");
std::vector<int> paddings = context.Attr<std::vector<int>>("paddings"); std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
if (context.Attr<bool>("globalPooling")) { if (context.Attr<bool>("global_pooling")) {
for (size_t i = 0; i < ksize.size(); ++i) { for (size_t i = 0; i < ksize.size(); ++i) {
paddings[i] = 0; paddings[i] = 0;
ksize[i] = static_cast<int>(in_x_grad->dims()[i + 2]); ksize[i] = static_cast<int>(in_x_grad->dims()[i + 2]);
......
...@@ -85,9 +85,11 @@ class PositiveNegativePairOp : public framework::OperatorWithKernel { ...@@ -85,9 +85,11 @@ class PositiveNegativePairOp : public framework::OperatorWithKernel {
} }
protected: protected:
framework::DataType IndicateDataType( framework::OpKernelType GetKernelType(
const framework::ExecutionContext &ctx) const override { const framework::ExecutionContext &ctx) const override {
return framework::ToDataType(ctx.Input<Tensor>("Score")->type()); return framework::OpKernelType(
framework::ToDataType(ctx.Input<Tensor>("Score")->type()),
ctx.device_context());
} }
}; };
......
...@@ -80,9 +80,11 @@ class PrecisionRecallOp : public framework::OperatorWithKernel { ...@@ -80,9 +80,11 @@ class PrecisionRecallOp : public framework::OperatorWithKernel {
} }
protected: protected:
framework::DataType IndicateDataType( framework::OpKernelType GetKernelType(
const framework::ExecutionContext &ctx) const override { const framework::ExecutionContext &ctx) const override {
return framework::ToDataType(ctx.Input<Tensor>("MaxProbs")->type()); return framework::OpKernelType(
framework::ToDataType(ctx.Input<Tensor>("MaxProbs")->type()),
ctx.device_context());
} }
}; };
......
...@@ -49,9 +49,11 @@ class ScatterOp : public framework::OperatorWithKernel { ...@@ -49,9 +49,11 @@ class ScatterOp : public framework::OperatorWithKernel {
} }
protected: protected:
framework::DataType IndicateDataType( framework::OpKernelType GetKernelType(
const framework::ExecutionContext& ctx) const override { const framework::ExecutionContext& ctx) const override {
return framework::ToDataType(ctx.Input<Tensor>("Ref")->type()); return framework::OpKernelType(
framework::ToDataType(ctx.Input<Tensor>("Ref")->type()),
ctx.device_context());
} }
}; };
...@@ -66,9 +68,11 @@ class ScatterGradOp : public framework::OperatorWithKernel { ...@@ -66,9 +68,11 @@ class ScatterGradOp : public framework::OperatorWithKernel {
} }
protected: protected:
framework::DataType IndicateDataType( framework::OpKernelType GetKernelType(
const framework::ExecutionContext& ctx) const override { const framework::ExecutionContext& ctx) const override {
return framework::ToDataType(ctx.Input<Tensor>("Ref")->type()); return framework::OpKernelType(
framework::ToDataType(ctx.Input<Tensor>("Ref")->type()),
ctx.device_context());
} }
}; };
......
...@@ -107,9 +107,11 @@ class SequencePoolGradOp : public framework::OperatorWithKernel { ...@@ -107,9 +107,11 @@ class SequencePoolGradOp : public framework::OperatorWithKernel {
} }
protected: protected:
framework::DataType IndicateDataType( framework::OpKernelType GetKernelType(
const framework::ExecutionContext& ctx) const override { const framework::ExecutionContext& ctx) const override {
return framework::ToDataType(ctx.Input<Tensor>("X")->type()); return framework::OpKernelType(
framework::ToDataType(ctx.Input<Tensor>("X")->type()),
ctx.device_context());
} }
}; };
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/framework/lod_rank_table.h"
#include "paddle/operators/array_operator.h"
#include "paddle/operators/math/math_function.h"
namespace paddle {
namespace operators {
class ShrinkRNNMemoryOp : public ArrayOp {
public:
ShrinkRNNMemoryOp(const std::string &type,
const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: ArrayOp(type, inputs, outputs, attrs) {}
void Run(const framework::Scope &scope,
const platform::DeviceContext &dev_ctx) const override {
auto *x_var = scope.FindVar(Input("X"));
PADDLE_ENFORCE(x_var != nullptr, "Input X must be set");
auto &x_tensor = x_var->Get<framework::LoDTensor>();
size_t offset = this->GetOffset(scope, dev_ctx);
auto *rank_table_var = scope.FindVar(Input("RankTable"));
PADDLE_ENFORCE(rank_table_var != nullptr, "RankTable must be set");
auto &rank_table = rank_table_var->Get<framework::LoDRankTable>();
auto &rank_items = rank_table.items();
int dst_num_rows =
std::lower_bound(rank_items.begin(), rank_items.end(), offset,
[](const framework::LoDRankTable::TableItem &a,
size_t b) { return a.length > b; }) -
rank_items.begin();
auto *out_var = scope.FindVar(Output("Out"));
PADDLE_ENFORCE(out_var != nullptr, "Output Out must be set");
auto &out_tensor = *out_var->GetMutable<framework::LoDTensor>();
if (dst_num_rows != 0) {
out_tensor.ShareDataWith(x_tensor.Slice(0, dst_num_rows));
}
}
};
class ShrinkRNNMemoryOpProtoMaker : public framework::OpProtoAndCheckerMaker {
public:
ShrinkRNNMemoryOpProtoMaker(framework::OpProto *proto,
framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "");
AddInput("RankTable", "");
AddInput("I", "");
AddOutput("Out", "");
AddComment("");
}
};
class ShrinkRNNMemoryInferShape : public framework::InferShapeBase {
public:
void operator()(framework::InferShapeContext *context) const override {
PADDLE_ENFORCE(context->HasInput("X"));
PADDLE_ENFORCE(context->HasInput("I"));
PADDLE_ENFORCE(context->HasInput("RankTable"));
context->SetOutputDim("Out", context->GetInputDim("X"));
}
};
class ShrinkRNNMemoryGradOp : public ArrayOp {
public:
ShrinkRNNMemoryGradOp(const std::string &type,
const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: ArrayOp(type, inputs, outputs, attrs) {}
void Run(const framework::Scope &scope,
const platform::DeviceContext &dev_ctx) const override {
auto *dout_var = scope.FindVar(Input(framework::GradVarName("Out")));
auto *dx_var = scope.FindVar(Output(framework::GradVarName("X")));
PADDLE_ENFORCE(dx_var != nullptr, "Input Gradient should not be nullptr");
auto *x_var = scope.FindVar(Input("X"));
PADDLE_ENFORCE(x_var != nullptr);
auto &x_tensor = x_var->Get<framework::LoDTensor>();
auto &dx_tensor = *dx_var->GetMutable<framework::LoDTensor>();
dx_tensor.Resize(x_tensor.dims());
dx_tensor.mutable_data(x_tensor.place(), x_tensor.type());
if (dout_var == nullptr) { // dx_tensor fill zero
math::set_constant(dev_ctx, &dx_tensor, 0.0f);
} else {
auto &dout_tensor = dout_var->Get<framework::LoDTensor>();
auto height = dout_tensor.dims()[0];
dx_tensor.Slice(0, static_cast<int>(height))
.CopyFrom(dout_tensor, dout_tensor.place(), dev_ctx);
if (dx_tensor.dims()[0] < height) {
auto rest_tensor = dx_tensor.Slice(
static_cast<int>(height), static_cast<int>(dout_tensor.dims()[0]));
math::set_constant(dev_ctx, &rest_tensor, 0.0f);
}
}
}
};
class ShrinkRNNMemoryGradInferShape : public framework::InferShapeBase {
public:
void operator()(framework::InferShapeContext *context) const override {
PADDLE_ENFORCE(context->HasInput("X"));
PADDLE_ENFORCE(context->HasOutput(framework::GradVarName("X")));
context->SetOutputDim(framework::GradVarName("X"),
context->GetInputDim("X"));
}
};
class ShrinkRNNGradOpMaker : public framework::SingleGradOpDescMaker {
public:
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
protected:
std::unique_ptr<framework::OpDescBind> Apply() const override {
auto *op = new framework::OpDescBind();
op->SetType("shrink_rnn_memory_grad");
op->SetInput("X", Input("X"));
op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
op->SetAttrMap(Attrs());
return std::unique_ptr<framework::OpDescBind>(op);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(shrink_rnn_memory, ops::ShrinkRNNMemoryOp,
ops::ShrinkRNNMemoryInferShape,
ops::ShrinkRNNMemoryOpProtoMaker, ops::ShrinkRNNGradOpMaker);
REGISTER_OPERATOR(shrink_rnn_memory_grad, ops::ShrinkRNNMemoryGradOp,
ops::ShrinkRNNMemoryGradInferShape);
...@@ -121,9 +121,11 @@ class SoftmaxWithCrossEntropyOp : public framework::OperatorWithKernel { ...@@ -121,9 +121,11 @@ class SoftmaxWithCrossEntropyOp : public framework::OperatorWithKernel {
} }
protected: protected:
framework::DataType IndicateDataType( framework::OpKernelType GetKernelType(
const framework::ExecutionContext& ctx) const override { const framework::ExecutionContext& ctx) const override {
return framework::ToDataType(ctx.Input<Tensor>("Logits")->type()); return framework::OpKernelType(
framework::ToDataType(ctx.Input<Tensor>("Logits")->type()),
ctx.device_context());
} }
}; };
...@@ -160,10 +162,12 @@ class SoftmaxWithCrossEntropyOpGrad : public framework::OperatorWithKernel { ...@@ -160,10 +162,12 @@ class SoftmaxWithCrossEntropyOpGrad : public framework::OperatorWithKernel {
} }
protected: protected:
framework::DataType IndicateDataType( framework::OpKernelType GetKernelType(
const framework::ExecutionContext& ctx) const override { const framework::ExecutionContext& ctx) const override {
return framework::ToDataType( return framework::OpKernelType(
ctx.Input<Tensor>(framework::GradVarName("Loss"))->type()); framework::ToDataType(
ctx.Input<Tensor>(framework::GradVarName("Loss"))->type()),
ctx.device_context());
} }
}; };
......
...@@ -47,20 +47,24 @@ class SumOp : public framework::OperatorWithKernel { ...@@ -47,20 +47,24 @@ class SumOp : public framework::OperatorWithKernel {
} }
protected: protected:
framework::DataType IndicateDataType( framework::OpKernelType GetKernelType(
const framework::ExecutionContext& ctx) const override { const framework::ExecutionContext& ctx) const override {
auto x_vars = ctx.MultiInputVar("X"); auto x_vars = ctx.MultiInputVar("X");
if (x_vars[0]->IsType<framework::LoDTensor>()) { if (x_vars[0]->IsType<framework::LoDTensor>()) {
return framework::ToDataType( return framework::OpKernelType(
x_vars[0]->Get<framework::LoDTensor>().type()); framework::ToDataType(x_vars[0]->Get<framework::LoDTensor>().type()),
ctx.device_context());
} else if (x_vars[0]->IsType<framework::SelectedRows>()) { } else if (x_vars[0]->IsType<framework::SelectedRows>()) {
return framework::ToDataType( return framework::OpKernelType(
x_vars[0]->Get<framework::SelectedRows>().value().type()); framework::ToDataType(
x_vars[0]->Get<framework::SelectedRows>().value().type()),
ctx.device_context());
} else if (x_vars[0]->IsType<framework::LoDTensorArray>()) { } else if (x_vars[0]->IsType<framework::LoDTensorArray>()) {
auto& array = x_vars[0]->Get<framework::LoDTensorArray>(); auto& array = x_vars[0]->Get<framework::LoDTensorArray>();
for (auto& each : array) { for (auto& each : array) {
if (each.numel() != 0) { if (each.numel() != 0) {
return framework::ToDataType(each.type()); return framework::OpKernelType(framework::ToDataType(each.type()),
ctx.device_context());
} }
} }
} }
......
...@@ -11,48 +11,18 @@ ...@@ -11,48 +11,18 @@
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/framework/lod_tensor_array.h" #include "paddle/operators/array_operator.h"
#include "paddle/framework/op_registry.h"
namespace paddle { namespace paddle {
namespace operators { namespace operators {
class ArrayOpBase : public framework::OperatorBase {
public:
ArrayOpBase(const std::string &type, const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: OperatorBase(type, inputs, outputs, attrs) {}
void Run(const framework::Scope &scope,
const platform::DeviceContext &dev_ctx) const override {}
protected:
size_t GetOffset(const framework::Scope &scope,
const platform::DeviceContext &dev_ctx) const {
auto *i = scope.FindVar(Input("I"));
PADDLE_ENFORCE(i != nullptr, "I must be set");
auto &i_tensor = i->Get<framework::LoDTensor>();
PADDLE_ENFORCE_EQ(i_tensor.numel(), 1);
size_t offset;
if (platform::is_gpu_place(i_tensor.place())) {
// FIXME: Avoid copy from GPU to CPU
framework::Tensor t;
t.CopyFrom(i_tensor, platform::CPUPlace(), dev_ctx);
dev_ctx.Wait();
offset = static_cast<size_t>(*t.data<int64_t>());
} else {
offset = static_cast<size_t>(*i_tensor.data<int64_t>());
}
return offset;
}
};
class WriteToArrayOp : public ArrayOpBase { class WriteToArrayOp : public ArrayOp {
public: public:
WriteToArrayOp(const std::string &type, WriteToArrayOp(const std::string &type,
const framework::VariableNameMap &inputs, const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs, const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs) const framework::AttributeMap &attrs)
: ArrayOpBase(type, inputs, outputs, attrs) {} : ArrayOp(type, inputs, outputs, attrs) {}
void Run(const framework::Scope &scope, void Run(const framework::Scope &scope,
const platform::DeviceContext &dev_ctx) const override { const platform::DeviceContext &dev_ctx) const override {
...@@ -122,13 +92,13 @@ class WriteToArrayInferVarType : public framework::VarTypeInference { ...@@ -122,13 +92,13 @@ class WriteToArrayInferVarType : public framework::VarTypeInference {
} }
}; };
class ReadFromArrayOp : public ArrayOpBase { class ReadFromArrayOp : public ArrayOp {
public: public:
ReadFromArrayOp(const std::string &type, ReadFromArrayOp(const std::string &type,
const framework::VariableNameMap &inputs, const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs, const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs) const framework::AttributeMap &attrs)
: ArrayOpBase(type, inputs, outputs, attrs) {} : ArrayOp(type, inputs, outputs, attrs) {}
void Run(const framework::Scope &scope, void Run(const framework::Scope &scope,
const platform::DeviceContext &dev_ctx) const override { const platform::DeviceContext &dev_ctx) const override {
auto *x = scope.FindVar(Input("X")); auto *x = scope.FindVar(Input("X"));
......
...@@ -63,9 +63,11 @@ class UniformRandomOp : public framework::OperatorWithKernel { ...@@ -63,9 +63,11 @@ class UniformRandomOp : public framework::OperatorWithKernel {
} }
protected: protected:
framework::DataType IndicateDataType( framework::OpKernelType GetKernelType(
const framework::ExecutionContext& ctx) const override { const framework::ExecutionContext& ctx) const override {
return static_cast<framework::DataType>(ctx.Attr<int>("data_type")); return framework::OpKernelType(
static_cast<framework::DataType>(ctx.Attr<int>("data_type")),
ctx.device_context());
} }
}; };
......
...@@ -49,8 +49,6 @@ struct Transform<platform::CPUPlace> { ...@@ -49,8 +49,6 @@ struct Transform<platform::CPUPlace> {
template <typename InputIter, typename OutputIter, typename UnaryOperation> template <typename InputIter, typename OutputIter, typename UnaryOperation>
void operator()(const DeviceContext& context, InputIter first, InputIter last, void operator()(const DeviceContext& context, InputIter first, InputIter last,
OutputIter result, UnaryOperation op) { OutputIter result, UnaryOperation op) {
auto place = context.GetPlace();
PADDLE_ENFORCE(is_cpu_place(place), "It must use CPU place.");
std::transform(first, last, result, op); std::transform(first, last, result, op);
} }
...@@ -59,8 +57,6 @@ struct Transform<platform::CPUPlace> { ...@@ -59,8 +57,6 @@ struct Transform<platform::CPUPlace> {
void operator()(const DeviceContext& context, InputIter1 first1, void operator()(const DeviceContext& context, InputIter1 first1,
InputIter1 last1, InputIter2 first2, OutputIter result, InputIter1 last1, InputIter2 first2, OutputIter result,
BinaryOperation op) { BinaryOperation op) {
auto place = context.GetPlace();
PADDLE_ENFORCE(is_cpu_place(place), "It must use CPU place.");
std::transform(first1, last1, first2, result, op); std::transform(first1, last1, first2, result, op);
} }
}; };
......
...@@ -321,6 +321,11 @@ message ClipConfig { ...@@ -321,6 +321,11 @@ message ClipConfig {
required double max = 2; required double max = 2;
} }
message ScaleSubRegionConfig {
required ImageConfig image_conf = 1;
required float value = 2;
}
message LayerInputConfig { message LayerInputConfig {
required string input_layer_name = 1; required string input_layer_name = 1;
optional string input_parameter_name = 2; optional string input_parameter_name = 2;
...@@ -342,6 +347,7 @@ message LayerInputConfig { ...@@ -342,6 +347,7 @@ message LayerInputConfig {
optional MultiBoxLossConfig multibox_loss_conf = 16; optional MultiBoxLossConfig multibox_loss_conf = 16;
optional DetectionOutputConfig detection_output_conf = 17; optional DetectionOutputConfig detection_output_conf = 17;
optional ClipConfig clip_conf = 18; optional ClipConfig clip_conf = 18;
optional ScaleSubRegionConfig scale_sub_region_conf = 19;
} }
message LayerConfig { message LayerConfig {
......
...@@ -3801,6 +3801,25 @@ class SwitchOrderLayer(LayerBase): ...@@ -3801,6 +3801,25 @@ class SwitchOrderLayer(LayerBase):
self.config.reshape_conf.width_axis.extend(reshape['width']) self.config.reshape_conf.width_axis.extend(reshape['width'])
@config_layer('scale_sub_region')
class ScaleSubRegionLayer(LayerBase):
def __init__(self, name, inputs, value, **xargs):
super(ScaleSubRegionLayer, self).__init__(
name, 'scale_sub_region', 0, inputs=inputs, **xargs)
scale_sub_region_conf = self.config.inputs[0].scale_sub_region_conf
scale_sub_region_conf.value = value
# get channel, width and height from input_0 layer
input_layer = self.get_input_layer(0)
image_conf = scale_sub_region_conf.image_conf
image_conf.img_size = input_layer.width
image_conf.img_size_y = input_layer.height
image_conf.channels = input_layer.size / (input_layer.width *
input_layer.height)
self.set_cnn_layer(name, image_conf.img_size_y, image_conf.img_size,
image_conf.channels)
# Deprecated, use a new layer specific class instead # Deprecated, use a new layer specific class instead
@config_func @config_func
def Layer(name, type, **xargs): def Layer(name, type, **xargs):
......
...@@ -10,6 +10,6 @@ test_prelu_layer test_row_conv test_detection_output_layer test_multibox_loss_la ...@@ -10,6 +10,6 @@ test_prelu_layer test_row_conv test_detection_output_layer test_multibox_loss_la
test_recursive_topology test_gated_unit_layer test_clip_layer test_row_l2_norm_layer test_recursive_topology test_gated_unit_layer test_clip_layer test_row_l2_norm_layer
test_kmax_seq_socre_layer test_sub_nested_seq_select_layer test_scale_shift_layer test_kmax_seq_socre_layer test_sub_nested_seq_select_layer test_scale_shift_layer
test_seq_slice_layer test_cross_entropy_over_beam test_pooling3D_layer test_seq_slice_layer test_cross_entropy_over_beam test_pooling3D_layer
test_conv3d_layer test_deconv3d_layer test_BatchNorm3D test_resize_layer) test_conv3d_layer test_deconv3d_layer test_BatchNorm3D test_resize_layer test_scale_sub_region_layer)
export whole_configs=(test_split_datasource) export whole_configs=(test_split_datasource)
type: "nn"
layers {
name: "data"
type: "data"
size: 2016
active_type: ""
height: 48
width: 42
}
layers {
name: "indices"
type: "data"
size: 6
active_type: ""
}
layers {
name: "__scale_sub_region_0__"
type: "scale_sub_region"
size: 2016
active_type: ""
inputs {
input_layer_name: "data"
scale_sub_region_conf {
image_conf {
channels: 1
img_size: 42
img_size_y: 48
}
value: 0.0
}
}
inputs {
input_layer_name: "indices"
}
height: 48
width: 42
}
input_layer_names: "data"
input_layer_names: "indices"
output_layer_names: "__scale_sub_region_0__"
sub_models {
name: "root"
layer_names: "data"
layer_names: "indices"
layer_names: "__scale_sub_region_0__"
input_layer_names: "data"
input_layer_names: "indices"
output_layer_names: "__scale_sub_region_0__"
is_recurrent_layer_group: false
}
from paddle.trainer_config_helpers import *
settings(batch_size=1000, learning_rate=1e-5)
data = data_layer(name='data', size=2016, height=48, width=42)
indices = data_layer(name='indices', size=6)
scale_sub_region = scale_sub_region_layer(
input=data, indices=indices, value=0.0)
outputs(scale_sub_region)
...@@ -22,6 +22,7 @@ parse training set and test set into paddle reader creators. ...@@ -22,6 +22,7 @@ parse training set and test set into paddle reader creators.
import numpy as np import numpy as np
import os import os
import paddle.v2.dataset.common import paddle.v2.dataset.common
from paddle.v2.parameters import Parameters
__all__ = ['train', 'test'] __all__ = ['train', 'test']
...@@ -34,7 +35,8 @@ feature_names = [ ...@@ -34,7 +35,8 @@ feature_names = [
UCI_TRAIN_DATA = None UCI_TRAIN_DATA = None
UCI_TEST_DATA = None UCI_TEST_DATA = None
URL_MODEL = 'https://github.com/PaddlePaddle/book/raw/develop/01.fit_a_line/fit_a_line.tar'
MD5_MODEL = '52fc3da8ef3937822fcdd87ee05c0c9b'
def feature_range(maximums, minimums): def feature_range(maximums, minimums):
import matplotlib import matplotlib
...@@ -111,6 +113,13 @@ def test(): ...@@ -111,6 +113,13 @@ def test():
return reader return reader
def model():
tar_file = paddle.v2.dataset.common.download(URL_MODEL, 'fit_a_line.tar', MD5_MODEL)
with open(tar_file, 'r') as f:
parameters = Parameters.from_tar(f)
return parameters
def fetch(): def fetch():
paddle.v2.dataset.common.download(URL, 'uci_housing', MD5) paddle.v2.dataset.common.download(URL, 'uci_housing', MD5)
......
...@@ -87,7 +87,8 @@ def data(name, ...@@ -87,7 +87,8 @@ def data(name,
type=core.VarDesc.VarType.LOD_TENSOR, type=core.VarDesc.VarType.LOD_TENSOR,
append_batch_size=True, append_batch_size=True,
main_program=None, main_program=None,
startup_program=None): startup_program=None,
stop_gradient=True):
helper = LayerHelper('data', **locals()) helper = LayerHelper('data', **locals())
shape = list(shape) shape = list(shape)
for i in xrange(len(shape)): for i in xrange(len(shape)):
...@@ -101,7 +102,11 @@ def data(name, ...@@ -101,7 +102,11 @@ def data(name,
shape = [-1] + shape # append batch size as -1 shape = [-1] + shape # append batch size as -1
return helper.create_global_variable( return helper.create_global_variable(
name=name, shape=shape, dtype=data_type, type=type, stop_gradient=True) name=name,
shape=shape,
dtype=data_type,
type=type,
stop_gradient=stop_gradient)
def _convert_(name): def _convert_(name):
...@@ -134,9 +139,7 @@ def _create_op_func_(op_type): ...@@ -134,9 +139,7 @@ def _create_op_func_(op_type):
o_name = not_intermediate_outputs[0].name o_name = not_intermediate_outputs[0].name
intermediate_output_names = [output.name for output in intermediate_outputs] intermediate_output_names = [output.name for output in intermediate_outputs]
def func(**kwargs): def infer_and_check_data_type(op_proto, **kwargs):
helper = LayerHelper(op_type, **kwargs)
inputs = dict()
dtype = None dtype = None
for ipt in op_proto.inputs: for ipt in op_proto.inputs:
name = _convert_(ipt.name) name = _convert_(ipt.name)
...@@ -153,6 +156,20 @@ def _create_op_func_(op_type): ...@@ -153,6 +156,20 @@ def _create_op_func_(op_type):
elif dtype != each.data_type: elif dtype != each.data_type:
raise ValueError( raise ValueError(
"operator {0} must input same dtype".format(op_type)) "operator {0} must input same dtype".format(op_type))
return dtype
def func(**kwargs):
helper = LayerHelper(op_type, **kwargs)
dtype = infer_and_check_data_type(op_proto, **kwargs)
inputs = dict()
for ipt in op_proto.inputs:
name = _convert_(ipt.name)
val = kwargs.pop(name, [])
if not isinstance(val, list) and not isinstance(val, tuple):
val = [val]
inputs[ipt.name] = val inputs[ipt.name] = val
outputs = dict() outputs = dict()
...@@ -178,6 +195,20 @@ _create_op_func_('reshape') ...@@ -178,6 +195,20 @@ _create_op_func_('reshape')
_create_op_func_('elementwise_add') _create_op_func_('elementwise_add')
_create_op_func_('sigmoid') _create_op_func_('sigmoid')
_create_op_func_('scale') _create_op_func_('scale')
_create_op_func_('reshape')
_create_op_func_('transpose')
def fill_constant(data_type, shape, value=None, program=None):
helper = LayerHelper('fill_constant', **locals())
out = helper.create_tmp_variable(dtype=data_type)
helper.append_op(
type='fill_constant',
outputs={'Out': [out]},
attrs={'data_type': data_type,
'shape': shape,
'value': value})
return out
def cast(x, data_type, main_program=None): def cast(x, data_type, main_program=None):
...@@ -414,9 +445,9 @@ def pool2d(input, ...@@ -414,9 +445,9 @@ def pool2d(input,
inputs={"X": input}, inputs={"X": input},
outputs={"Out": pool_out}, outputs={"Out": pool_out},
attrs={ attrs={
"poolingType": pool_type, "pooling_type": pool_type,
"ksize": pool_size, "ksize": pool_size,
"globalPooling": global_pooling, "global_pooling": global_pooling,
"strides": pool_stride, "strides": pool_stride,
"paddings": pool_padding "paddings": pool_padding
}) })
...@@ -762,6 +793,46 @@ class StaticRNN(object): ...@@ -762,6 +793,46 @@ class StaticRNN(object):
}) })
def lstm(x,
c_pre_init,
hidden_dim,
forget_bias=None,
main_program=None,
startup_program=None):
helper = LayerHelper('lstm_unit', **locals())
rnn = StaticRNN()
with rnn.step():
c_pre = rnn.memory(init=c_pre_init)
x_t = rnn.step_input(x)
before_fc = concat(
input=[x_t, c_pre],
axis=1,
main_program=main_program,
startup_program=startup_program)
after_fc = fc(input=before_fc,
size=hidden_dim * 4,
main_program=main_program,
startup_program=startup_program)
data_type = x.data_type
c = helper.create_tmp_variable(data_type)
h = helper.create_tmp_variable(data_type)
helper.append_op(
type='lstm_unit',
inputs={"X": after_fc,
"C_prev": c_pre},
outputs={"C": c,
"H": h},
attrs={"forget_bias": forget_bias})
rnn.update_memory(c_pre, c)
rnn.output(h)
return rnn()
def lod_rank_table(x, level=0, main_program=None): def lod_rank_table(x, level=0, main_program=None):
helper = LayerHelper("lod_rank_table", **locals()) helper = LayerHelper("lod_rank_table", **locals())
table = helper.create_variable( table = helper.create_variable(
...@@ -775,6 +846,31 @@ def lod_rank_table(x, level=0, main_program=None): ...@@ -775,6 +846,31 @@ def lod_rank_table(x, level=0, main_program=None):
return table return table
def lod_tensor_to_array(x, table, main_program=None):
helper = LayerHelper("lod_tensor_to_array", **locals())
array = helper.create_variable(
name=unique_name("lod_tensor_to_array"),
type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
dtype=x.data_type)
helper.append_op(
type='lod_tensor_to_array',
inputs={'X': x,
'RankTable': table},
outputs={'Out': array})
return array
def array_to_lod_tensor(x, table, main_program=None):
helper = LayerHelper("array_to_lod_tensor", **locals())
tmp = helper.create_tmp_variable(dtype=x.data_type)
helper.append_op(
type="array_to_lod_tensor",
inputs={'X': x,
'RankTable': table},
outputs={'Out': tmp})
return tmp
def fill_constant(shape, dtype, value, main_program=None): def fill_constant(shape, dtype, value, main_program=None):
helper = LayerHelper("ones", **locals()) helper = LayerHelper("ones", **locals())
out = helper.create_tmp_variable(dtype=dtype) out = helper.create_tmp_variable(dtype=dtype)
...@@ -801,13 +897,13 @@ def zeros(shape, dtype, main_program=None): ...@@ -801,13 +897,13 @@ def zeros(shape, dtype, main_program=None):
def increment(x, value=1.0, main_program=None): def increment(x, value=1.0, main_program=None):
helper = LayerHelper("increment", **locals()) helper = LayerHelper("increment", **locals())
tmp = helper.create_tmp_variable(dtype=x.data_type) out = helper.create_tmp_variable(dtype=x.data_type)
helper.append_op( helper.append_op(
type='increment', type='increment',
inputs={'X': [x]}, inputs={'X': [x]},
outputs={'Out': [tmp]}, outputs={'Out': [out]},
attrs={'step': value}) attrs={'step': value})
return tmp return out
def array_write(x, i, array=None, main_program=None): def array_write(x, i, array=None, main_program=None):
...@@ -838,3 +934,16 @@ def array_read(array, i, main_program=None): ...@@ -838,3 +934,16 @@ def array_read(array, i, main_program=None):
'I': [i]}, 'I': [i]},
outputs={'Out': [out]}) outputs={'Out': [out]})
return out return out
def shrink_memory(x, i, table, main_program=None):
helper = LayerHelper('shrink_memory', **locals())
out = helper.create_tmp_variable(dtype=x.data_type)
helper.append_op(
type='shrink_rnn_memory',
inputs={'X': [x],
'I': [i],
'RankTable': [table]},
outputs={'Out': [out]},
attrs={})
return out
...@@ -26,5 +26,4 @@ class TestAccuracyOp(OpTest): ...@@ -26,5 +26,4 @@ class TestAccuracyOp(OpTest):
if __name__ == '__main__': if __name__ == '__main__':
exit(0)
unittest.main() unittest.main()
import unittest
import numpy as np
from op_test import OpTest
class TestClipByNormOp(OpTest):
def setUp(self):
self.max_relative_error = 0.006
self.initTestCase()
input = np.random.random(self.shape).astype("float32")
input[np.abs(input) < self.max_relative_error] = 0.5
self.op_type = "clip_by_norm"
self.inputs = {'X': input, }
self.attrs = {}
self.attrs['max_norm'] = self.max_norm
norm = np.sqrt(np.sum(np.square(input)))
if norm > self.max_norm:
output = self.max_norm * input / norm
else:
output = input
self.outputs = {'Out': output}
def test_check_output(self):
self.check_output()
def initTestCase(self):
self.shape = (100, )
self.max_norm = 1.0
class TestCase1(TestClipByNormOp):
def initTestCase(self):
self.shape = (100, )
self.max_norm = 1e20
class TestCase2(TestClipByNormOp):
def initTestCase(self):
self.shape = (16, 16)
self.max_norm = 0.1
class TestCase3(TestClipByNormOp):
def initTestCase(self):
self.shape = (4, 8, 16)
self.max_norm = 1.0
if __name__ == '__main__':
unittest.main()
此差异已折叠。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册