PQScanMultiPassPrecomputed.cu 19.5 KB
Newer Older
J
JinHai-CN 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
/**
 * Copyright (c) Facebook, Inc. and its affiliates.
 *
 * This source code is licensed under the MIT license found in the
 * LICENSE file in the root directory of this source tree.
 */


#include <faiss/gpu/impl/PQScanMultiPassPrecomputed.cuh>
#include <faiss/gpu/GpuResources.h>
#include <faiss/gpu/impl/PQCodeLoad.cuh>
#include <faiss/gpu/impl/IVFUtils.cuh>
#include <faiss/gpu/utils/ConversionOperators.cuh>
#include <faiss/gpu/utils/DeviceTensor.cuh>
#include <faiss/gpu/utils/DeviceUtils.h>
#include <faiss/gpu/utils/Float16.cuh>
#include <faiss/gpu/utils/LoadStoreOperators.cuh>
#include <faiss/gpu/utils/MathOperators.cuh>
#include <faiss/gpu/utils/StaticUtils.h>
#include <limits>

namespace faiss { namespace gpu {

// For precomputed codes, this calculates and loads code distances
// into smem
template <typename LookupT, typename LookupVecT>
inline __device__ void
loadPrecomputedTerm(LookupT* smem,
                    LookupT* term2Start,
                    LookupT* term3Start,
                    int numCodes) {
  constexpr int kWordSize = sizeof(LookupVecT) / sizeof(LookupT);

  // We can only use vector loads if the data is guaranteed to be
  // aligned. The codes are innermost, so if it is evenly divisible,
  // then any slice will be aligned.
  if (numCodes % kWordSize == 0) {
    constexpr int kUnroll = 2;

    // Load the data by float4 for efficiency, and then handle any remainder
    // limitVec is the number of whole vec words we can load, in terms
    // of whole blocks performing the load
    int limitVec = numCodes / (kUnroll * kWordSize * blockDim.x);
    limitVec *= kUnroll * blockDim.x;

    LookupVecT* smemV = (LookupVecT*) smem;
    LookupVecT* term2StartV = (LookupVecT*) term2Start;
    LookupVecT* term3StartV = (LookupVecT*) term3Start;

    for (int i = threadIdx.x; i < limitVec; i += kUnroll * blockDim.x) {
      LookupVecT vals[kUnroll];

#pragma unroll
      for (int j = 0; j < kUnroll; ++j) {
        vals[j] =
          LoadStore<LookupVecT>::load(&term2StartV[i + j * blockDim.x]);
      }

#pragma unroll
      for (int j = 0; j < kUnroll; ++j) {
        LookupVecT q =
          LoadStore<LookupVecT>::load(&term3StartV[i + j * blockDim.x]);

        vals[j] = Math<LookupVecT>::add(vals[j], q);
      }

#pragma unroll
      for (int j = 0; j < kUnroll; ++j) {
        LoadStore<LookupVecT>::store(&smemV[i + j * blockDim.x], vals[j]);
      }
    }

    // This is where we start loading the remainder that does not evenly
    // fit into kUnroll x blockDim.x
    int remainder = limitVec * kWordSize;

    for (int i = remainder + threadIdx.x; i < numCodes; i += blockDim.x) {
      smem[i] = Math<LookupT>::add(term2Start[i], term3Start[i]);
    }
  } else {
    // Potential unaligned load
    constexpr int kUnroll = 4;

    int limit = utils::roundDown(numCodes, kUnroll * blockDim.x);

    int i = threadIdx.x;
    for (; i < limit; i += kUnroll * blockDim.x) {
      LookupT vals[kUnroll];

#pragma unroll
      for (int j = 0; j < kUnroll; ++j) {
        vals[j] = term2Start[i + j * blockDim.x];
      }

#pragma unroll
      for (int j = 0; j < kUnroll; ++j) {
        vals[j] = Math<LookupT>::add(vals[j], term3Start[i + j * blockDim.x]);
      }

#pragma unroll
      for (int j = 0; j < kUnroll; ++j) {
        smem[i + j * blockDim.x] = vals[j];
      }
    }

    for (; i < numCodes; i += blockDim.x) {
      smem[i] = Math<LookupT>::add(term2Start[i], term3Start[i]);
    }
  }
}

template <int NumSubQuantizers, typename LookupT, typename LookupVecT>
__global__ void
pqScanPrecomputedMultiPass(Tensor<float, 2, true> queries,
                           Tensor<float, 2, true> precompTerm1,
                           Tensor<LookupT, 3, true> precompTerm2,
                           Tensor<LookupT, 3, true> precompTerm3,
                           Tensor<int, 2, true> topQueryToCentroid,
                           void** listCodes,
                           int* listLengths,
                           Tensor<int, 2, true> prefixSumOffsets,
                           Tensor<float, 1, true> distance) {
  // precomputed term 2 + 3 storage
  // (sub q)(code id)
  extern __shared__ char smemTerm23[];
  LookupT* term23 = (LookupT*) smemTerm23;

  // Each block handles a single query
  auto queryId = blockIdx.y;
  auto probeId = blockIdx.x;
  auto codesPerSubQuantizer = precompTerm2.getSize(2);
  auto precompTermSize = precompTerm2.getSize(1) * codesPerSubQuantizer;

  // This is where we start writing out data
  // We ensure that before the array (at offset -1), there is a 0 value
  int outBase = *(prefixSumOffsets[queryId][probeId].data() - 1);
  float* distanceOut = distance[outBase].data();

  auto listId = topQueryToCentroid[queryId][probeId];
  // Safety guard in case NaNs in input cause no list ID to be generated
  if (listId == -1) {
    return;
  }

  unsigned char* codeList = (unsigned char*) listCodes[listId];
  int limit = listLengths[listId];

  constexpr int kNumCode32 = NumSubQuantizers <= 4 ? 1 :
    (NumSubQuantizers / 4);
  unsigned int code32[kNumCode32];
  unsigned int nextCode32[kNumCode32];

  // We double-buffer the code loading, which improves memory utilization
  if (threadIdx.x < limit) {
    LoadCode32<NumSubQuantizers>::load(code32, codeList, threadIdx.x);
  }

  // Load precomputed terms 1, 2, 3
  float term1 = precompTerm1[queryId][probeId];
  loadPrecomputedTerm<LookupT, LookupVecT>(term23,
                                           precompTerm2[listId].data(),
                                           precompTerm3[queryId].data(),
                                           precompTermSize);

  // Prevent WAR dependencies
  __syncthreads();

  // Each thread handles one code element in the list, with a
  // block-wide stride
  for (int codeIndex = threadIdx.x;
       codeIndex < limit;
       codeIndex += blockDim.x) {
    // Prefetch next codes
    if (codeIndex + blockDim.x < limit) {
      LoadCode32<NumSubQuantizers>::load(
        nextCode32, codeList, codeIndex + blockDim.x);
    }

    float dist = term1;

#pragma unroll
    for (int word = 0; word < kNumCode32; ++word) {
      constexpr int kBytesPerCode32 =
        NumSubQuantizers < 4 ? NumSubQuantizers : 4;

      if (kBytesPerCode32 == 1) {
        auto code = code32[0];
        dist = ConvertTo<float>::to(term23[code]);

      } else {
#pragma unroll
        for (int byte = 0; byte < kBytesPerCode32; ++byte) {
          auto code = getByte(code32[word], byte * 8, 8);

          auto offset =
            codesPerSubQuantizer * (word * kBytesPerCode32 + byte);

          dist += ConvertTo<float>::to(term23[offset + code]);
        }
      }
    }

    // Write out intermediate distance result
    // We do not maintain indices here, in order to reduce global
    // memory traffic. Those are recovered in the final selection step.
    distanceOut[codeIndex] = dist;

    // Rotate buffers
#pragma unroll
    for (int word = 0; word < kNumCode32; ++word) {
      code32[word] = nextCode32[word];
    }
  }
}

void
runMultiPassTile(Tensor<float, 2, true>& queries,
                 Tensor<float, 2, true>& precompTerm1,
                 NoTypeTensor<3, true>& precompTerm2,
                 NoTypeTensor<3, true>& precompTerm3,
                 Tensor<int, 2, true>& topQueryToCentroid,
222
                 Tensor<uint8_t, 1, true>& bitset,
J
JinHai-CN 已提交
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
                 bool useFloat16Lookup,
                 int bytesPerCode,
                 int numSubQuantizers,
                 int numSubQuantizerCodes,
                 thrust::device_vector<void*>& listCodes,
                 thrust::device_vector<void*>& listIndices,
                 IndicesOptions indicesOptions,
                 thrust::device_vector<int>& listLengths,
                 Tensor<char, 1, true>& thrustMem,
                 Tensor<int, 2, true>& prefixSumOffsets,
                 Tensor<float, 1, true>& allDistances,
                 Tensor<float, 3, true>& heapDistances,
                 Tensor<int, 3, true>& heapIndices,
                 int k,
                 Tensor<float, 2, true>& outDistances,
                 Tensor<long, 2, true>& outIndices,
                 cudaStream_t stream) {
  // Calculate offset lengths, so we know where to write out
  // intermediate results
  runCalcListOffsets(topQueryToCentroid, listLengths, prefixSumOffsets,
                     thrustMem, stream);

  // Convert all codes to a distance, and write out (distance,
  // index) values for all intermediate results
  {
    auto kThreadsPerBlock = 256;

    auto grid = dim3(topQueryToCentroid.getSize(1),
                     topQueryToCentroid.getSize(0));
    auto block = dim3(kThreadsPerBlock);

    // pq precomputed terms (2 + 3)
S
shengjun.li 已提交
255 256 257 258 259 260
    auto smem = sizeof(float);
#ifdef FAISS_USE_FLOAT16
    if (useFloat16Lookup) {
      smem = sizeof(half);
    }
#endif
J
JinHai-CN 已提交
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282

    smem *= numSubQuantizers * numSubQuantizerCodes;
    FAISS_ASSERT(smem <= getMaxSharedMemPerBlockCurrentDevice());

#define RUN_PQ_OPT(NUM_SUB_Q, LOOKUP_T, LOOKUP_VEC_T)                   \
    do {                                                                \
      auto precompTerm2T = precompTerm2.toTensor<LOOKUP_T>();           \
      auto precompTerm3T = precompTerm3.toTensor<LOOKUP_T>();           \
                                                                        \
      pqScanPrecomputedMultiPass<NUM_SUB_Q, LOOKUP_T, LOOKUP_VEC_T>     \
        <<<grid, block, smem, stream>>>(                                \
          queries,                                                      \
          precompTerm1,                                                 \
          precompTerm2T,                                                \
          precompTerm3T,                                                \
          topQueryToCentroid,                                           \
          listCodes.data().get(),                                       \
          listLengths.data().get(),                                     \
          prefixSumOffsets,                                             \
          allDistances);                                                \
    } while (0)

S
shengjun.li 已提交
283
#ifdef  FAISS_USE_FLOAT16
J
JinHai-CN 已提交
284 285 286 287 288 289 290 291
#define RUN_PQ(NUM_SUB_Q)                       \
    do {                                        \
      if (useFloat16Lookup) {                   \
        RUN_PQ_OPT(NUM_SUB_Q, half, Half8);     \
      } else {                                  \
        RUN_PQ_OPT(NUM_SUB_Q, float, float4);   \
      }                                         \
    } while (0)
S
shengjun.li 已提交
292 293 294 295 296 297
#else
#define RUN_PQ(NUM_SUB_Q)                       \
    do {                                        \
      RUN_PQ_OPT(NUM_SUB_Q, float, float4);     \
    } while (0)
#endif
J
JinHai-CN 已提交
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359

    switch (bytesPerCode) {
      case 1:
        RUN_PQ(1);
        break;
      case 2:
        RUN_PQ(2);
        break;
      case 3:
        RUN_PQ(3);
        break;
      case 4:
        RUN_PQ(4);
        break;
      case 8:
        RUN_PQ(8);
        break;
      case 12:
        RUN_PQ(12);
        break;
      case 16:
        RUN_PQ(16);
        break;
      case 20:
        RUN_PQ(20);
        break;
      case 24:
        RUN_PQ(24);
        break;
      case 28:
        RUN_PQ(28);
        break;
      case 32:
        RUN_PQ(32);
        break;
      case 40:
        RUN_PQ(40);
        break;
      case 48:
        RUN_PQ(48);
        break;
      case 56:
        RUN_PQ(56);
        break;
      case 64:
        RUN_PQ(64);
        break;
      case 96:
        RUN_PQ(96);
        break;
      default:
        FAISS_ASSERT(false);
        break;
    }

    CUDA_TEST_ERROR();

#undef RUN_PQ
#undef RUN_PQ_OPT
  }

  // k-select the output in chunks, to increase parallelism
360 361 362 363 364
  runPass1SelectLists(listIndices,
                      indicesOptions,
                      prefixSumOffsets,
                      topQueryToCentroid,
                      bitset,
J
JinHai-CN 已提交
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
                      allDistances,
                      topQueryToCentroid.getSize(1),
                      k,
                      false, // L2 distance chooses smallest
                      heapDistances,
                      heapIndices,
                      stream);

  // k-select final output
  auto flatHeapDistances = heapDistances.downcastInner<2>();
  auto flatHeapIndices = heapIndices.downcastInner<2>();

  runPass2SelectLists(flatHeapDistances,
                      flatHeapIndices,
                      listIndices,
                      indicesOptions,
                      prefixSumOffsets,
                      topQueryToCentroid,
                      k,
                      false, // L2 distance chooses smallest
                      outDistances,
                      outIndices,
                      stream);

  CUDA_TEST_ERROR();
}

void runPQScanMultiPassPrecomputed(Tensor<float, 2, true>& queries,
                                   Tensor<float, 2, true>& precompTerm1,
                                   NoTypeTensor<3, true>& precompTerm2,
                                   NoTypeTensor<3, true>& precompTerm3,
                                   Tensor<int, 2, true>& topQueryToCentroid,
397
                                   Tensor<uint8_t, 1, true>& bitset,
J
JinHai-CN 已提交
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
                                   bool useFloat16Lookup,
                                   int bytesPerCode,
                                   int numSubQuantizers,
                                   int numSubQuantizerCodes,
                                   thrust::device_vector<void*>& listCodes,
                                   thrust::device_vector<void*>& listIndices,
                                   IndicesOptions indicesOptions,
                                   thrust::device_vector<int>& listLengths,
                                   int maxListLength,
                                   int k,
                                   // output
                                   Tensor<float, 2, true>& outDistances,
                                   // output
                                   Tensor<long, 2, true>& outIndices,
                                   GpuResources* res) {
  constexpr int kMinQueryTileSize = 8;
  constexpr int kMaxQueryTileSize = 128;
  constexpr int kThrustMemSize = 16384;

  int nprobe = topQueryToCentroid.getSize(1);

  auto& mem = res->getMemoryManagerCurrentDevice();
  auto stream = res->getDefaultStreamCurrentDevice();

  // Make a reservation for Thrust to do its dirty work (global memory
  // cross-block reduction space); hopefully this is large enough.
  DeviceTensor<char, 1, true> thrustMem1(
    mem, {kThrustMemSize}, stream);
  DeviceTensor<char, 1, true> thrustMem2(
    mem, {kThrustMemSize}, stream);
  DeviceTensor<char, 1, true>* thrustMem[2] =
    {&thrustMem1, &thrustMem2};

  // How much temporary storage is available?
  // If possible, we'd like to fit within the space available.
  size_t sizeAvailable = mem.getSizeAvailable();

  // We run two passes of heap selection
  // This is the size of the first-level heap passes
  constexpr int kNProbeSplit = 8;
  int pass2Chunks = std::min(nprobe, kNProbeSplit);

  size_t sizeForFirstSelectPass =
    pass2Chunks * k * (sizeof(float) + sizeof(int));

  // How much temporary storage we need per each query
  size_t sizePerQuery =
    2 * // # streams
    ((nprobe * sizeof(int) + sizeof(int)) + // prefixSumOffsets
     nprobe * maxListLength * sizeof(float) + // allDistances
     sizeForFirstSelectPass);

  int queryTileSize = (int) (sizeAvailable / sizePerQuery);

  if (queryTileSize < kMinQueryTileSize) {
    queryTileSize = kMinQueryTileSize;
  } else if (queryTileSize > kMaxQueryTileSize) {
    queryTileSize = kMaxQueryTileSize;
  }

  // FIXME: we should adjust queryTileSize to deal with this, since
  // indexing is in int32
  FAISS_ASSERT(queryTileSize * nprobe * maxListLength <=
         std::numeric_limits<int>::max());

  // Temporary memory buffers
 // Make sure there is space prior to the start which will be 0, and
  // will handle the boundary condition without branches
  DeviceTensor<int, 1, true> prefixSumOffsetSpace1(
    mem, {queryTileSize * nprobe + 1}, stream);
  DeviceTensor<int, 1, true> prefixSumOffsetSpace2(
    mem, {queryTileSize * nprobe + 1}, stream);

  DeviceTensor<int, 2, true> prefixSumOffsets1(
    prefixSumOffsetSpace1[1].data(),
    {queryTileSize, nprobe});
  DeviceTensor<int, 2, true> prefixSumOffsets2(
    prefixSumOffsetSpace2[1].data(),
    {queryTileSize, nprobe});
  DeviceTensor<int, 2, true>* prefixSumOffsets[2] =
    {&prefixSumOffsets1, &prefixSumOffsets2};

  // Make sure the element before prefixSumOffsets is 0, since we
  // depend upon simple, boundary-less indexing to get proper results
  CUDA_VERIFY(cudaMemsetAsync(prefixSumOffsetSpace1.data(),
                              0,
                              sizeof(int),
                              stream));
  CUDA_VERIFY(cudaMemsetAsync(prefixSumOffsetSpace2.data(),
                              0,
                              sizeof(int),
                              stream));

  DeviceTensor<float, 1, true> allDistances1(
    mem, {queryTileSize * nprobe * maxListLength}, stream);
  DeviceTensor<float, 1, true> allDistances2(
    mem, {queryTileSize * nprobe * maxListLength}, stream);
  DeviceTensor<float, 1, true>* allDistances[2] =
    {&allDistances1, &allDistances2};

  DeviceTensor<float, 3, true> heapDistances1(
    mem, {queryTileSize, pass2Chunks, k}, stream);
  DeviceTensor<float, 3, true> heapDistances2(
    mem, {queryTileSize, pass2Chunks, k}, stream);
  DeviceTensor<float, 3, true>* heapDistances[2] =
    {&heapDistances1, &heapDistances2};

  DeviceTensor<int, 3, true> heapIndices1(
    mem, {queryTileSize, pass2Chunks, k}, stream);
  DeviceTensor<int, 3, true> heapIndices2(
    mem, {queryTileSize, pass2Chunks, k}, stream);
  DeviceTensor<int, 3, true>* heapIndices[2] =
    {&heapIndices1, &heapIndices2};

  auto streams = res->getAlternateStreamsCurrentDevice();
  streamWait(streams, {stream});

  int curStream = 0;

  for (int query = 0; query < queries.getSize(0); query += queryTileSize) {
    int numQueriesInTile =
      std::min(queryTileSize, queries.getSize(0) - query);

    auto prefixSumOffsetsView =
      prefixSumOffsets[curStream]->narrowOutermost(0, numQueriesInTile);

    auto coarseIndicesView =
      topQueryToCentroid.narrowOutermost(query, numQueriesInTile);
    auto queryView =
      queries.narrowOutermost(query, numQueriesInTile);
    auto term1View =
      precompTerm1.narrowOutermost(query, numQueriesInTile);
    auto term3View =
      precompTerm3.narrowOutermost(query, numQueriesInTile);

    auto heapDistancesView =
      heapDistances[curStream]->narrowOutermost(0, numQueriesInTile);
    auto heapIndicesView =
      heapIndices[curStream]->narrowOutermost(0, numQueriesInTile);

    auto outDistanceView =
      outDistances.narrowOutermost(query, numQueriesInTile);
    auto outIndicesView =
      outIndices.narrowOutermost(query, numQueriesInTile);

    runMultiPassTile(queryView,
                     term1View,
                     precompTerm2,
                     term3View,
                     coarseIndicesView,
548
                     bitset,
J
JinHai-CN 已提交
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
                     useFloat16Lookup,
                     bytesPerCode,
                     numSubQuantizers,
                     numSubQuantizerCodes,
                     listCodes,
                     listIndices,
                     indicesOptions,
                     listLengths,
                     *thrustMem[curStream],
                     prefixSumOffsetsView,
                     *allDistances[curStream],
                     heapDistancesView,
                     heapIndicesView,
                     k,
                     outDistanceView,
                     outIndicesView,
                     streams[curStream]);

    curStream = (curStream + 1) % 2;
  }

  streamWait({stream}, streams);
}

} } // namespace