distances.cpp 21.0 KB
Newer Older
J
JinHai-CN 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
/**
 * Copyright (c) Facebook, Inc. and its affiliates.
 *
 * This source code is licensed under the MIT license found in the
 * LICENSE file in the root directory of this source tree.
 */

// -*- c++ -*-

#include <faiss/utils/distances.h>

#include <cstdio>
#include <cassert>
#include <cstring>
#include <cmath>

#include <omp.h>

#include <faiss/impl/AuxIndexStructures.h>
#include <faiss/impl/FaissAssert.h>



#ifndef FINTEGER
#define FINTEGER long
#endif


extern "C" {

/* declare BLAS functions, see http://www.netlib.org/clapack/cblas/ */

int sgemm_ (const char *transa, const char *transb, FINTEGER *m, FINTEGER *
            n, FINTEGER *k, const float *alpha, const float *a,
            FINTEGER *lda, const float *b, FINTEGER *
            ldb, float *beta, float *c, FINTEGER *ldc);

/* Lapack functions, see http://www.netlib.org/clapack/old/single/sgeqrf.c */

int sgeqrf_ (FINTEGER *m, FINTEGER *n, float *a, FINTEGER *lda,
                 float *tau, float *work, FINTEGER *lwork, FINTEGER *info);

int sgemv_(const char *trans, FINTEGER *m, FINTEGER *n, float *alpha,
           const float *a, FINTEGER *lda, const float *x, FINTEGER *incx,
           float *beta, float *y, FINTEGER *incy);

}


namespace faiss {



/***************************************************************************
 * Matrix/vector ops
 ***************************************************************************/



/* Compute the inner product between a vector x and
   a set of ny vectors y.
   These functions are not intended to replace BLAS matrix-matrix, as they
   would be significantly less efficient in this case. */
void fvec_inner_products_ny (float * ip,
                             const float * x,
                             const float * y,
                             size_t d, size_t ny)
{
    // Not sure which one is fastest
#if 0
    {
        FINTEGER di = d;
        FINTEGER nyi = ny;
        float one = 1.0, zero = 0.0;
        FINTEGER onei = 1;
        sgemv_ ("T", &di, &nyi, &one, y, &di, x, &onei, &zero, ip, &onei);
    }
#endif
    for (size_t i = 0; i < ny; i++) {
        ip[i] = fvec_inner_product (x, y, d);
        y += d;
    }
}





/* Compute the L2 norm of a set of nx vectors */
void fvec_norms_L2 (float * __restrict nr,
                    const float * __restrict x,
                    size_t d, size_t nx)
{

#pragma omp parallel for
    for (size_t i = 0; i < nx; i++) {
        nr[i] = sqrtf (fvec_norm_L2sqr (x + i * d, d));
    }
}

void fvec_norms_L2sqr (float * __restrict nr,
                       const float * __restrict x,
                       size_t d, size_t nx)
{
#pragma omp parallel for
    for (size_t i = 0; i < nx; i++)
        nr[i] = fvec_norm_L2sqr (x + i * d, d);
}



void fvec_renorm_L2 (size_t d, size_t nx, float * __restrict x)
{
#pragma omp parallel for
    for (size_t i = 0; i < nx; i++) {
        float * __restrict xi = x + i * d;

        float nr = fvec_norm_L2sqr (xi, d);

        if (nr > 0) {
            size_t j;
            const float inv_nr = 1.0 / sqrtf (nr);
            for (j = 0; j < d; j++)
                xi[j] *= inv_nr;
        }
    }
}












/***************************************************************************
 * KNN functions
 ***************************************************************************/



/* Find the nearest neighbors for nx queries in a set of ny vectors */
static void knn_inner_product_sse (const float * x,
                        const float * y,
                        size_t d, size_t nx, size_t ny,
                        float_minheap_array_t * res)
{
    size_t k = res->k;
    size_t check_period = InterruptCallback::get_period_hint (ny * d);

    check_period *= omp_get_max_threads();

    for (size_t i0 = 0; i0 < nx; i0 += check_period) {
        size_t i1 = std::min(i0 + check_period, nx);

#pragma omp parallel for
        for (size_t i = i0; i < i1; i++) {
            const float * x_i = x + i * d;
            const float * y_j = y;

            float * __restrict simi = res->get_val(i);
            int64_t * __restrict idxi = res->get_ids (i);

            minheap_heapify (k, simi, idxi);

            for (size_t j = 0; j < ny; j++) {
                float ip = fvec_inner_product (x_i, y_j, d);

                if (ip > simi[0]) {
                    minheap_pop (k, simi, idxi);
                    minheap_push (k, simi, idxi, ip, j);
                }
                y_j += d;
            }
            minheap_reorder (k, simi, idxi);
        }
        InterruptCallback::check ();
    }

}

static void knn_L2sqr_sse (
                const float * x,
                const float * y,
                size_t d, size_t nx, size_t ny,
                float_maxheap_array_t * res)
{
    size_t k = res->k;

    size_t check_period = InterruptCallback::get_period_hint (ny * d);
    check_period *= omp_get_max_threads();

    for (size_t i0 = 0; i0 < nx; i0 += check_period) {
        size_t i1 = std::min(i0 + check_period, nx);

#pragma omp parallel for
        for (size_t i = i0; i < i1; i++) {
            const float * x_i = x + i * d;
            const float * y_j = y;
            size_t j;
            float * simi = res->get_val(i);
            int64_t * idxi = res->get_ids (i);

            maxheap_heapify (k, simi, idxi);
            for (j = 0; j < ny; j++) {
                float disij = fvec_L2sqr (x_i, y_j, d);

                if (disij < simi[0]) {
                    maxheap_pop (k, simi, idxi);
                    maxheap_push (k, simi, idxi, disij, j);
                }
                y_j += d;
            }
            maxheap_reorder (k, simi, idxi);
        }
        InterruptCallback::check ();
    }

}


/** Find the nearest neighbors for nx queries in a set of ny vectors */
static void knn_inner_product_blas (
        const float * x,
        const float * y,
        size_t d, size_t nx, size_t ny,
        float_minheap_array_t * res)
{
    res->heapify ();

    // BLAS does not like empty matrices
    if (nx == 0 || ny == 0) return;

    /* block sizes */
    const size_t bs_x = 4096, bs_y = 1024;
    // const size_t bs_x = 16, bs_y = 16;
    std::unique_ptr<float[]> ip_block(new float[bs_x * bs_y]);

    for (size_t i0 = 0; i0 < nx; i0 += bs_x) {
        size_t i1 = i0 + bs_x;
        if(i1 > nx) i1 = nx;

        for (size_t j0 = 0; j0 < ny; j0 += bs_y) {
            size_t j1 = j0 + bs_y;
            if (j1 > ny) j1 = ny;
            /* compute the actual dot products */
            {
                float one = 1, zero = 0;
                FINTEGER nyi = j1 - j0, nxi = i1 - i0, di = d;
                sgemm_ ("Transpose", "Not transpose", &nyi, &nxi, &di, &one,
                        y + j0 * d, &di,
                        x + i0 * d, &di, &zero,
                        ip_block.get(), &nyi);
            }

            /* collect maxima */
            res->addn (j1 - j0, ip_block.get(), j0, i0, i1 - i0);
        }
        InterruptCallback::check ();
    }
    res->reorder ();
}

// distance correction is an operator that can be applied to transform
// the distances
template<class DistanceCorrection>
static void knn_L2sqr_blas (const float * x,
        const float * y,
        size_t d, size_t nx, size_t ny,
        float_maxheap_array_t * res,
        const DistanceCorrection &corr)
{
    res->heapify ();

    // BLAS does not like empty matrices
    if (nx == 0 || ny == 0) return;

    size_t k = res->k;

    /* block sizes */
    const size_t bs_x = 4096, bs_y = 1024;
    // const size_t bs_x = 16, bs_y = 16;
    float *ip_block = new float[bs_x * bs_y];
    float *x_norms = new float[nx];
    float *y_norms = new float[ny];
    ScopeDeleter<float> del1(ip_block), del3(x_norms), del2(y_norms);

    fvec_norms_L2sqr (x_norms, x, d, nx);
    fvec_norms_L2sqr (y_norms, y, d, ny);


    for (size_t i0 = 0; i0 < nx; i0 += bs_x) {
        size_t i1 = i0 + bs_x;
        if(i1 > nx) i1 = nx;

        for (size_t j0 = 0; j0 < ny; j0 += bs_y) {
            size_t j1 = j0 + bs_y;
            if (j1 > ny) j1 = ny;
            /* compute the actual dot products */
            {
                float one = 1, zero = 0;
                FINTEGER nyi = j1 - j0, nxi = i1 - i0, di = d;
                sgemm_ ("Transpose", "Not transpose", &nyi, &nxi, &di, &one,
                        y + j0 * d, &di,
                        x + i0 * d, &di, &zero,
                        ip_block, &nyi);
            }

            /* collect minima */
#pragma omp parallel for
            for (size_t i = i0; i < i1; i++) {
                float * __restrict simi = res->get_val(i);
                int64_t * __restrict idxi = res->get_ids (i);
                const float *ip_line = ip_block + (i - i0) * (j1 - j0);

                for (size_t j = j0; j < j1; j++) {
                    float ip = *ip_line++;
                    float dis = x_norms[i] + y_norms[j] - 2 * ip;

                    // negative values can occur for identical vectors
                    // due to roundoff errors
                    if (dis < 0) dis = 0;

                    dis = corr (dis, i, j);

                    if (dis < simi[0]) {
                        maxheap_pop (k, simi, idxi);
                        maxheap_push (k, simi, idxi, dis, j);
                    }
                }
            }
        }
        InterruptCallback::check ();
    }
    res->reorder ();

}









/*******************************************************
 * KNN driver functions
 *******************************************************/

int distance_compute_blas_threshold = 20;

void knn_inner_product (const float * x,
        const float * y,
        size_t d, size_t nx, size_t ny,
        float_minheap_array_t * res)
{
    if (d % 4 == 0 && nx < distance_compute_blas_threshold) {
        knn_inner_product_sse (x, y, d, nx, ny, res);
    } else {
        knn_inner_product_blas (x, y, d, nx, ny, res);
    }
}



struct NopDistanceCorrection {
  float operator()(float dis, size_t /*qno*/, size_t /*bno*/) const {
    return dis;
    }
};

void knn_L2sqr (const float * x,
                const float * y,
                size_t d, size_t nx, size_t ny,
                float_maxheap_array_t * res)
{
    if (d % 4 == 0 && nx < distance_compute_blas_threshold) {
        knn_L2sqr_sse (x, y, d, nx, ny, res);
    } else {
        NopDistanceCorrection nop;
        knn_L2sqr_blas (x, y, d, nx, ny, res, nop);
    }
}

struct BaseShiftDistanceCorrection {
    const float *base_shift;
    float operator()(float dis, size_t /*qno*/, size_t bno) const {
      return dis - base_shift[bno];
    }
};

void knn_L2sqr_base_shift (
         const float * x,
         const float * y,
         size_t d, size_t nx, size_t ny,
         float_maxheap_array_t * res,
         const float *base_shift)
{
    BaseShiftDistanceCorrection corr = {base_shift};
    knn_L2sqr_blas (x, y, d, nx, ny, res, corr);
}



/***************************************************************************
 * compute a subset of  distances
 ***************************************************************************/

/* compute the inner product between x and a subset y of ny vectors,
   whose indices are given by idy.  */
void fvec_inner_products_by_idx (float * __restrict ip,
                                 const float * x,
                                 const float * y,
                                 const int64_t * __restrict ids, /* for y vecs */
                                 size_t d, size_t nx, size_t ny)
{
#pragma omp parallel for
    for (size_t j = 0; j < nx; j++) {
        const int64_t * __restrict idsj = ids + j * ny;
        const float * xj = x + j * d;
        float * __restrict ipj = ip + j * ny;
        for (size_t i = 0; i < ny; i++) {
            if (idsj[i] < 0)
                continue;
            ipj[i] = fvec_inner_product (xj, y + d * idsj[i], d);
        }
    }
}



/* compute the inner product between x and a subset y of ny vectors,
   whose indices are given by idy.  */
void fvec_L2sqr_by_idx (float * __restrict dis,
                        const float * x,
                        const float * y,
                        const int64_t * __restrict ids, /* ids of y vecs */
                        size_t d, size_t nx, size_t ny)
{
#pragma omp parallel for
    for (size_t j = 0; j < nx; j++) {
        const int64_t * __restrict idsj = ids + j * ny;
        const float * xj = x + j * d;
        float * __restrict disj = dis + j * ny;
        for (size_t i = 0; i < ny; i++) {
            if (idsj[i] < 0)
                continue;
            disj[i] = fvec_L2sqr (xj, y + d * idsj[i], d);
        }
    }
}

void pairwise_indexed_L2sqr (
        size_t d, size_t n,
        const float * x, const int64_t *ix,
        const float * y, const int64_t *iy,
        float *dis)
{
#pragma omp parallel for
    for (size_t j = 0; j < n; j++) {
        if (ix[j] >= 0 && iy[j] >= 0) {
            dis[j] = fvec_L2sqr (x + d * ix[j], y + d * iy[j], d);
        }
    }
}

void pairwise_indexed_inner_product (
        size_t d, size_t n,
        const float * x, const int64_t *ix,
        const float * y, const int64_t *iy,
        float *dis)
{
#pragma omp parallel for
    for (size_t j = 0; j < n; j++) {
        if (ix[j] >= 0 && iy[j] >= 0) {
            dis[j] = fvec_inner_product (x + d * ix[j], y + d * iy[j], d);
        }
    }
}


/* Find the nearest neighbors for nx queries in a set of ny vectors
   indexed by ids. May be useful for re-ranking a pre-selected vector list */
void knn_inner_products_by_idx (const float * x,
                                const float * y,
                                const int64_t * ids,
                                size_t d, size_t nx, size_t ny,
                                float_minheap_array_t * res)
{
    size_t k = res->k;

#pragma omp parallel for
    for (size_t i = 0; i < nx; i++) {
        const float * x_ = x + i * d;
        const int64_t * idsi = ids + i * ny;
        size_t j;
        float * __restrict simi = res->get_val(i);
        int64_t * __restrict idxi = res->get_ids (i);
        minheap_heapify (k, simi, idxi);

        for (j = 0; j < ny; j++) {
            if (idsi[j] < 0) break;
            float ip = fvec_inner_product (x_, y + d * idsi[j], d);

            if (ip > simi[0]) {
                minheap_pop (k, simi, idxi);
                minheap_push (k, simi, idxi, ip, idsi[j]);
            }
        }
        minheap_reorder (k, simi, idxi);
    }

}

void knn_L2sqr_by_idx (const float * x,
                       const float * y,
                       const int64_t * __restrict ids,
                       size_t d, size_t nx, size_t ny,
                       float_maxheap_array_t * res)
{
    size_t k = res->k;

#pragma omp parallel for
    for (size_t i = 0; i < nx; i++) {
        const float * x_ = x + i * d;
        const int64_t * __restrict idsi = ids + i * ny;
        float * __restrict simi = res->get_val(i);
        int64_t * __restrict idxi = res->get_ids (i);
        maxheap_heapify (res->k, simi, idxi);
        for (size_t j = 0; j < ny; j++) {
            float disij = fvec_L2sqr (x_, y + d * idsi[j], d);

            if (disij < simi[0]) {
                maxheap_pop (k, simi, idxi);
                maxheap_push (k, simi, idxi, disij, idsi[j]);
            }
        }
        maxheap_reorder (res->k, simi, idxi);
    }

}





/***************************************************************************
 * Range search
 ***************************************************************************/

/** Find the nearest neighbors for nx queries in a set of ny vectors
 * compute_l2 = compute pairwise squared L2 distance rather than inner prod
 */
template <bool compute_l2>
static void range_search_blas (
        const float * x,
        const float * y,
        size_t d, size_t nx, size_t ny,
        float radius,
        RangeSearchResult *result)
{

    // BLAS does not like empty matrices
    if (nx == 0 || ny == 0) return;

    /* block sizes */
    const size_t bs_x = 4096, bs_y = 1024;
    // const size_t bs_x = 16, bs_y = 16;
    float *ip_block = new float[bs_x * bs_y];
    ScopeDeleter<float> del0(ip_block);

    float *x_norms = nullptr, *y_norms = nullptr;
    ScopeDeleter<float> del1, del2;
    if (compute_l2) {
        x_norms = new float[nx];
        del1.set (x_norms);
        fvec_norms_L2sqr (x_norms, x, d, nx);

        y_norms = new float[ny];
        del2.set (y_norms);
        fvec_norms_L2sqr (y_norms, y, d, ny);
    }

    std::vector <RangeSearchPartialResult *> partial_results;

    for (size_t j0 = 0; j0 < ny; j0 += bs_y) {
        size_t j1 = j0 + bs_y;
        if (j1 > ny) j1 = ny;
        RangeSearchPartialResult * pres = new RangeSearchPartialResult (result);
        partial_results.push_back (pres);

        for (size_t i0 = 0; i0 < nx; i0 += bs_x) {
            size_t i1 = i0 + bs_x;
            if(i1 > nx) i1 = nx;

            /* compute the actual dot products */
            {
                float one = 1, zero = 0;
                FINTEGER nyi = j1 - j0, nxi = i1 - i0, di = d;
                sgemm_ ("Transpose", "Not transpose", &nyi, &nxi, &di, &one,
                        y + j0 * d, &di,
                        x + i0 * d, &di, &zero,
                        ip_block, &nyi);
            }


            for (size_t i = i0; i < i1; i++) {
                const float *ip_line = ip_block + (i - i0) * (j1 - j0);

                RangeQueryResult & qres = pres->new_result (i);

                for (size_t j = j0; j < j1; j++) {
                    float ip = *ip_line++;
                    if (compute_l2) {
                        float dis =  x_norms[i] + y_norms[j] - 2 * ip;
                        if (dis < radius) {
                            qres.add (dis, j);
                        }
                    } else {
                        if (ip > radius) {
                            qres.add (ip, j);
                        }
                    }
                }
            }
        }
        InterruptCallback::check ();
    }

    RangeSearchPartialResult::merge (partial_results);
}


template <bool compute_l2>
static void range_search_sse (const float * x,
                const float * y,
                size_t d, size_t nx, size_t ny,
                float radius,
                RangeSearchResult *res)
{
    FAISS_THROW_IF_NOT (d % 4 == 0);

#pragma omp parallel
    {
        RangeSearchPartialResult pres (res);

#pragma omp for
        for (size_t i = 0; i < nx; i++) {
            const float * x_ = x + i * d;
            const float * y_ = y;
            size_t j;

            RangeQueryResult & qres = pres.new_result (i);

            for (j = 0; j < ny; j++) {
                if (compute_l2) {
                    float disij = fvec_L2sqr (x_, y_, d);
                    if (disij < radius) {
                        qres.add (disij, j);
                    }
                } else {
                    float ip = fvec_inner_product (x_, y_, d);
                    if (ip > radius) {
                        qres.add (ip, j);
                    }
                }
                y_ += d;
            }

        }
        pres.finalize ();
    }

    // check just at the end because the use case is typically just
    // when the nb of queries is low.
    InterruptCallback::check();
}





void range_search_L2sqr (
        const float * x,
        const float * y,
        size_t d, size_t nx, size_t ny,
        float radius,
        RangeSearchResult *res)
{

    if (d % 4 == 0 && nx < distance_compute_blas_threshold) {
        range_search_sse<true> (x, y, d, nx, ny, radius, res);
    } else {
        range_search_blas<true> (x, y, d, nx, ny, radius, res);
    }
}

void range_search_inner_product (
        const float * x,
        const float * y,
        size_t d, size_t nx, size_t ny,
        float radius,
        RangeSearchResult *res)
{

    if (d % 4 == 0 && nx < distance_compute_blas_threshold) {
        range_search_sse<false> (x, y, d, nx, ny, radius, res);
    } else {
        range_search_blas<false> (x, y, d, nx, ny, radius, res);
    }
}


void pairwise_L2sqr (int64_t d,
                     int64_t nq, const float *xq,
                     int64_t nb, const float *xb,
                     float *dis,
                     int64_t ldq, int64_t ldb, int64_t ldd)
{
    if (nq == 0 || nb == 0) return;
    if (ldq == -1) ldq = d;
    if (ldb == -1) ldb = d;
    if (ldd == -1) ldd = nb;

    // store in beginning of distance matrix to avoid malloc
    float *b_norms = dis;

#pragma omp parallel for
    for (int64_t i = 0; i < nb; i++)
        b_norms [i] = fvec_norm_L2sqr (xb + i * ldb, d);

#pragma omp parallel for
    for (int64_t i = 1; i < nq; i++) {
        float q_norm = fvec_norm_L2sqr (xq + i * ldq, d);
        for (int64_t j = 0; j < nb; j++)
            dis[i * ldd + j] = q_norm + b_norms [j];
    }

    {
        float q_norm = fvec_norm_L2sqr (xq, d);
        for (int64_t j = 0; j < nb; j++)
            dis[j] += q_norm;
    }

    {
        FINTEGER nbi = nb, nqi = nq, di = d, ldqi = ldq, ldbi = ldb, lddi = ldd;
        float one = 1.0, minus_2 = -2.0;

        sgemm_ ("Transposed", "Not transposed",
                &nbi, &nqi, &di,
                &minus_2,
                xb, &ldbi,
                xq, &ldqi,
                &one, dis, &lddi);
    }

}


} // namespace faiss