@nix@store@np14qqgvvnyna3vv640hmhi21flymiia-gcc-12.2.0@include@c++@12.2.0@numeric 25.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
// <numeric> -*- C++ -*-

// Copyright (C) 2001-2022 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.

// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.

// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
// <http://www.gnu.org/licenses/>.

/*
 *
 * Copyright (c) 1994
 * Hewlett-Packard Company
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Hewlett-Packard Company makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 *
 *
 * Copyright (c) 1996,1997
 * Silicon Graphics Computer Systems, Inc.
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Silicon Graphics makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 */

/** @file include/numeric
 *  This is a Standard C++ Library header.
 */

#ifndef _GLIBCXX_NUMERIC
#define _GLIBCXX_NUMERIC 1

#pragma GCC system_header

#include <bits/c++config.h>
#include <bits/stl_iterator_base_types.h>
#include <bits/stl_numeric.h>

#ifdef _GLIBCXX_PARALLEL
# include <parallel/numeric>
#endif

#if __cplusplus >= 201402L
# include <type_traits>
# include <bit>
# include <ext/numeric_traits.h>
#endif

#if __cplusplus >= 201703L
# include <bits/stl_function.h>
#endif

#if __cplusplus > 201703L
# include <limits>
#endif

/**
 * @defgroup numerics Numerics
 *
 * Components for performing numeric operations. Includes support for
 * complex number types, random number generation, numeric (n-at-a-time)
 * arrays, generalized numeric algorithms, and mathematical special functions.
 */

namespace std _GLIBCXX_VISIBILITY(default)
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION

#if __cplusplus >= 201402L
namespace __detail
{
  // Like std::abs, but supports unsigned types and returns the specified type,
  // so |std::numeric_limits<_Tp>::min()| is OK if representable in _Res.
  template<typename _Res, typename _Tp>
    constexpr _Res
    __abs_r(_Tp __val)
    {
      static_assert(sizeof(_Res) >= sizeof(_Tp),
	  "result type must be at least as wide as the input type");

      if (__val >= 0)
	return __val;
#ifdef _GLIBCXX_ASSERTIONS
      if (!__is_constant_evaluated()) // overflow already detected in constexpr
	__glibcxx_assert(__val != __gnu_cxx::__int_traits<_Res>::__min);
#endif
      return -static_cast<_Res>(__val);
    }

  template<typename> void __abs_r(bool) = delete;

  // GCD implementation, using Stein's algorithm
  template<typename _Tp>
    constexpr _Tp
    __gcd(_Tp __m, _Tp __n)
    {
      static_assert(is_unsigned<_Tp>::value, "type must be unsigned");

      if (__m == 0)
	return __n;
      if (__n == 0)
	return __m;

      const int __i = std::__countr_zero(__m);
      __m >>= __i;
      const int __j = std::__countr_zero(__n);
      __n >>= __j;
      const int __k = __i < __j ? __i : __j; // min(i, j)

      while (true)
	{
	  if (__m > __n)
	    {
	      _Tp __tmp = __m;
	      __m = __n;
	      __n = __tmp;
	    }

	  __n -= __m;

	  if (__n == 0)
	    return __m << __k;

	  __n >>= std::__countr_zero(__n);
	}
    }
} // namespace __detail

#if __cplusplus >= 201703L

#define __cpp_lib_gcd_lcm 201606L
// These were used in drafts of SD-6:
#define __cpp_lib_gcd 201606L
#define __cpp_lib_lcm 201606L

  /// Greatest common divisor
  template<typename _Mn, typename _Nn>
    constexpr common_type_t<_Mn, _Nn>
    gcd(_Mn __m, _Nn __n) noexcept
    {
      static_assert(is_integral_v<_Mn> && is_integral_v<_Nn>,
		    "std::gcd arguments must be integers");
      static_assert(_Mn(2) == 2 && _Nn(2) == 2,
		    "std::gcd arguments must not be bool");
      using _Ct = common_type_t<_Mn, _Nn>;
      const _Ct __m2 = __detail::__abs_r<_Ct>(__m);
      const _Ct __n2 = __detail::__abs_r<_Ct>(__n);
      return __detail::__gcd<make_unsigned_t<_Ct>>(__m2, __n2);
    }

  /// Least common multiple
  template<typename _Mn, typename _Nn>
    constexpr common_type_t<_Mn, _Nn>
    lcm(_Mn __m, _Nn __n) noexcept
    {
      static_assert(is_integral_v<_Mn> && is_integral_v<_Nn>,
		    "std::lcm arguments must be integers");
      static_assert(_Mn(2) == 2 && _Nn(2) == 2,
		    "std::lcm arguments must not be bool");
      using _Ct = common_type_t<_Mn, _Nn>;
      const _Ct __m2 = __detail::__abs_r<_Ct>(__m);
      const _Ct __n2 = __detail::__abs_r<_Ct>(__n);
      if (__m2 == 0 || __n2 == 0)
	return 0;
      _Ct __r = __m2 / __detail::__gcd<make_unsigned_t<_Ct>>(__m2, __n2);

      if constexpr (is_signed_v<_Ct>)
	if (__is_constant_evaluated())
	  return __r * __n2; // constant evaluation can detect overflow here.

      bool __overflow = __builtin_mul_overflow(__r, __n2, &__r);
      __glibcxx_assert(!__overflow);
      return __r;
    }

#endif // C++17
#endif // C++14

#if __cplusplus > 201703L

  // midpoint
# define __cpp_lib_interpolate 201902L

  template<typename _Tp>
    constexpr
    enable_if_t<__and_v<is_arithmetic<_Tp>, is_same<remove_cv_t<_Tp>, _Tp>,
			__not_<is_same<_Tp, bool>>>,
		_Tp>
    midpoint(_Tp __a, _Tp __b) noexcept
    {
      if constexpr (is_integral_v<_Tp>)
	{
	  using _Up = make_unsigned_t<_Tp>;

	  int __k = 1;
	  _Up __m = __a;
	  _Up __M = __b;
	  if (__a > __b)
	    {
	      __k = -1;
	      __m = __b;
	      __M = __a;
	    }
	  return __a + __k * _Tp(_Up(__M - __m) / 2);
	}
      else // is_floating
	{
	  constexpr _Tp __lo = numeric_limits<_Tp>::min() * 2;
	  constexpr _Tp __hi = numeric_limits<_Tp>::max() / 2;
	  const _Tp __abs_a = __a < 0 ? -__a : __a;
	  const _Tp __abs_b = __b < 0 ? -__b : __b;
	  if (__abs_a <= __hi && __abs_b <= __hi) [[likely]]
	    return (__a + __b) / 2; // always correctly rounded
	  if (__abs_a < __lo) // not safe to halve __a
	    return __a + __b/2;
	  if (__abs_b < __lo) // not safe to halve __b
	    return __a/2 + __b;
	  return __a/2 + __b/2;	    // otherwise correctly rounded
	}
    }

  template<typename _Tp>
    constexpr enable_if_t<is_object_v<_Tp>, _Tp*>
    midpoint(_Tp* __a, _Tp* __b) noexcept
    {
      static_assert( sizeof(_Tp) != 0, "type must be complete" );
      return __a  + (__b - __a) / 2;
    }
#endif // C++20

#if __cplusplus >= 201703L

#if __cplusplus > 201703L
#define __cpp_lib_constexpr_numeric 201911L
#endif

  /// @addtogroup numeric_ops
  /// @{

  /**
   *  @brief  Calculate reduction of values in a range.
   *
   *  @param  __first  Start of range.
   *  @param  __last  End of range.
   *  @param  __init  Starting value to add other values to.
   *  @param  __binary_op A binary function object.
   *  @return  The final sum.
   *
   *  Reduce the values in the range `[first,last)` using a binary operation.
   *  The initial value is `init`.  The values are not necessarily processed
   *  in order.
   *
   *  This algorithm is similar to `std::accumulate` but is not required to
   *  perform the operations in order from first to last. For operations
   *  that are commutative and associative the result will be the same as
   *  for `std::accumulate`, but for other operations (such as floating point
   *  arithmetic) the result can be different.
   */
  template<typename _InputIterator, typename _Tp, typename _BinaryOperation>
    _GLIBCXX20_CONSTEXPR
    _Tp
    reduce(_InputIterator __first, _InputIterator __last, _Tp __init,
	   _BinaryOperation __binary_op)
    {
      using __ref = typename iterator_traits<_InputIterator>::reference;
      static_assert(is_invocable_r_v<_Tp, _BinaryOperation&, _Tp&, __ref>);
      static_assert(is_invocable_r_v<_Tp, _BinaryOperation&, __ref, _Tp&>);
      static_assert(is_invocable_r_v<_Tp, _BinaryOperation&, _Tp&, _Tp&>);
      static_assert(is_invocable_r_v<_Tp, _BinaryOperation&, __ref, __ref>);
      if constexpr (__is_random_access_iter<_InputIterator>::value)
	{
	  while ((__last - __first) >= 4)
	    {
	      _Tp __v1 = __binary_op(__first[0], __first[1]);
	      _Tp __v2 = __binary_op(__first[2], __first[3]);
	      _Tp __v3 = __binary_op(__v1, __v2);
	      __init = __binary_op(__init, __v3);
	      __first += 4;
	    }
	}
      for (; __first != __last; ++__first)
	__init = __binary_op(__init, *__first);
      return __init;
    }

 /**
   *  @brief  Calculate reduction of values in a range.
   *
   *  @param  __first  Start of range.
   *  @param  __last  End of range.
   *  @param  __init  Starting value to add other values to.
   *  @return  The final sum.
   *
   *  Reduce the values in the range `[first,last)` using addition.
   *  Equivalent to calling `std::reduce(first, last, init, std::plus<>())`.
   */
  template<typename _InputIterator, typename _Tp>
    _GLIBCXX20_CONSTEXPR
    inline _Tp
    reduce(_InputIterator __first, _InputIterator __last, _Tp __init)
    { return std::reduce(__first, __last, std::move(__init), plus<>()); }

  /**
   *  @brief  Calculate reduction of values in a range.
   *
   *  @param  __first  Start of range.
   *  @param  __last  End of range.
   *  @return  The final sum.
   *
   *  Reduce the values in the range `[first,last)` using addition, with
   *  an initial value of `T{}`, where `T` is the iterator's value type.
   *  Equivalent to calling `std::reduce(first, last, T{}, std::plus<>())`.
   */
  template<typename _InputIterator>
    _GLIBCXX20_CONSTEXPR
    inline typename iterator_traits<_InputIterator>::value_type
    reduce(_InputIterator __first, _InputIterator __last)
    {
      using value_type = typename iterator_traits<_InputIterator>::value_type;
      return std::reduce(__first, __last, value_type{}, plus<>());
    }

  /**
   *  @brief  Combine elements from two ranges and reduce
   *
   *  @param  __first1  Start of first range.
   *  @param  __last1  End of first range.
   *  @param  __first2  Start of second range.
   *  @param  __init  Starting value to add other values to.
   *  @param  __binary_op1 The function used to perform reduction.
   *  @param  __binary_op2 The function used to combine values from the ranges.
   *  @return  The final sum.
   *
   *  Call `binary_op2(first1[n],first2[n])` for each `n` in `[0,last1-first1)`
   *  and then use `binary_op1` to reduce the values returned by `binary_op2`
   *  to a single value of type `T`.
   *
   *  The range beginning at `first2` must contain at least `last1-first1`
   *  elements.
   */
  template<typename _InputIterator1, typename _InputIterator2, typename _Tp,
	   typename _BinaryOperation1, typename _BinaryOperation2>
    _GLIBCXX20_CONSTEXPR
    _Tp
    transform_reduce(_InputIterator1 __first1, _InputIterator1 __last1,
		     _InputIterator2 __first2, _Tp __init,
		     _BinaryOperation1 __binary_op1,
		     _BinaryOperation2 __binary_op2)
    {
      if constexpr (__and_v<__is_random_access_iter<_InputIterator1>,
			    __is_random_access_iter<_InputIterator2>>)
	{
	  while ((__last1 - __first1) >= 4)
	    {
	      _Tp __v1 = __binary_op1(__binary_op2(__first1[0], __first2[0]),
				      __binary_op2(__first1[1], __first2[1]));
	      _Tp __v2 = __binary_op1(__binary_op2(__first1[2], __first2[2]),
				      __binary_op2(__first1[3], __first2[3]));
	      _Tp __v3 = __binary_op1(__v1, __v2);
	      __init = __binary_op1(__init, __v3);
	      __first1 += 4;
	      __first2 += 4;
	    }
	}
      for (; __first1 != __last1; ++__first1, (void) ++__first2)
	__init = __binary_op1(__init, __binary_op2(*__first1, *__first2));
      return __init;
    }

  /**
   *  @brief  Combine elements from two ranges and reduce
   *
   *  @param  __first1  Start of first range.
   *  @param  __last1  End of first range.
   *  @param  __first2  Start of second range.
   *  @param  __init  Starting value to add other values to.
   *  @return  The final sum.
   *
   *  Call `first1[n]*first2[n]` for each `n` in `[0,last1-first1)` and then
   *  use addition to sum those products to a single value of type `T`.
   *
   *  The range beginning at `first2` must contain at least `last1-first1`
   *  elements.
   */
  template<typename _InputIterator1, typename _InputIterator2, typename _Tp>
    _GLIBCXX20_CONSTEXPR
    inline _Tp
    transform_reduce(_InputIterator1 __first1, _InputIterator1 __last1,
		     _InputIterator2 __first2, _Tp __init)
    {
      return std::transform_reduce(__first1, __last1, __first2,
				   std::move(__init),
				   plus<>(), multiplies<>());
    }

  /**
   *  @brief  Transform the elements of a range and reduce
   *
   *  @param  __first  Start of range.
   *  @param  __last  End of range.
   *  @param  __init  Starting value to add other values to.
   *  @param  __binary_op The function used to perform reduction.
   *  @param  __unary_op The function used to transform values from the range.
   *  @return  The final sum.
   *
   *  Call `unary_op(first[n])` for each `n` in `[0,last-first)` and then
   *  use `binary_op` to reduce the values returned by `unary_op`
   *  to a single value of type `T`.
   */
  template<typename _InputIterator, typename _Tp,
	   typename _BinaryOperation, typename _UnaryOperation>
    _GLIBCXX20_CONSTEXPR
    _Tp
    transform_reduce(_InputIterator __first, _InputIterator __last, _Tp __init,
		     _BinaryOperation __binary_op, _UnaryOperation __unary_op)
    {
      if constexpr (__is_random_access_iter<_InputIterator>::value)
	{
	  while ((__last - __first) >= 4)
	    {
	      _Tp __v1 = __binary_op(__unary_op(__first[0]),
				     __unary_op(__first[1]));
	      _Tp __v2 = __binary_op(__unary_op(__first[2]),
				     __unary_op(__first[3]));
	      _Tp __v3 = __binary_op(__v1, __v2);
	      __init = __binary_op(__init, __v3);
	      __first += 4;
	    }
	}
      for (; __first != __last; ++__first)
	__init = __binary_op(__init, __unary_op(*__first));
      return __init;
    }

  /** @brief Output the cumulative sum of one range to a second range
   *
   *  @param __first  Start of input range.
   *  @param __last   End of input range.
   *  @param __result Start of output range.
   *  @param __init   Initial value.
   *  @param __binary_op Function to perform summation.
   *  @return The end of the output range.
   *
   *  Write the cumulative sum (aka prefix sum, aka scan) of the input range
   *  to the output range. Each element of the output range contains the
   *  running total of all earlier elements (and the initial value),
   *  using `binary_op` for summation.
   *
   *  This function generates an "exclusive" scan, meaning the Nth element
   *  of the output range is the sum of the first N-1 input elements,
   *  so the Nth input element is not included.
   */
  template<typename _InputIterator, typename _OutputIterator, typename _Tp,
	   typename _BinaryOperation>
    _GLIBCXX20_CONSTEXPR
    _OutputIterator
    exclusive_scan(_InputIterator __first, _InputIterator __last,
		   _OutputIterator __result, _Tp __init,
		   _BinaryOperation __binary_op)
    {
      while (__first != __last)
	{
	  auto __v = __init;
	  __init = __binary_op(__init, *__first);
	  ++__first;
	  *__result++ = std::move(__v);
	}
      return __result;
    }

  /** @brief Output the cumulative sum of one range to a second range
   *
   *  @param __first  Start of input range.
   *  @param __last   End of input range.
   *  @param __result Start of output range.
   *  @param __init   Initial value.
   *  @return The end of the output range.
   *
   *  Write the cumulative sum (aka prefix sum, aka scan) of the input range
   *  to the output range. Each element of the output range contains the
   *  running total of all earlier elements (and the initial value),
   *  using `std::plus<>` for summation.
   *
   *  This function generates an "exclusive" scan, meaning the Nth element
   *  of the output range is the sum of the first N-1 input elements,
   *  so the Nth input element is not included.
   */
  template<typename _InputIterator, typename _OutputIterator, typename _Tp>
    _GLIBCXX20_CONSTEXPR
    inline _OutputIterator
    exclusive_scan(_InputIterator __first, _InputIterator __last,
		   _OutputIterator __result, _Tp __init)
    {
      return std::exclusive_scan(__first, __last, __result, std::move(__init),
				 plus<>());
    }

  /** @brief Output the cumulative sum of one range to a second range
   *
   *  @param __first  Start of input range.
   *  @param __last   End of input range.
   *  @param __result Start of output range.
   *  @param __binary_op Function to perform summation.
   *  @param __init   Initial value.
   *  @return The end of the output range.
   *
   *  Write the cumulative sum (aka prefix sum, aka scan) of the input range
   *  to the output range. Each element of the output range contains the
   *  running total of all earlier elements (and the initial value),
   *  using `binary_op` for summation.
   *
   *  This function generates an "inclusive" scan, meaning the Nth element
   *  of the output range is the sum of the first N input elements,
   *  so the Nth input element is included.
   */
  template<typename _InputIterator, typename _OutputIterator,
	   typename _BinaryOperation, typename _Tp>
    _GLIBCXX20_CONSTEXPR
    _OutputIterator
    inclusive_scan(_InputIterator __first, _InputIterator __last,
		   _OutputIterator __result, _BinaryOperation __binary_op,
		   _Tp __init)
    {
      for (; __first != __last; ++__first)
	*__result++ = __init = __binary_op(__init, *__first);
      return __result;
    }

  /** @brief Output the cumulative sum of one range to a second range
   *
   *  @param __first  Start of input range.
   *  @param __last   End of input range.
   *  @param __result Start of output range.
   *  @param __binary_op Function to perform summation.
   *  @return The end of the output range.
   *
   *  Write the cumulative sum (aka prefix sum, aka scan) of the input range
   *  to the output range. Each element of the output range contains the
   *  running total of all earlier elements, using `binary_op` for summation.
   *
   *  This function generates an "inclusive" scan, meaning the Nth element
   *  of the output range is the sum of the first N input elements,
   *  so the Nth input element is included.
   */
  template<typename _InputIterator, typename _OutputIterator,
	   typename _BinaryOperation>
    _GLIBCXX20_CONSTEXPR
    _OutputIterator
    inclusive_scan(_InputIterator __first, _InputIterator __last,
		   _OutputIterator __result, _BinaryOperation __binary_op)
    {
      if (__first != __last)
	{
	  auto __init = *__first;
	  *__result++ = __init;
	  ++__first;
	  if (__first != __last)
	    __result = std::inclusive_scan(__first, __last, __result,
					   __binary_op, std::move(__init));
	}
      return __result;
    }

  /** @brief Output the cumulative sum of one range to a second range
   *
   *  @param __first  Start of input range.
   *  @param __last   End of input range.
   *  @param __result Start of output range.
   *  @return The end of the output range.
   *
   *  Write the cumulative sum (aka prefix sum, aka scan) of the input range
   *  to the output range. Each element of the output range contains the
   *  running total of all earlier elements, using `std::plus<>` for summation.
   *
   *  This function generates an "inclusive" scan, meaning the Nth element
   *  of the output range is the sum of the first N input elements,
   *  so the Nth input element is included.
   */
  template<typename _InputIterator, typename _OutputIterator>
    _GLIBCXX20_CONSTEXPR
    inline _OutputIterator
    inclusive_scan(_InputIterator __first, _InputIterator __last,
		   _OutputIterator __result)
    { return std::inclusive_scan(__first, __last, __result, plus<>()); }

  /** @brief Output the cumulative sum of one range to a second range
   *
   *  @param __first  Start of input range.
   *  @param __last   End of input range.
   *  @param __result Start of output range.
   *  @param __init   Initial value.
   *  @param __binary_op Function to perform summation.
   *  @param __unary_op Function to transform elements of the input range.
   *  @return The end of the output range.
   *
   *  Write the cumulative sum (aka prefix sum, aka scan) of the input range
   *  to the output range. Each element of the output range contains the
   *  running total of all earlier elements (and the initial value),
   *  using `__unary_op` to transform the input elements
   *  and using `__binary_op` for summation.
   *
   *  This function generates an "exclusive" scan, meaning the Nth element
   *  of the output range is the sum of the first N-1 input elements,
   *  so the Nth input element is not included.
   */
  template<typename _InputIterator, typename _OutputIterator, typename _Tp,
	   typename _BinaryOperation, typename _UnaryOperation>
    _GLIBCXX20_CONSTEXPR
    _OutputIterator
    transform_exclusive_scan(_InputIterator __first, _InputIterator __last,
			     _OutputIterator __result, _Tp __init,
			     _BinaryOperation __binary_op,
			     _UnaryOperation __unary_op)
    {
      while (__first != __last)
	{
	  auto __v = __init;
	  __init = __binary_op(__init, __unary_op(*__first));
	  ++__first;
	  *__result++ = std::move(__v);
	}
      return __result;
    }

  /** @brief Output the cumulative sum of one range to a second range
   *
   *  @param __first  Start of input range.
   *  @param __last   End of input range.
   *  @param __result Start of output range.
   *  @param __binary_op Function to perform summation.
   *  @param __unary_op Function to transform elements of the input range.
   *  @param __init   Initial value.
   *  @return The end of the output range.
   *
   *  Write the cumulative sum (aka prefix sum, aka scan) of the input range
   *  to the output range. Each element of the output range contains the
   *  running total of all earlier elements (and the initial value),
   *  using `__unary_op` to transform the input elements
   *  and using `__binary_op` for summation.
   *
   *  This function generates an "inclusive" scan, meaning the Nth element
   *  of the output range is the sum of the first N input elements,
   *  so the Nth input element is included.
   */
  template<typename _InputIterator, typename _OutputIterator,
	   typename _BinaryOperation, typename _UnaryOperation, typename _Tp>
    _GLIBCXX20_CONSTEXPR
    _OutputIterator
    transform_inclusive_scan(_InputIterator __first, _InputIterator __last,
			     _OutputIterator __result,
			     _BinaryOperation __binary_op,
			     _UnaryOperation __unary_op,
			     _Tp __init)
    {
      for (; __first != __last; ++__first)
	*__result++ = __init = __binary_op(__init, __unary_op(*__first));
      return __result;
    }

  /** @brief Output the cumulative sum of one range to a second range
   *
   *  @param __first  Start of input range.
   *  @param __last   End of input range.
   *  @param __result Start of output range.
   *  @param __binary_op Function to perform summation.
   *  @param __unary_op Function to transform elements of the input range.
   *  @return The end of the output range.
   *
   *  Write the cumulative sum (aka prefix sum, aka scan) of the input range
   *  to the output range. Each element of the output range contains the
   *  running total of all earlier elements,
   *  using `__unary_op` to transform the input elements
   *  and using `__binary_op` for summation.
   *
   *  This function generates an "inclusive" scan, meaning the Nth element
   *  of the output range is the sum of the first N input elements,
   *  so the Nth input element is included.
   */
  template<typename _InputIterator, typename _OutputIterator,
	  typename _BinaryOperation, typename _UnaryOperation>
    _GLIBCXX20_CONSTEXPR
    _OutputIterator
    transform_inclusive_scan(_InputIterator __first, _InputIterator __last,
			     _OutputIterator __result,
			     _BinaryOperation __binary_op,
			     _UnaryOperation __unary_op)
    {
      if (__first != __last)
	{
	  auto __init = __unary_op(*__first);
	  *__result++ = __init;
	  ++__first;
	  if (__first != __last)
	    __result = std::transform_inclusive_scan(__first, __last, __result,
						     __binary_op, __unary_op,
						     std::move(__init));
	}
      return __result;
    }

  /// @} group numeric_ops
#endif // C++17

_GLIBCXX_END_NAMESPACE_VERSION
} // namespace std

#if __cplusplus >= 201703L
// Parallel STL algorithms
# if _PSTL_EXECUTION_POLICIES_DEFINED
// If <execution> has already been included, pull in implementations
#  include <pstl/glue_numeric_impl.h>
# else
// Otherwise just pull in forward declarations
#  include <pstl/glue_numeric_defs.h>
#  define _PSTL_NUMERIC_FORWARD_DECLARED 1
# endif

// Feature test macro for parallel algorithms
# define __cpp_lib_parallel_algorithm 201603L
#endif // C++17

#endif /* _GLIBCXX_NUMERIC */