@nix@store@np14qqgvvnyna3vv640hmhi21flymiia-gcc-12.2.0@include@c++@12.2.0@bits@hashtable.h 87.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700
// hashtable.h header -*- C++ -*-

// Copyright (C) 2007-2022 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.

// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.

// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
// <http://www.gnu.org/licenses/>.

/** @file bits/hashtable.h
 *  This is an internal header file, included by other library headers.
 *  Do not attempt to use it directly. @headername{unordered_map, unordered_set}
 */

#ifndef _HASHTABLE_H
#define _HASHTABLE_H 1

#pragma GCC system_header

#include <bits/hashtable_policy.h>
#include <bits/enable_special_members.h>
#if __cplusplus > 201402L
# include <bits/node_handle.h>
#endif
#include <bits/functional_hash.h>
#include <bits/stl_function.h> // equal_to, _Identity, _Select1st

namespace std _GLIBCXX_VISIBILITY(default)
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
/// @cond undocumented

  template<typename _Tp, typename _Hash>
    using __cache_default
      =  __not_<__and_<// Do not cache for fast hasher.
		       __is_fast_hash<_Hash>,
		       // Mandatory to have erase not throwing.
		       __is_nothrow_invocable<const _Hash&, const _Tp&>>>;

  // Helper to conditionally delete the default constructor.
  // The _Hash_node_base type is used to distinguish this specialization
  // from any other potentially-overlapping subobjects of the hashtable.
  template<typename _Equal, typename _Hash, typename _Allocator>
    using _Hashtable_enable_default_ctor
      = _Enable_default_constructor<__and_<is_default_constructible<_Equal>,
				       is_default_constructible<_Hash>,
				       is_default_constructible<_Allocator>>{},
				    __detail::_Hash_node_base>;

  /**
   *  Primary class template _Hashtable.
   *
   *  @ingroup hashtable-detail
   *
   *  @tparam _Value  CopyConstructible type.
   *
   *  @tparam _Key    CopyConstructible type.
   *
   *  @tparam _Alloc  An allocator type
   *  ([lib.allocator.requirements]) whose _Alloc::value_type is
   *  _Value.  As a conforming extension, we allow for
   *  _Alloc::value_type != _Value.
   *
   *  @tparam _ExtractKey  Function object that takes an object of type
   *  _Value and returns a value of type _Key.
   *
   *  @tparam _Equal  Function object that takes two objects of type k
   *  and returns a bool-like value that is true if the two objects
   *  are considered equal.
   *
   *  @tparam _Hash  The hash function. A unary function object with
   *  argument type _Key and result type size_t. Return values should
   *  be distributed over the entire range [0, numeric_limits<size_t>:::max()].
   *
   *  @tparam _RangeHash  The range-hashing function (in the terminology of
   *  Tavori and Dreizin).  A binary function object whose argument
   *  types and result type are all size_t.  Given arguments r and N,
   *  the return value is in the range [0, N).
   *
   *  @tparam _Unused  Not used.
   *
   *  @tparam _RehashPolicy  Policy class with three members, all of
   *  which govern the bucket count. _M_next_bkt(n) returns a bucket
   *  count no smaller than n.  _M_bkt_for_elements(n) returns a
   *  bucket count appropriate for an element count of n.
   *  _M_need_rehash(n_bkt, n_elt, n_ins) determines whether, if the
   *  current bucket count is n_bkt and the current element count is
   *  n_elt, we need to increase the bucket count for n_ins insertions.
   *  If so, returns make_pair(true, n), where n is the new bucket count. If
   *  not, returns make_pair(false, <anything>)
   *
   *  @tparam _Traits  Compile-time class with three boolean
   *  std::integral_constant members:  __cache_hash_code, __constant_iterators,
   *   __unique_keys.
   *
   *  Each _Hashtable data structure has:
   *
   *  - _Bucket[]       _M_buckets
   *  - _Hash_node_base _M_before_begin
   *  - size_type       _M_bucket_count
   *  - size_type       _M_element_count
   *
   *  with _Bucket being _Hash_node_base* and _Hash_node containing:
   *
   *  - _Hash_node*   _M_next
   *  - Tp            _M_value
   *  - size_t        _M_hash_code if cache_hash_code is true
   *
   *  In terms of Standard containers the hashtable is like the aggregation of:
   *
   *  - std::forward_list<_Node> containing the elements
   *  - std::vector<std::forward_list<_Node>::iterator> representing the buckets
   *
   *  The non-empty buckets contain the node before the first node in the
   *  bucket. This design makes it possible to implement something like a
   *  std::forward_list::insert_after on container insertion and
   *  std::forward_list::erase_after on container erase
   *  calls. _M_before_begin is equivalent to
   *  std::forward_list::before_begin. Empty buckets contain
   *  nullptr.  Note that one of the non-empty buckets contains
   *  &_M_before_begin which is not a dereferenceable node so the
   *  node pointer in a bucket shall never be dereferenced, only its
   *  next node can be.
   *
   *  Walking through a bucket's nodes requires a check on the hash code to
   *  see if each node is still in the bucket. Such a design assumes a
   *  quite efficient hash functor and is one of the reasons it is
   *  highly advisable to set __cache_hash_code to true.
   *
   *  The container iterators are simply built from nodes. This way
   *  incrementing the iterator is perfectly efficient independent of
   *  how many empty buckets there are in the container.
   *
   *  On insert we compute the element's hash code and use it to find the
   *  bucket index. If the element must be inserted in an empty bucket
   *  we add it at the beginning of the singly linked list and make the
   *  bucket point to _M_before_begin. The bucket that used to point to
   *  _M_before_begin, if any, is updated to point to its new before
   *  begin node.
   *
   *  On erase, the simple iterator design requires using the hash
   *  functor to get the index of the bucket to update. For this
   *  reason, when __cache_hash_code is set to false the hash functor must
   *  not throw and this is enforced by a static assertion.
   *
   *  Functionality is implemented by decomposition into base classes,
   *  where the derived _Hashtable class is used in _Map_base,
   *  _Insert, _Rehash_base, and _Equality base classes to access the
   *  "this" pointer. _Hashtable_base is used in the base classes as a
   *  non-recursive, fully-completed-type so that detailed nested type
   *  information, such as iterator type and node type, can be
   *  used. This is similar to the "Curiously Recurring Template
   *  Pattern" (CRTP) technique, but uses a reconstructed, not
   *  explicitly passed, template pattern.
   *
   *  Base class templates are: 
   *    - __detail::_Hashtable_base
   *    - __detail::_Map_base
   *    - __detail::_Insert
   *    - __detail::_Rehash_base
   *    - __detail::_Equality
   */
  template<typename _Key, typename _Value, typename _Alloc,
	   typename _ExtractKey, typename _Equal,
	   typename _Hash, typename _RangeHash, typename _Unused,
	   typename _RehashPolicy, typename _Traits>
    class _Hashtable
    : public __detail::_Hashtable_base<_Key, _Value, _ExtractKey, _Equal,
				       _Hash, _RangeHash, _Unused, _Traits>,
      public __detail::_Map_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
				 _Hash, _RangeHash, _Unused,
				 _RehashPolicy, _Traits>,
      public __detail::_Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal,
			       _Hash, _RangeHash, _Unused,
			       _RehashPolicy, _Traits>,
      public __detail::_Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
				    _Hash, _RangeHash, _Unused,
				    _RehashPolicy, _Traits>,
      public __detail::_Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
				 _Hash, _RangeHash, _Unused,
				 _RehashPolicy, _Traits>,
      private __detail::_Hashtable_alloc<
	__alloc_rebind<_Alloc,
		       __detail::_Hash_node<_Value,
					    _Traits::__hash_cached::value>>>,
      private _Hashtable_enable_default_ctor<_Equal, _Hash, _Alloc>
    {
      static_assert(is_same<typename remove_cv<_Value>::type, _Value>::value,
	  "unordered container must have a non-const, non-volatile value_type");
#if __cplusplus > 201703L || defined __STRICT_ANSI__
      static_assert(is_same<typename _Alloc::value_type, _Value>{},
	  "unordered container must have the same value_type as its allocator");
#endif

      using __traits_type = _Traits;
      using __hash_cached = typename __traits_type::__hash_cached;
      using __constant_iterators = typename __traits_type::__constant_iterators;
      using __node_type = __detail::_Hash_node<_Value, __hash_cached::value>;
      using __node_alloc_type = __alloc_rebind<_Alloc, __node_type>;

      using __hashtable_alloc = __detail::_Hashtable_alloc<__node_alloc_type>;

      using __node_value_type =
	__detail::_Hash_node_value<_Value, __hash_cached::value>;
      using __node_ptr = typename __hashtable_alloc::__node_ptr;
      using __value_alloc_traits =
	typename __hashtable_alloc::__value_alloc_traits;
      using __node_alloc_traits =
	typename __hashtable_alloc::__node_alloc_traits;
      using __node_base = typename __hashtable_alloc::__node_base;
      using __node_base_ptr = typename __hashtable_alloc::__node_base_ptr;
      using __buckets_ptr = typename __hashtable_alloc::__buckets_ptr;

      using __insert_base = __detail::_Insert<_Key, _Value, _Alloc, _ExtractKey,
					      _Equal, _Hash,
					      _RangeHash, _Unused,
					      _RehashPolicy, _Traits>;
      using __enable_default_ctor
	= _Hashtable_enable_default_ctor<_Equal, _Hash, _Alloc>;

    public:
      typedef _Key						key_type;
      typedef _Value						value_type;
      typedef _Alloc						allocator_type;
      typedef _Equal						key_equal;

      // mapped_type, if present, comes from _Map_base.
      // hasher, if present, comes from _Hash_code_base/_Hashtable_base.
      typedef typename __value_alloc_traits::pointer		pointer;
      typedef typename __value_alloc_traits::const_pointer	const_pointer;
      typedef value_type&					reference;
      typedef const value_type&					const_reference;

      using iterator = typename __insert_base::iterator;

      using const_iterator = typename __insert_base::const_iterator;

      using local_iterator = __detail::_Local_iterator<key_type, _Value,
			_ExtractKey, _Hash, _RangeHash, _Unused,
					     __constant_iterators::value,
					     __hash_cached::value>;

      using const_local_iterator = __detail::_Local_const_iterator<
			key_type, _Value,
			_ExtractKey, _Hash, _RangeHash, _Unused,
			__constant_iterators::value, __hash_cached::value>;

    private:
      using __rehash_type = _RehashPolicy;
      using __rehash_state = typename __rehash_type::_State;

      using __unique_keys = typename __traits_type::__unique_keys;

      using __hashtable_base = __detail::
	_Hashtable_base<_Key, _Value, _ExtractKey,
			_Equal, _Hash, _RangeHash, _Unused, _Traits>;

      using __hash_code_base =  typename __hashtable_base::__hash_code_base;
      using __hash_code =  typename __hashtable_base::__hash_code;
      using __ireturn_type = typename __insert_base::__ireturn_type;

      using __map_base = __detail::_Map_base<_Key, _Value, _Alloc, _ExtractKey,
					     _Equal, _Hash, _RangeHash, _Unused,
					     _RehashPolicy, _Traits>;

      using __rehash_base = __detail::_Rehash_base<_Key, _Value, _Alloc,
						   _ExtractKey, _Equal,
						   _Hash, _RangeHash, _Unused,
						   _RehashPolicy, _Traits>;

      using __eq_base = __detail::_Equality<_Key, _Value, _Alloc, _ExtractKey,
					    _Equal, _Hash, _RangeHash, _Unused,
					    _RehashPolicy, _Traits>;

      using __reuse_or_alloc_node_gen_t =
	__detail::_ReuseOrAllocNode<__node_alloc_type>;
      using __alloc_node_gen_t =
	__detail::_AllocNode<__node_alloc_type>;
      using __node_builder_t =
	__detail::_NodeBuilder<_ExtractKey>;

      // Simple RAII type for managing a node containing an element
      struct _Scoped_node
      {
	// Take ownership of a node with a constructed element.
	_Scoped_node(__node_ptr __n, __hashtable_alloc* __h)
	: _M_h(__h), _M_node(__n) { }

	// Allocate a node and construct an element within it.
	template<typename... _Args>
	  _Scoped_node(__hashtable_alloc* __h, _Args&&... __args)
	  : _M_h(__h),
	    _M_node(__h->_M_allocate_node(std::forward<_Args>(__args)...))
	  { }

	// Destroy element and deallocate node.
	~_Scoped_node() { if (_M_node) _M_h->_M_deallocate_node(_M_node); };

	_Scoped_node(const _Scoped_node&) = delete;
	_Scoped_node& operator=(const _Scoped_node&) = delete;

	__hashtable_alloc* _M_h;
	__node_ptr _M_node;
      };

      template<typename _Ht>
	static constexpr
	__conditional_t<std::is_lvalue_reference<_Ht>::value,
			const value_type&, value_type&&>
	__fwd_value_for(value_type& __val) noexcept
	{ return std::move(__val); }

      // Compile-time diagnostics.

      // _Hash_code_base has everything protected, so use this derived type to
      // access it.
      struct __hash_code_base_access : __hash_code_base
      { using __hash_code_base::_M_bucket_index; };

      // To get bucket index we need _RangeHash not to throw.
      static_assert(is_nothrow_default_constructible<_RangeHash>::value,
		    "Functor used to map hash code to bucket index"
		    " must be nothrow default constructible");
      static_assert(noexcept(
	std::declval<const _RangeHash&>()((std::size_t)0, (std::size_t)0)),
		    "Functor used to map hash code to bucket index must be"
		    " noexcept");

      // To compute bucket index we also need _ExtratKey not to throw.
      static_assert(is_nothrow_default_constructible<_ExtractKey>::value,
		    "_ExtractKey must be nothrow default constructible");
      static_assert(noexcept(
	std::declval<const _ExtractKey&>()(std::declval<_Value>())),
		    "_ExtractKey functor must be noexcept invocable");

      template<typename _Keya, typename _Valuea, typename _Alloca,
	       typename _ExtractKeya, typename _Equala,
	       typename _Hasha, typename _RangeHasha, typename _Unuseda,
	       typename _RehashPolicya, typename _Traitsa,
	       bool _Unique_keysa>
	friend struct __detail::_Map_base;

      template<typename _Keya, typename _Valuea, typename _Alloca,
	       typename _ExtractKeya, typename _Equala,
	       typename _Hasha, typename _RangeHasha, typename _Unuseda,
	       typename _RehashPolicya, typename _Traitsa>
	friend struct __detail::_Insert_base;

      template<typename _Keya, typename _Valuea, typename _Alloca,
	       typename _ExtractKeya, typename _Equala,
	       typename _Hasha, typename _RangeHasha, typename _Unuseda,
	       typename _RehashPolicya, typename _Traitsa,
	       bool _Constant_iteratorsa>
	friend struct __detail::_Insert;

      template<typename _Keya, typename _Valuea, typename _Alloca,
	       typename _ExtractKeya, typename _Equala,
	       typename _Hasha, typename _RangeHasha, typename _Unuseda,
	       typename _RehashPolicya, typename _Traitsa,
	       bool _Unique_keysa>
	friend struct __detail::_Equality;

    public:
      using size_type = typename __hashtable_base::size_type;
      using difference_type = typename __hashtable_base::difference_type;

#if __cplusplus > 201402L
      using node_type = _Node_handle<_Key, _Value, __node_alloc_type>;
      using insert_return_type = _Node_insert_return<iterator, node_type>;
#endif

    private:
      __buckets_ptr		_M_buckets		= &_M_single_bucket;
      size_type			_M_bucket_count		= 1;
      __node_base		_M_before_begin;
      size_type			_M_element_count	= 0;
      _RehashPolicy		_M_rehash_policy;

      // A single bucket used when only need for 1 bucket. Especially
      // interesting in move semantic to leave hashtable with only 1 bucket
      // which is not allocated so that we can have those operations noexcept
      // qualified.
      // Note that we can't leave hashtable with 0 bucket without adding
      // numerous checks in the code to avoid 0 modulus.
      __node_base_ptr		_M_single_bucket	= nullptr;

      void
      _M_update_bbegin()
      {
	if (_M_begin())
	  _M_buckets[_M_bucket_index(*_M_begin())] = &_M_before_begin;
      }

      void
      _M_update_bbegin(__node_ptr __n)
      {
	_M_before_begin._M_nxt = __n;
	_M_update_bbegin();
      }

      bool
      _M_uses_single_bucket(__buckets_ptr __bkts) const
      { return __builtin_expect(__bkts == &_M_single_bucket, false); }

      bool
      _M_uses_single_bucket() const
      { return _M_uses_single_bucket(_M_buckets); }

      static constexpr size_t
      __small_size_threshold() noexcept
      {
	return
	  __detail::_Hashtable_hash_traits<_Hash>::__small_size_threshold();
      }

      __hashtable_alloc&
      _M_base_alloc() { return *this; }

      __buckets_ptr
      _M_allocate_buckets(size_type __bkt_count)
      {
	if (__builtin_expect(__bkt_count == 1, false))
	  {
	    _M_single_bucket = nullptr;
	    return &_M_single_bucket;
	  }

	return __hashtable_alloc::_M_allocate_buckets(__bkt_count);
      }

      void
      _M_deallocate_buckets(__buckets_ptr __bkts, size_type __bkt_count)
      {
	if (_M_uses_single_bucket(__bkts))
	  return;

	__hashtable_alloc::_M_deallocate_buckets(__bkts, __bkt_count);
      }

      void
      _M_deallocate_buckets()
      { _M_deallocate_buckets(_M_buckets, _M_bucket_count); }

      // Gets bucket begin, deals with the fact that non-empty buckets contain
      // their before begin node.
      __node_ptr
      _M_bucket_begin(size_type __bkt) const;

      __node_ptr
      _M_begin() const
      { return static_cast<__node_ptr>(_M_before_begin._M_nxt); }

      // Assign *this using another _Hashtable instance. Whether elements
      // are copied or moved depends on the _Ht reference.
      template<typename _Ht>
	void
	_M_assign_elements(_Ht&&);

      template<typename _Ht, typename _NodeGenerator>
	void
	_M_assign(_Ht&&, const _NodeGenerator&);

      void
      _M_move_assign(_Hashtable&&, true_type);

      void
      _M_move_assign(_Hashtable&&, false_type);

      void
      _M_reset() noexcept;

      _Hashtable(const _Hash& __h, const _Equal& __eq,
		 const allocator_type& __a)
      : __hashtable_base(__h, __eq),
	__hashtable_alloc(__node_alloc_type(__a)),
	__enable_default_ctor(_Enable_default_constructor_tag{})
      { }

      template<bool _No_realloc = true>
	static constexpr bool
	_S_nothrow_move()
	{
#if __cplusplus <= 201402L
	  return __and_<__bool_constant<_No_realloc>,
			is_nothrow_copy_constructible<_Hash>,
			is_nothrow_copy_constructible<_Equal>>::value;
#else
	  if constexpr (_No_realloc)
	    if constexpr (is_nothrow_copy_constructible<_Hash>())
	      return is_nothrow_copy_constructible<_Equal>();
	  return false;
#endif
	}

      _Hashtable(_Hashtable&& __ht, __node_alloc_type&& __a,
		 true_type /* alloc always equal */)
	noexcept(_S_nothrow_move());

      _Hashtable(_Hashtable&&, __node_alloc_type&&,
		 false_type /* alloc always equal */);

      template<typename _InputIterator>
	_Hashtable(_InputIterator __first, _InputIterator __last,
		   size_type __bkt_count_hint,
		   const _Hash&, const _Equal&, const allocator_type&,
		   true_type __uks);

      template<typename _InputIterator>
	_Hashtable(_InputIterator __first, _InputIterator __last,
		   size_type __bkt_count_hint,
		   const _Hash&, const _Equal&, const allocator_type&,
		   false_type __uks);

    public:
      // Constructor, destructor, assignment, swap
      _Hashtable() = default;

      _Hashtable(const _Hashtable&);

      _Hashtable(const _Hashtable&, const allocator_type&);

      explicit
      _Hashtable(size_type __bkt_count_hint,
		 const _Hash& __hf = _Hash(),
		 const key_equal& __eql = key_equal(),
		 const allocator_type& __a = allocator_type());

      // Use delegating constructors.
      _Hashtable(_Hashtable&& __ht)
	noexcept(_S_nothrow_move())
      : _Hashtable(std::move(__ht), std::move(__ht._M_node_allocator()),
		   true_type{})
      { }

      _Hashtable(_Hashtable&& __ht, const allocator_type& __a)
	noexcept(_S_nothrow_move<__node_alloc_traits::_S_always_equal()>())
      : _Hashtable(std::move(__ht), __node_alloc_type(__a),
		   typename __node_alloc_traits::is_always_equal{})
      { }

      explicit
      _Hashtable(const allocator_type& __a)
      : __hashtable_alloc(__node_alloc_type(__a)),
	__enable_default_ctor(_Enable_default_constructor_tag{})
      { }

      template<typename _InputIterator>
	_Hashtable(_InputIterator __f, _InputIterator __l,
		   size_type __bkt_count_hint = 0,
		   const _Hash& __hf = _Hash(),
		   const key_equal& __eql = key_equal(),
		   const allocator_type& __a = allocator_type())
	: _Hashtable(__f, __l, __bkt_count_hint, __hf, __eql, __a,
		     __unique_keys{})
	{ }

      _Hashtable(initializer_list<value_type> __l,
		 size_type __bkt_count_hint = 0,
		 const _Hash& __hf = _Hash(),
		 const key_equal& __eql = key_equal(),
		 const allocator_type& __a = allocator_type())
      : _Hashtable(__l.begin(), __l.end(), __bkt_count_hint,
		   __hf, __eql, __a, __unique_keys{})
      { }

      _Hashtable&
      operator=(const _Hashtable& __ht);

      _Hashtable&
      operator=(_Hashtable&& __ht)
      noexcept(__node_alloc_traits::_S_nothrow_move()
	       && is_nothrow_move_assignable<_Hash>::value
	       && is_nothrow_move_assignable<_Equal>::value)
      {
	constexpr bool __move_storage =
	  __node_alloc_traits::_S_propagate_on_move_assign()
	  || __node_alloc_traits::_S_always_equal();
	_M_move_assign(std::move(__ht), __bool_constant<__move_storage>());
	return *this;
      }

      _Hashtable&
      operator=(initializer_list<value_type> __l)
      {
	__reuse_or_alloc_node_gen_t __roan(_M_begin(), *this);
	_M_before_begin._M_nxt = nullptr;
	clear();

	// We consider that all elements of __l are going to be inserted.
	auto __l_bkt_count = _M_rehash_policy._M_bkt_for_elements(__l.size());

	// Do not shrink to keep potential user reservation.
	if (_M_bucket_count < __l_bkt_count)
	  rehash(__l_bkt_count);

	this->_M_insert_range(__l.begin(), __l.end(), __roan, __unique_keys{});
	return *this;
      }

      ~_Hashtable() noexcept;

      void
      swap(_Hashtable&)
      noexcept(__and_<__is_nothrow_swappable<_Hash>,
		      __is_nothrow_swappable<_Equal>>::value);

      // Basic container operations
      iterator
      begin() noexcept
      { return iterator(_M_begin()); }

      const_iterator
      begin() const noexcept
      { return const_iterator(_M_begin()); }

      iterator
      end() noexcept
      { return iterator(nullptr); }

      const_iterator
      end() const noexcept
      { return const_iterator(nullptr); }

      const_iterator
      cbegin() const noexcept
      { return const_iterator(_M_begin()); }

      const_iterator
      cend() const noexcept
      { return const_iterator(nullptr); }

      size_type
      size() const noexcept
      { return _M_element_count; }

      _GLIBCXX_NODISCARD bool
      empty() const noexcept
      { return size() == 0; }

      allocator_type
      get_allocator() const noexcept
      { return allocator_type(this->_M_node_allocator()); }

      size_type
      max_size() const noexcept
      { return __node_alloc_traits::max_size(this->_M_node_allocator()); }

      // Observers
      key_equal
      key_eq() const
      { return this->_M_eq(); }

      // hash_function, if present, comes from _Hash_code_base.

      // Bucket operations
      size_type
      bucket_count() const noexcept
      { return _M_bucket_count; }

      size_type
      max_bucket_count() const noexcept
      { return max_size(); }

      size_type
      bucket_size(size_type __bkt) const
      { return std::distance(begin(__bkt), end(__bkt)); }

      size_type
      bucket(const key_type& __k) const
      { return _M_bucket_index(this->_M_hash_code(__k)); }

      local_iterator
      begin(size_type __bkt)
      {
	return local_iterator(*this, _M_bucket_begin(__bkt),
			      __bkt, _M_bucket_count);
      }

      local_iterator
      end(size_type __bkt)
      { return local_iterator(*this, nullptr, __bkt, _M_bucket_count); }

      const_local_iterator
      begin(size_type __bkt) const
      {
	return const_local_iterator(*this, _M_bucket_begin(__bkt),
				    __bkt, _M_bucket_count);
      }

      const_local_iterator
      end(size_type __bkt) const
      { return const_local_iterator(*this, nullptr, __bkt, _M_bucket_count); }

      // DR 691.
      const_local_iterator
      cbegin(size_type __bkt) const
      {
	return const_local_iterator(*this, _M_bucket_begin(__bkt),
				    __bkt, _M_bucket_count);
      }

      const_local_iterator
      cend(size_type __bkt) const
      { return const_local_iterator(*this, nullptr, __bkt, _M_bucket_count); }

      float
      load_factor() const noexcept
      {
	return static_cast<float>(size()) / static_cast<float>(bucket_count());
      }

      // max_load_factor, if present, comes from _Rehash_base.

      // Generalization of max_load_factor.  Extension, not found in
      // TR1.  Only useful if _RehashPolicy is something other than
      // the default.
      const _RehashPolicy&
      __rehash_policy() const
      { return _M_rehash_policy; }

      void
      __rehash_policy(const _RehashPolicy& __pol)
      { _M_rehash_policy = __pol; }

      // Lookup.
      iterator
      find(const key_type& __k);

      const_iterator
      find(const key_type& __k) const;

      size_type
      count(const key_type& __k) const;

      std::pair<iterator, iterator>
      equal_range(const key_type& __k);

      std::pair<const_iterator, const_iterator>
      equal_range(const key_type& __k) const;

#if __cplusplus >= 202002L
#define __cpp_lib_generic_unordered_lookup 201811L

      template<typename _Kt,
	       typename = __has_is_transparent_t<_Hash, _Kt>,
	       typename = __has_is_transparent_t<_Equal, _Kt>>
	iterator
	_M_find_tr(const _Kt& __k);

      template<typename _Kt,
	       typename = __has_is_transparent_t<_Hash, _Kt>,
	       typename = __has_is_transparent_t<_Equal, _Kt>>
	const_iterator
	_M_find_tr(const _Kt& __k) const;

      template<typename _Kt,
	       typename = __has_is_transparent_t<_Hash, _Kt>,
	       typename = __has_is_transparent_t<_Equal, _Kt>>
	size_type
	_M_count_tr(const _Kt& __k) const;

      template<typename _Kt,
	       typename = __has_is_transparent_t<_Hash, _Kt>,
	       typename = __has_is_transparent_t<_Equal, _Kt>>
	pair<iterator, iterator>
	_M_equal_range_tr(const _Kt& __k);

      template<typename _Kt,
	       typename = __has_is_transparent_t<_Hash, _Kt>,
	       typename = __has_is_transparent_t<_Equal, _Kt>>
	pair<const_iterator, const_iterator>
	_M_equal_range_tr(const _Kt& __k) const;
#endif // C++20

    private:
      // Bucket index computation helpers.
      size_type
      _M_bucket_index(const __node_value_type& __n) const noexcept
      { return __hash_code_base::_M_bucket_index(__n, _M_bucket_count); }

      size_type
      _M_bucket_index(__hash_code __c) const
      { return __hash_code_base::_M_bucket_index(__c, _M_bucket_count); }

      __node_base_ptr
      _M_find_before_node(const key_type&);

      // Find and insert helper functions and types
      // Find the node before the one matching the criteria.
      __node_base_ptr
      _M_find_before_node(size_type, const key_type&, __hash_code) const;

      template<typename _Kt>
	__node_base_ptr
	_M_find_before_node_tr(size_type, const _Kt&, __hash_code) const;

      __node_ptr
      _M_find_node(size_type __bkt, const key_type& __key,
		   __hash_code __c) const
      {
	__node_base_ptr __before_n = _M_find_before_node(__bkt, __key, __c);
	if (__before_n)
	  return static_cast<__node_ptr>(__before_n->_M_nxt);
	return nullptr;
      }

      template<typename _Kt>
	__node_ptr
	_M_find_node_tr(size_type __bkt, const _Kt& __key,
			__hash_code __c) const
	{
	  auto __before_n = _M_find_before_node_tr(__bkt, __key, __c);
	  if (__before_n)
	    return static_cast<__node_ptr>(__before_n->_M_nxt);
	  return nullptr;
	}

      // Insert a node at the beginning of a bucket.
      void
      _M_insert_bucket_begin(size_type, __node_ptr);

      // Remove the bucket first node
      void
      _M_remove_bucket_begin(size_type __bkt, __node_ptr __next_n,
			     size_type __next_bkt);

      // Get the node before __n in the bucket __bkt
      __node_base_ptr
      _M_get_previous_node(size_type __bkt, __node_ptr __n);

      pair<const_iterator, __hash_code>
      _M_compute_hash_code(const_iterator __hint, const key_type& __k) const;

      // Insert node __n with hash code __code, in bucket __bkt if no
      // rehash (assumes no element with same key already present).
      // Takes ownership of __n if insertion succeeds, throws otherwise.
      iterator
      _M_insert_unique_node(size_type __bkt, __hash_code,
			    __node_ptr __n, size_type __n_elt = 1);

      // Insert node __n with key __k and hash code __code.
      // Takes ownership of __n if insertion succeeds, throws otherwise.
      iterator
      _M_insert_multi_node(__node_ptr __hint,
			   __hash_code __code, __node_ptr __n);

      template<typename... _Args>
	std::pair<iterator, bool>
	_M_emplace(true_type __uks, _Args&&... __args);

      template<typename... _Args>
	iterator
	_M_emplace(false_type __uks, _Args&&... __args)
	{ return _M_emplace(cend(), __uks, std::forward<_Args>(__args)...); }

      // Emplace with hint, useless when keys are unique.
      template<typename... _Args>
	iterator
	_M_emplace(const_iterator, true_type __uks, _Args&&... __args)
	{ return _M_emplace(__uks, std::forward<_Args>(__args)...).first; }

      template<typename... _Args>
	iterator
	_M_emplace(const_iterator, false_type __uks, _Args&&... __args);

      template<typename _Kt, typename _Arg, typename _NodeGenerator>
	std::pair<iterator, bool>
	_M_insert_unique(_Kt&&, _Arg&&, const _NodeGenerator&);

      template<typename _Kt>
	static __conditional_t<
	  __and_<__is_nothrow_invocable<_Hash&, const key_type&>,
		 __not_<__is_nothrow_invocable<_Hash&, _Kt>>>::value,
	  key_type, _Kt&&>
	_S_forward_key(_Kt&& __k)
	{ return std::forward<_Kt>(__k); }

      static const key_type&
      _S_forward_key(const key_type& __k)
      { return __k; }

      static key_type&&
      _S_forward_key(key_type&& __k)
      { return std::move(__k); }

      template<typename _Arg, typename _NodeGenerator>
	std::pair<iterator, bool>
	_M_insert(_Arg&& __arg, const _NodeGenerator& __node_gen,
		  true_type /* __uks */)
	{
	  return _M_insert_unique(
	    _S_forward_key(_ExtractKey{}(std::forward<_Arg>(__arg))),
	    std::forward<_Arg>(__arg), __node_gen);
	}

      template<typename _Arg, typename _NodeGenerator>
	iterator
	_M_insert(_Arg&& __arg, const _NodeGenerator& __node_gen,
		  false_type __uks)
	{
	  return _M_insert(cend(), std::forward<_Arg>(__arg), __node_gen,
			   __uks);
	}

      // Insert with hint, not used when keys are unique.
      template<typename _Arg, typename _NodeGenerator>
	iterator
	_M_insert(const_iterator, _Arg&& __arg,
		  const _NodeGenerator& __node_gen, true_type __uks)
	{
	  return
	    _M_insert(std::forward<_Arg>(__arg), __node_gen, __uks).first;
	}

      // Insert with hint when keys are not unique.
      template<typename _Arg, typename _NodeGenerator>
	iterator
	_M_insert(const_iterator, _Arg&&,
		  const _NodeGenerator&, false_type __uks);

      size_type
      _M_erase(true_type __uks, const key_type&);

      size_type
      _M_erase(false_type __uks, const key_type&);

      iterator
      _M_erase(size_type __bkt, __node_base_ptr __prev_n, __node_ptr __n);

    public:
      // Emplace
      template<typename... _Args>
	__ireturn_type
	emplace(_Args&&... __args)
	{ return _M_emplace(__unique_keys{}, std::forward<_Args>(__args)...); }

      template<typename... _Args>
	iterator
	emplace_hint(const_iterator __hint, _Args&&... __args)
	{
	  return _M_emplace(__hint, __unique_keys{},
			    std::forward<_Args>(__args)...);
	}

      // Insert member functions via inheritance.

      // Erase
      iterator
      erase(const_iterator);

      // LWG 2059.
      iterator
      erase(iterator __it)
      { return erase(const_iterator(__it)); }

      size_type
      erase(const key_type& __k)
      { return _M_erase(__unique_keys{}, __k); }

      iterator
      erase(const_iterator, const_iterator);

      void
      clear() noexcept;

      // Set number of buckets keeping it appropriate for container's number
      // of elements.
      void rehash(size_type __bkt_count);

      // DR 1189.
      // reserve, if present, comes from _Rehash_base.

#if __cplusplus > 201402L
      /// Re-insert an extracted node into a container with unique keys.
      insert_return_type
      _M_reinsert_node(node_type&& __nh)
      {
	insert_return_type __ret;
	if (__nh.empty())
	  __ret.position = end();
	else
	  {
	    __glibcxx_assert(get_allocator() == __nh.get_allocator());

	    const key_type& __k = __nh._M_key();
	    __hash_code __code = this->_M_hash_code(__k);
	    size_type __bkt = _M_bucket_index(__code);
	    if (__node_ptr __n = _M_find_node(__bkt, __k, __code))
	      {
		__ret.node = std::move(__nh);
		__ret.position = iterator(__n);
		__ret.inserted = false;
	      }
	    else
	      {
		__ret.position
		  = _M_insert_unique_node(__bkt, __code, __nh._M_ptr);
		__nh._M_ptr = nullptr;
		__ret.inserted = true;
	      }
	  }
	return __ret;
      }

      /// Re-insert an extracted node into a container with equivalent keys.
      iterator
      _M_reinsert_node_multi(const_iterator __hint, node_type&& __nh)
      {
	if (__nh.empty())
	  return end();

	__glibcxx_assert(get_allocator() == __nh.get_allocator());

	const key_type& __k = __nh._M_key();
	auto __code = this->_M_hash_code(__k);
	auto __ret
	  = _M_insert_multi_node(__hint._M_cur, __code, __nh._M_ptr);
	__nh._M_ptr = nullptr;
	return __ret;
      }

    private:
      node_type
      _M_extract_node(size_t __bkt, __node_base_ptr __prev_n)
      {
	__node_ptr __n = static_cast<__node_ptr>(__prev_n->_M_nxt);
	if (__prev_n == _M_buckets[__bkt])
	  _M_remove_bucket_begin(__bkt, __n->_M_next(),
	     __n->_M_nxt ? _M_bucket_index(*__n->_M_next()) : 0);
	else if (__n->_M_nxt)
	  {
	    size_type __next_bkt = _M_bucket_index(*__n->_M_next());
	    if (__next_bkt != __bkt)
	      _M_buckets[__next_bkt] = __prev_n;
	  }

	__prev_n->_M_nxt = __n->_M_nxt;
	__n->_M_nxt = nullptr;
	--_M_element_count;
	return { __n, this->_M_node_allocator() };
      }

    public:
      // Extract a node.
      node_type
      extract(const_iterator __pos)
      {
	size_t __bkt = _M_bucket_index(*__pos._M_cur);
	return _M_extract_node(__bkt,
			       _M_get_previous_node(__bkt, __pos._M_cur));
      }

      /// Extract a node.
      node_type
      extract(const _Key& __k)
      {
	node_type __nh;
	__hash_code __code = this->_M_hash_code(__k);
	std::size_t __bkt = _M_bucket_index(__code);
	if (__node_base_ptr __prev_node = _M_find_before_node(__bkt, __k, __code))
	  __nh = _M_extract_node(__bkt, __prev_node);
	return __nh;
      }

      /// Merge from a compatible container into one with unique keys.
      template<typename _Compatible_Hashtable>
	void
	_M_merge_unique(_Compatible_Hashtable& __src)
	{
	  static_assert(is_same_v<typename _Compatible_Hashtable::node_type,
	      node_type>, "Node types are compatible");
	  __glibcxx_assert(get_allocator() == __src.get_allocator());

	  auto __n_elt = __src.size();
	  for (auto __i = __src.cbegin(), __end = __src.cend(); __i != __end;)
	    {
	      auto __pos = __i++;
	      const key_type& __k = _ExtractKey{}(*__pos);
	      __hash_code __code
		= this->_M_hash_code(__src.hash_function(), *__pos._M_cur);
	      size_type __bkt = _M_bucket_index(__code);
	      if (_M_find_node(__bkt, __k, __code) == nullptr)
		{
		  auto __nh = __src.extract(__pos);
		  _M_insert_unique_node(__bkt, __code, __nh._M_ptr, __n_elt);
		  __nh._M_ptr = nullptr;
		  __n_elt = 1;
		}
	      else if (__n_elt != 1)
		--__n_elt;
	    }
	}

      /// Merge from a compatible container into one with equivalent keys.
      template<typename _Compatible_Hashtable>
	void
	_M_merge_multi(_Compatible_Hashtable& __src)
	{
	  static_assert(is_same_v<typename _Compatible_Hashtable::node_type,
	      node_type>, "Node types are compatible");
	  __glibcxx_assert(get_allocator() == __src.get_allocator());

	  __node_ptr __hint = nullptr;
	  this->reserve(size() + __src.size());
	  for (auto __i = __src.cbegin(), __end = __src.cend(); __i != __end;)
	    {
	      auto __pos = __i++;
	      __hash_code __code
		= this->_M_hash_code(__src.hash_function(), *__pos._M_cur);
	      auto __nh = __src.extract(__pos);
	      __hint = _M_insert_multi_node(__hint, __code, __nh._M_ptr)._M_cur;
	      __nh._M_ptr = nullptr;
	    }
	}
#endif // C++17

    private:
      // Helper rehash method used when keys are unique.
      void _M_rehash_aux(size_type __bkt_count, true_type __uks);

      // Helper rehash method used when keys can be non-unique.
      void _M_rehash_aux(size_type __bkt_count, false_type __uks);

      // Unconditionally change size of bucket array to n, restore
      // hash policy state to __state on exception.
      void _M_rehash(size_type __bkt_count, const __rehash_state& __state);
    };

  // Definitions of class template _Hashtable's out-of-line member functions.
  template<typename _Key, typename _Value, typename _Alloc,
	   typename _ExtractKey, typename _Equal,
	   typename _Hash, typename _RangeHash, typename _Unused,
	   typename _RehashPolicy, typename _Traits>
    auto
    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
    _M_bucket_begin(size_type __bkt) const
    -> __node_ptr
    {
      __node_base_ptr __n = _M_buckets[__bkt];
      return __n ? static_cast<__node_ptr>(__n->_M_nxt) : nullptr;
    }

  template<typename _Key, typename _Value, typename _Alloc,
	   typename _ExtractKey, typename _Equal,
	   typename _Hash, typename _RangeHash, typename _Unused,
	   typename _RehashPolicy, typename _Traits>
    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
    _Hashtable(size_type __bkt_count_hint,
	       const _Hash& __h, const _Equal& __eq, const allocator_type& __a)
    : _Hashtable(__h, __eq, __a)
    {
      auto __bkt_count = _M_rehash_policy._M_next_bkt(__bkt_count_hint);
      if (__bkt_count > _M_bucket_count)
	{
	  _M_buckets = _M_allocate_buckets(__bkt_count);
	  _M_bucket_count = __bkt_count;
	}
    }

  template<typename _Key, typename _Value, typename _Alloc,
	   typename _ExtractKey, typename _Equal,
	   typename _Hash, typename _RangeHash, typename _Unused,
	   typename _RehashPolicy, typename _Traits>
    template<typename _InputIterator>
      _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
		 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
      _Hashtable(_InputIterator __f, _InputIterator __l,
		 size_type __bkt_count_hint,
		 const _Hash& __h, const _Equal& __eq,
		 const allocator_type& __a, true_type /* __uks */)
      : _Hashtable(__bkt_count_hint, __h, __eq, __a)
      {
	for (; __f != __l; ++__f)
	  this->insert(*__f);
      }

  template<typename _Key, typename _Value, typename _Alloc,
	   typename _ExtractKey, typename _Equal,
	   typename _Hash, typename _RangeHash, typename _Unused,
	   typename _RehashPolicy, typename _Traits>
    template<typename _InputIterator>
      _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
		 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
      _Hashtable(_InputIterator __f, _InputIterator __l,
		 size_type __bkt_count_hint,
		 const _Hash& __h, const _Equal& __eq,
		 const allocator_type& __a, false_type /* __uks */)
      : _Hashtable(__h, __eq, __a)
      {
	auto __nb_elems = __detail::__distance_fw(__f, __l);
	auto __bkt_count =
	  _M_rehash_policy._M_next_bkt(
	    std::max(_M_rehash_policy._M_bkt_for_elements(__nb_elems),
		     __bkt_count_hint));

	if (__bkt_count > _M_bucket_count)
	  {
	    _M_buckets = _M_allocate_buckets(__bkt_count);
	    _M_bucket_count = __bkt_count;
	  }

	for (; __f != __l; ++__f)
	  this->insert(*__f);
      }

  template<typename _Key, typename _Value, typename _Alloc,
	   typename _ExtractKey, typename _Equal,
	   typename _Hash, typename _RangeHash, typename _Unused,
	   typename _RehashPolicy, typename _Traits>
    auto
    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
    operator=(const _Hashtable& __ht)
    -> _Hashtable&
    {
      if (&__ht == this)
	return *this;

      if (__node_alloc_traits::_S_propagate_on_copy_assign())
	{
	  auto& __this_alloc = this->_M_node_allocator();
	  auto& __that_alloc = __ht._M_node_allocator();
	  if (!__node_alloc_traits::_S_always_equal()
	      && __this_alloc != __that_alloc)
	    {
	      // Replacement allocator cannot free existing storage.
	      this->_M_deallocate_nodes(_M_begin());
	      _M_before_begin._M_nxt = nullptr;
	      _M_deallocate_buckets();
	      _M_buckets = nullptr;
	      std::__alloc_on_copy(__this_alloc, __that_alloc);
	      __hashtable_base::operator=(__ht);
	      _M_bucket_count = __ht._M_bucket_count;
	      _M_element_count = __ht._M_element_count;
	      _M_rehash_policy = __ht._M_rehash_policy;
	      __alloc_node_gen_t __alloc_node_gen(*this);
	      __try
		{
		  _M_assign(__ht, __alloc_node_gen);
		}
	      __catch(...)
		{
		  // _M_assign took care of deallocating all memory. Now we
		  // must make sure this instance remains in a usable state.
		  _M_reset();
		  __throw_exception_again;
		}
	      return *this;
	    }
	  std::__alloc_on_copy(__this_alloc, __that_alloc);
	}

      // Reuse allocated buckets and nodes.
      _M_assign_elements(__ht);
      return *this;
    }

  template<typename _Key, typename _Value, typename _Alloc,
	   typename _ExtractKey, typename _Equal,
	   typename _Hash, typename _RangeHash, typename _Unused,
	   typename _RehashPolicy, typename _Traits>
    template<typename _Ht>
      void
      _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
		 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
      _M_assign_elements(_Ht&& __ht)
      {
	__buckets_ptr __former_buckets = nullptr;
	std::size_t __former_bucket_count = _M_bucket_count;
	const __rehash_state& __former_state = _M_rehash_policy._M_state();

	if (_M_bucket_count != __ht._M_bucket_count)
	  {
	    __former_buckets = _M_buckets;
	    _M_buckets = _M_allocate_buckets(__ht._M_bucket_count);
	    _M_bucket_count = __ht._M_bucket_count;
	  }
	else
	  __builtin_memset(_M_buckets, 0,
			   _M_bucket_count * sizeof(__node_base_ptr));

	__try
	  {
	    __hashtable_base::operator=(std::forward<_Ht>(__ht));
	    _M_element_count = __ht._M_element_count;
	    _M_rehash_policy = __ht._M_rehash_policy;
	    __reuse_or_alloc_node_gen_t __roan(_M_begin(), *this);
	    _M_before_begin._M_nxt = nullptr;
	    _M_assign(std::forward<_Ht>(__ht), __roan);
	    if (__former_buckets)
	      _M_deallocate_buckets(__former_buckets, __former_bucket_count);
	  }
	__catch(...)
	  {
	    if (__former_buckets)
	      {
		// Restore previous buckets.
		_M_deallocate_buckets();
		_M_rehash_policy._M_reset(__former_state);
		_M_buckets = __former_buckets;
		_M_bucket_count = __former_bucket_count;
	      }
	    __builtin_memset(_M_buckets, 0,
			     _M_bucket_count * sizeof(__node_base_ptr));
	    __throw_exception_again;
	  }
      }

  template<typename _Key, typename _Value, typename _Alloc,
	   typename _ExtractKey, typename _Equal,
	   typename _Hash, typename _RangeHash, typename _Unused,
	   typename _RehashPolicy, typename _Traits>
    template<typename _Ht, typename _NodeGenerator>
      void
      _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
		 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
      _M_assign(_Ht&& __ht, const _NodeGenerator& __node_gen)
      {
	__buckets_ptr __buckets = nullptr;
	if (!_M_buckets)
	  _M_buckets = __buckets = _M_allocate_buckets(_M_bucket_count);

	__try
	  {
	    if (!__ht._M_before_begin._M_nxt)
	      return;

	    // First deal with the special first node pointed to by
	    // _M_before_begin.
	    __node_ptr __ht_n = __ht._M_begin();
	    __node_ptr __this_n
	      = __node_gen(__fwd_value_for<_Ht>(__ht_n->_M_v()));
	    this->_M_copy_code(*__this_n, *__ht_n);
	    _M_update_bbegin(__this_n);

	    // Then deal with other nodes.
	    __node_ptr __prev_n = __this_n;
	    for (__ht_n = __ht_n->_M_next(); __ht_n; __ht_n = __ht_n->_M_next())
	      {
		__this_n = __node_gen(__fwd_value_for<_Ht>(__ht_n->_M_v()));
		__prev_n->_M_nxt = __this_n;
		this->_M_copy_code(*__this_n, *__ht_n);
		size_type __bkt = _M_bucket_index(*__this_n);
		if (!_M_buckets[__bkt])
		  _M_buckets[__bkt] = __prev_n;
		__prev_n = __this_n;
	      }
	  }
	__catch(...)
	  {
	    clear();
	    if (__buckets)
	      _M_deallocate_buckets();
	    __throw_exception_again;
	  }
      }

  template<typename _Key, typename _Value, typename _Alloc,
	   typename _ExtractKey, typename _Equal,
	   typename _Hash, typename _RangeHash, typename _Unused,
	   typename _RehashPolicy, typename _Traits>
    void
    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
    _M_reset() noexcept
    {
      _M_rehash_policy._M_reset();
      _M_bucket_count = 1;
      _M_single_bucket = nullptr;
      _M_buckets = &_M_single_bucket;
      _M_before_begin._M_nxt = nullptr;
      _M_element_count = 0;
    }

  template<typename _Key, typename _Value, typename _Alloc,
	   typename _ExtractKey, typename _Equal,
	   typename _Hash, typename _RangeHash, typename _Unused,
	   typename _RehashPolicy, typename _Traits>
    void
    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
    _M_move_assign(_Hashtable&& __ht, true_type)
    {
      if (__builtin_expect(std::__addressof(__ht) == this, false))
	return;

      this->_M_deallocate_nodes(_M_begin());
      _M_deallocate_buckets();
      __hashtable_base::operator=(std::move(__ht));
      _M_rehash_policy = __ht._M_rehash_policy;
      if (!__ht._M_uses_single_bucket())
	_M_buckets = __ht._M_buckets;
      else
	{
	  _M_buckets = &_M_single_bucket;
	  _M_single_bucket = __ht._M_single_bucket;
	}

      _M_bucket_count = __ht._M_bucket_count;
      _M_before_begin._M_nxt = __ht._M_before_begin._M_nxt;
      _M_element_count = __ht._M_element_count;
      std::__alloc_on_move(this->_M_node_allocator(), __ht._M_node_allocator());

      // Fix bucket containing the _M_before_begin pointer that can't be moved.
      _M_update_bbegin();
      __ht._M_reset();
    }

  template<typename _Key, typename _Value, typename _Alloc,
	   typename _ExtractKey, typename _Equal,
	   typename _Hash, typename _RangeHash, typename _Unused,
	   typename _RehashPolicy, typename _Traits>
    void
    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
    _M_move_assign(_Hashtable&& __ht, false_type)
    {
      if (__ht._M_node_allocator() == this->_M_node_allocator())
	_M_move_assign(std::move(__ht), true_type{});
      else
	{
	  // Can't move memory, move elements then.
	  _M_assign_elements(std::move(__ht));
	  __ht.clear();
	}
    }

  template<typename _Key, typename _Value, typename _Alloc,
	   typename _ExtractKey, typename _Equal,
	   typename _Hash, typename _RangeHash, typename _Unused,
	   typename _RehashPolicy, typename _Traits>
    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
    _Hashtable(const _Hashtable& __ht)
    : __hashtable_base(__ht),
      __map_base(__ht),
      __rehash_base(__ht),
      __hashtable_alloc(
	__node_alloc_traits::_S_select_on_copy(__ht._M_node_allocator())),
      __enable_default_ctor(__ht),
      _M_buckets(nullptr),
      _M_bucket_count(__ht._M_bucket_count),
      _M_element_count(__ht._M_element_count),
      _M_rehash_policy(__ht._M_rehash_policy)
    {
      __alloc_node_gen_t __alloc_node_gen(*this);
      _M_assign(__ht, __alloc_node_gen);
    }

  template<typename _Key, typename _Value, typename _Alloc,
	   typename _ExtractKey, typename _Equal,
	   typename _Hash, typename _RangeHash, typename _Unused,
	   typename _RehashPolicy, typename _Traits>
    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
    _Hashtable(_Hashtable&& __ht, __node_alloc_type&& __a,
	       true_type /* alloc always equal */)
    noexcept(_S_nothrow_move())
    : __hashtable_base(__ht),
      __map_base(__ht),
      __rehash_base(__ht),
      __hashtable_alloc(std::move(__a)),
      __enable_default_ctor(__ht),
      _M_buckets(__ht._M_buckets),
      _M_bucket_count(__ht._M_bucket_count),
      _M_before_begin(__ht._M_before_begin._M_nxt),
      _M_element_count(__ht._M_element_count),
      _M_rehash_policy(__ht._M_rehash_policy)
    {
      // Update buckets if __ht is using its single bucket.
      if (__ht._M_uses_single_bucket())
	{
	  _M_buckets = &_M_single_bucket;
	  _M_single_bucket = __ht._M_single_bucket;
	}

      // Fix bucket containing the _M_before_begin pointer that can't be moved.
      _M_update_bbegin();

      __ht._M_reset();
    }

  template<typename _Key, typename _Value, typename _Alloc,
	   typename _ExtractKey, typename _Equal,
	   typename _Hash, typename _RangeHash, typename _Unused,
	   typename _RehashPolicy, typename _Traits>
    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
    _Hashtable(const _Hashtable& __ht, const allocator_type& __a)
    : __hashtable_base(__ht),
      __map_base(__ht),
      __rehash_base(__ht),
      __hashtable_alloc(__node_alloc_type(__a)),
      __enable_default_ctor(__ht),
      _M_buckets(),
      _M_bucket_count(__ht._M_bucket_count),
      _M_element_count(__ht._M_element_count),
      _M_rehash_policy(__ht._M_rehash_policy)
    {
      __alloc_node_gen_t __alloc_node_gen(*this);
      _M_assign(__ht, __alloc_node_gen);
    }

  template<typename _Key, typename _Value, typename _Alloc,
	   typename _ExtractKey, typename _Equal,
	   typename _Hash, typename _RangeHash, typename _Unused,
	   typename _RehashPolicy, typename _Traits>
    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
    _Hashtable(_Hashtable&& __ht, __node_alloc_type&& __a,
	       false_type /* alloc always equal */)
    : __hashtable_base(__ht),
      __map_base(__ht),
      __rehash_base(__ht),
      __hashtable_alloc(std::move(__a)),
      __enable_default_ctor(__ht),
      _M_buckets(nullptr),
      _M_bucket_count(__ht._M_bucket_count),
      _M_element_count(__ht._M_element_count),
      _M_rehash_policy(__ht._M_rehash_policy)
    {
      if (__ht._M_node_allocator() == this->_M_node_allocator())
	{
	  if (__ht._M_uses_single_bucket())
	    {
	      _M_buckets = &_M_single_bucket;
	      _M_single_bucket = __ht._M_single_bucket;
	    }
	  else
	    _M_buckets = __ht._M_buckets;

	  // Fix bucket containing the _M_before_begin pointer that can't be
	  // moved.
	  _M_update_bbegin(__ht._M_begin());

	  __ht._M_reset();
	}
      else
	{
	  __alloc_node_gen_t __alloc_gen(*this);

	  using _Fwd_Ht = __conditional_t<
	    __move_if_noexcept_cond<value_type>::value,
	    const _Hashtable&, _Hashtable&&>;
	  _M_assign(std::forward<_Fwd_Ht>(__ht), __alloc_gen);
	  __ht.clear();
	}
    }

  template<typename _Key, typename _Value, typename _Alloc,
	   typename _ExtractKey, typename _Equal,
	   typename _Hash, typename _RangeHash, typename _Unused,
	   typename _RehashPolicy, typename _Traits>
    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
    ~_Hashtable() noexcept
    {
      // Getting a bucket index from a node shall not throw because it is used
      // in methods (erase, swap...) that shall not throw. Need a complete
      // type to check this, so do it in the destructor not at class scope.
      static_assert(noexcept(declval<const __hash_code_base_access&>()
			._M_bucket_index(declval<const __node_value_type&>(),
					 (std::size_t)0)),
		    "Cache the hash code or qualify your functors involved"
		    " in hash code and bucket index computation with noexcept");

      clear();
      _M_deallocate_buckets();
    }

  template<typename _Key, typename _Value, typename _Alloc,
	   typename _ExtractKey, typename _Equal,
	   typename _Hash, typename _RangeHash, typename _Unused,
	   typename _RehashPolicy, typename _Traits>
    void
    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
    swap(_Hashtable& __x)
    noexcept(__and_<__is_nothrow_swappable<_Hash>,
			__is_nothrow_swappable<_Equal>>::value)
    {
      // The only base class with member variables is hash_code_base.
      // We define _Hash_code_base::_M_swap because different
      // specializations have different members.
      this->_M_swap(__x);

      std::__alloc_on_swap(this->_M_node_allocator(), __x._M_node_allocator());
      std::swap(_M_rehash_policy, __x._M_rehash_policy);

      // Deal properly with potentially moved instances.
      if (this->_M_uses_single_bucket())
	{
	  if (!__x._M_uses_single_bucket())
	    {
	      _M_buckets = __x._M_buckets;
	      __x._M_buckets = &__x._M_single_bucket;
	    }
	}
      else if (__x._M_uses_single_bucket())
	{
	  __x._M_buckets = _M_buckets;
	  _M_buckets = &_M_single_bucket;
	}	
      else
	std::swap(_M_buckets, __x._M_buckets);

      std::swap(_M_bucket_count, __x._M_bucket_count);
      std::swap(_M_before_begin._M_nxt, __x._M_before_begin._M_nxt);
      std::swap(_M_element_count, __x._M_element_count);
      std::swap(_M_single_bucket, __x._M_single_bucket);

      // Fix buckets containing the _M_before_begin pointers that can't be
      // swapped.
      _M_update_bbegin();
      __x._M_update_bbegin();
    }

  template<typename _Key, typename _Value, typename _Alloc,
	   typename _ExtractKey, typename _Equal,
	   typename _Hash, typename _RangeHash, typename _Unused,
	   typename _RehashPolicy, typename _Traits>
    auto
    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
    find(const key_type& __k)
    -> iterator
    {
      if (size() <= __small_size_threshold())
	{
	  for (auto __it = begin(); __it != end(); ++__it)
	    if (this->_M_key_equals(__k, *__it._M_cur))
	      return __it;
	  return end();
	}

      __hash_code __code = this->_M_hash_code(__k);
      std::size_t __bkt = _M_bucket_index(__code);
      return iterator(_M_find_node(__bkt, __k, __code));
    }

  template<typename _Key, typename _Value, typename _Alloc,
	   typename _ExtractKey, typename _Equal,
	   typename _Hash, typename _RangeHash, typename _Unused,
	   typename _RehashPolicy, typename _Traits>
    auto
    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
    find(const key_type& __k) const
    -> const_iterator
    {
      if (size() <= __small_size_threshold())
	{
	  for (auto __it = begin(); __it != end(); ++__it)
	    if (this->_M_key_equals(__k, *__it._M_cur))
	      return __it;
	  return end();
	}

      __hash_code __code = this->_M_hash_code(__k);
      std::size_t __bkt = _M_bucket_index(__code);
      return const_iterator(_M_find_node(__bkt, __k, __code));
    }

#if __cplusplus > 201703L
  template<typename _Key, typename _Value, typename _Alloc,
	   typename _ExtractKey, typename _Equal,
	   typename _Hash, typename _RangeHash, typename _Unused,
	   typename _RehashPolicy, typename _Traits>
    template<typename _Kt, typename, typename>
      auto
      _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
		 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
      _M_find_tr(const _Kt& __k)
      -> iterator
      {
	__hash_code __code = this->_M_hash_code_tr(__k);
	std::size_t __bkt = _M_bucket_index(__code);
	return iterator(_M_find_node_tr(__bkt, __k, __code));
      }

  template<typename _Key, typename _Value, typename _Alloc,
	   typename _ExtractKey, typename _Equal,
	   typename _Hash, typename _RangeHash, typename _Unused,
	   typename _RehashPolicy, typename _Traits>
    template<typename _Kt, typename, typename>
      auto
      _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
		 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
      _M_find_tr(const _Kt& __k) const
      -> const_iterator
      {
	__hash_code __code = this->_M_hash_code_tr(__k);
	std::size_t __bkt = _M_bucket_index(__code);
	return const_iterator(_M_find_node_tr(__bkt, __k, __code));
      }
#endif

  template<typename _Key, typename _Value, typename _Alloc,
	   typename _ExtractKey, typename _Equal,
	   typename _Hash, typename _RangeHash, typename _Unused,
	   typename _RehashPolicy, typename _Traits>
    auto
    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
    count(const key_type& __k) const
    -> size_type
    {
      auto __it = find(__k);
      if (!__it._M_cur)
	return 0;

      if (__unique_keys::value)
	return 1;

      // All equivalent values are next to each other, if we find a
      // non-equivalent value after an equivalent one it means that we won't
      // find any new equivalent value.
      size_type __result = 1;
      for (auto __ref = __it++;
	   __it._M_cur && this->_M_node_equals(*__ref._M_cur, *__it._M_cur);
	   ++__it)
	++__result;

      return __result;
    }

#if __cplusplus > 201703L
  template<typename _Key, typename _Value, typename _Alloc,
	   typename _ExtractKey, typename _Equal,
	   typename _Hash, typename _RangeHash, typename _Unused,
	   typename _RehashPolicy, typename _Traits>
    template<typename _Kt, typename, typename>
      auto
      _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
		 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
      _M_count_tr(const _Kt& __k) const
      -> size_type
      {
	__hash_code __code = this->_M_hash_code_tr(__k);
	std::size_t __bkt = _M_bucket_index(__code);
	auto __n = _M_find_node_tr(__bkt, __k, __code);
	if (!__n)
	  return 0;

	// All equivalent values are next to each other, if we find a
	// non-equivalent value after an equivalent one it means that we won't
	// find any new equivalent value.
	iterator __it(__n);
	size_type __result = 1;
	for (++__it;
	     __it._M_cur && this->_M_equals_tr(__k, __code, *__it._M_cur);
	     ++__it)
	  ++__result;

	return __result;
      }
#endif

  template<typename _Key, typename _Value, typename _Alloc,
	   typename _ExtractKey, typename _Equal,
	   typename _Hash, typename _RangeHash, typename _Unused,
	   typename _RehashPolicy, typename _Traits>
    auto
    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
    equal_range(const key_type& __k)
    -> pair<iterator, iterator>
    {
      auto __ite = find(__k);
      if (!__ite._M_cur)
	return { __ite, __ite };

      auto __beg = __ite++;
      if (__unique_keys::value)
	return { __beg, __ite };

      // All equivalent values are next to each other, if we find a
      // non-equivalent value after an equivalent one it means that we won't
      // find any new equivalent value.
      while (__ite._M_cur && this->_M_node_equals(*__beg._M_cur, *__ite._M_cur))
	++__ite;

      return { __beg, __ite };
    }

  template<typename _Key, typename _Value, typename _Alloc,
	   typename _ExtractKey, typename _Equal,
	   typename _Hash, typename _RangeHash, typename _Unused,
	   typename _RehashPolicy, typename _Traits>
    auto
    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
    equal_range(const key_type& __k) const
    -> pair<const_iterator, const_iterator>
    {
      auto __ite = find(__k);
      if (!__ite._M_cur)
	return { __ite, __ite };

      auto __beg = __ite++;
      if (__unique_keys::value)
	return { __beg, __ite };

      // All equivalent values are next to each other, if we find a
      // non-equivalent value after an equivalent one it means that we won't
      // find any new equivalent value.
      while (__ite._M_cur && this->_M_node_equals(*__beg._M_cur, *__ite._M_cur))
	++__ite;

      return { __beg, __ite };
    }

#if __cplusplus > 201703L
  template<typename _Key, typename _Value, typename _Alloc,
	   typename _ExtractKey, typename _Equal,
	   typename _Hash, typename _RangeHash, typename _Unused,
	   typename _RehashPolicy, typename _Traits>
    template<typename _Kt, typename, typename>
      auto
      _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
		 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
      _M_equal_range_tr(const _Kt& __k)
      -> pair<iterator, iterator>
      {
	__hash_code __code = this->_M_hash_code_tr(__k);
	std::size_t __bkt = _M_bucket_index(__code);
	auto __n = _M_find_node_tr(__bkt, __k, __code);
	iterator __ite(__n);
	if (!__n)
	  return { __ite, __ite };

	// All equivalent values are next to each other, if we find a
	// non-equivalent value after an equivalent one it means that we won't
	// find any new equivalent value.
	auto __beg = __ite++;
	while (__ite._M_cur && this->_M_equals_tr(__k, __code, *__ite._M_cur))
	  ++__ite;

	return { __beg, __ite };
      }

  template<typename _Key, typename _Value, typename _Alloc,
	   typename _ExtractKey, typename _Equal,
	   typename _Hash, typename _RangeHash, typename _Unused,
	   typename _RehashPolicy, typename _Traits>
    template<typename _Kt, typename, typename>
      auto
      _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
		 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
      _M_equal_range_tr(const _Kt& __k) const
      -> pair<const_iterator, const_iterator>
      {
	__hash_code __code = this->_M_hash_code_tr(__k);
	std::size_t __bkt = _M_bucket_index(__code);
	auto __n = _M_find_node_tr(__bkt, __k, __code);
	const_iterator __ite(__n);
	if (!__n)
	  return { __ite, __ite };

	// All equivalent values are next to each other, if we find a
	// non-equivalent value after an equivalent one it means that we won't
	// find any new equivalent value.
	auto __beg = __ite++;
	while (__ite._M_cur && this->_M_equals_tr(__k, __code, *__ite._M_cur))
	  ++__ite;

	return { __beg, __ite };
      }
#endif

  // Find the node before the one whose key compares equal to k.
  // Return nullptr if no node is found.
  template<typename _Key, typename _Value, typename _Alloc,
	   typename _ExtractKey, typename _Equal,
	   typename _Hash, typename _RangeHash, typename _Unused,
	   typename _RehashPolicy, typename _Traits>
    auto
    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
    _M_find_before_node(const key_type& __k)
    -> __node_base_ptr
    {
      __node_base_ptr __prev_p = &_M_before_begin;
      if (!__prev_p->_M_nxt)
	return nullptr;

      for (__node_ptr __p = static_cast<__node_ptr>(__prev_p->_M_nxt);
	   __p != nullptr;
	   __p = __p->_M_next())
	{
	  if (this->_M_key_equals(__k, *__p))
	    return __prev_p;

	  __prev_p = __p;
	}

      return nullptr;
    }

  // Find the node before the one whose key compares equal to k in the bucket
  // bkt. Return nullptr if no node is found.
  template<typename _Key, typename _Value, typename _Alloc,
	   typename _ExtractKey, typename _Equal,
	   typename _Hash, typename _RangeHash, typename _Unused,
	   typename _RehashPolicy, typename _Traits>
    auto
    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
    _M_find_before_node(size_type __bkt, const key_type& __k,
			__hash_code __code) const
    -> __node_base_ptr
    {
      __node_base_ptr __prev_p = _M_buckets[__bkt];
      if (!__prev_p)
	return nullptr;

      for (__node_ptr __p = static_cast<__node_ptr>(__prev_p->_M_nxt);;
	   __p = __p->_M_next())
	{
	  if (this->_M_equals(__k, __code, *__p))
	    return __prev_p;

	  if (!__p->_M_nxt || _M_bucket_index(*__p->_M_next()) != __bkt)
	    break;
	  __prev_p = __p;
	}

      return nullptr;
    }

  template<typename _Key, typename _Value, typename _Alloc,
	   typename _ExtractKey, typename _Equal,
	   typename _Hash, typename _RangeHash, typename _Unused,
	   typename _RehashPolicy, typename _Traits>
    template<typename _Kt>
      auto
      _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
		 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
      _M_find_before_node_tr(size_type __bkt, const _Kt& __k,
			     __hash_code __code) const
      -> __node_base_ptr
      {
	__node_base_ptr __prev_p = _M_buckets[__bkt];
	if (!__prev_p)
	  return nullptr;

	for (__node_ptr __p = static_cast<__node_ptr>(__prev_p->_M_nxt);;
	     __p = __p->_M_next())
	  {
	    if (this->_M_equals_tr(__k, __code, *__p))
	      return __prev_p;

	    if (!__p->_M_nxt || _M_bucket_index(*__p->_M_next()) != __bkt)
	      break;
	    __prev_p = __p;
	  }

	return nullptr;
      }

  template<typename _Key, typename _Value, typename _Alloc,
	   typename _ExtractKey, typename _Equal,
	   typename _Hash, typename _RangeHash, typename _Unused,
	   typename _RehashPolicy, typename _Traits>
    void
    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
    _M_insert_bucket_begin(size_type __bkt, __node_ptr __node)
    {
      if (_M_buckets[__bkt])
	{
	  // Bucket is not empty, we just need to insert the new node
	  // after the bucket before begin.
	  __node->_M_nxt = _M_buckets[__bkt]->_M_nxt;
	  _M_buckets[__bkt]->_M_nxt = __node;
	}
      else
	{
	  // The bucket is empty, the new node is inserted at the
	  // beginning of the singly-linked list and the bucket will
	  // contain _M_before_begin pointer.
	  __node->_M_nxt = _M_before_begin._M_nxt;
	  _M_before_begin._M_nxt = __node;

	  if (__node->_M_nxt)
	    // We must update former begin bucket that is pointing to
	    // _M_before_begin.
	    _M_buckets[_M_bucket_index(*__node->_M_next())] = __node;

	  _M_buckets[__bkt] = &_M_before_begin;
	}
    }

  template<typename _Key, typename _Value, typename _Alloc,
	   typename _ExtractKey, typename _Equal,
	   typename _Hash, typename _RangeHash, typename _Unused,
	   typename _RehashPolicy, typename _Traits>
    void
    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
    _M_remove_bucket_begin(size_type __bkt, __node_ptr __next,
			   size_type __next_bkt)
    {
      if (!__next || __next_bkt != __bkt)
	{
	  // Bucket is now empty
	  // First update next bucket if any
	  if (__next)
	    _M_buckets[__next_bkt] = _M_buckets[__bkt];

	  // Second update before begin node if necessary
	  if (&_M_before_begin == _M_buckets[__bkt])
	    _M_before_begin._M_nxt = __next;
	  _M_buckets[__bkt] = nullptr;
	}
    }

  template<typename _Key, typename _Value, typename _Alloc,
	   typename _ExtractKey, typename _Equal,
	   typename _Hash, typename _RangeHash, typename _Unused,
	   typename _RehashPolicy, typename _Traits>
    auto
    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
    _M_get_previous_node(size_type __bkt, __node_ptr __n)
    -> __node_base_ptr
    {
      __node_base_ptr __prev_n = _M_buckets[__bkt];
      while (__prev_n->_M_nxt != __n)
	__prev_n = __prev_n->_M_nxt;
      return __prev_n;
    }

  template<typename _Key, typename _Value, typename _Alloc,
	   typename _ExtractKey, typename _Equal,
	   typename _Hash, typename _RangeHash, typename _Unused,
	   typename _RehashPolicy, typename _Traits>
    template<typename... _Args>
      auto
      _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
		 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
      _M_emplace(true_type /* __uks */, _Args&&... __args)
      -> pair<iterator, bool>
      {
	// First build the node to get access to the hash code
	_Scoped_node __node { this, std::forward<_Args>(__args)...  };
	const key_type& __k = _ExtractKey{}(__node._M_node->_M_v());
	if (size() <= __small_size_threshold())
	  {
	    for (auto __it = begin(); __it != end(); ++__it)
	      if (this->_M_key_equals(__k, *__it._M_cur))
		// There is already an equivalent node, no insertion
		return { __it, false };
	  }

	__hash_code __code = this->_M_hash_code(__k);
	size_type __bkt = _M_bucket_index(__code);
	if (size() > __small_size_threshold())
	  if (__node_ptr __p = _M_find_node(__bkt, __k, __code))
	    // There is already an equivalent node, no insertion
	    return { iterator(__p), false };

	// Insert the node
	auto __pos = _M_insert_unique_node(__bkt, __code, __node._M_node);
	__node._M_node = nullptr;
	return { __pos, true };
      }

  template<typename _Key, typename _Value, typename _Alloc,
	   typename _ExtractKey, typename _Equal,
	   typename _Hash, typename _RangeHash, typename _Unused,
	   typename _RehashPolicy, typename _Traits>
    template<typename... _Args>
      auto
      _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
		 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
      _M_emplace(const_iterator __hint, false_type /* __uks */,
		 _Args&&... __args)
      -> iterator
      {
	// First build the node to get its hash code.
	_Scoped_node __node { this, std::forward<_Args>(__args)...  };
	const key_type& __k = _ExtractKey{}(__node._M_node->_M_v());

	auto __res = this->_M_compute_hash_code(__hint, __k);
	auto __pos
	  = _M_insert_multi_node(__res.first._M_cur, __res.second,
				 __node._M_node);
	__node._M_node = nullptr;
	return __pos;
      }

  template<typename _Key, typename _Value, typename _Alloc,
	   typename _ExtractKey, typename _Equal,
	   typename _Hash, typename _RangeHash, typename _Unused,
	   typename _RehashPolicy, typename _Traits>
    auto
    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
    _M_compute_hash_code(const_iterator __hint, const key_type& __k) const
    -> pair<const_iterator, __hash_code>
    {
      if (size() <= __small_size_threshold())
	{
	  if (__hint != cend())
	    {
	      for (auto __it = __hint; __it != cend(); ++__it)
		if (this->_M_key_equals(__k, *__it._M_cur))
		  return { __it, this->_M_hash_code(*__it._M_cur) };
	    }

	  for (auto __it = cbegin(); __it != __hint; ++__it)
	    if (this->_M_key_equals(__k, *__it._M_cur))
	      return { __it, this->_M_hash_code(*__it._M_cur) };
	}

      return { __hint, this->_M_hash_code(__k) };
    }

  template<typename _Key, typename _Value, typename _Alloc,
	   typename _ExtractKey, typename _Equal,
	   typename _Hash, typename _RangeHash, typename _Unused,
	   typename _RehashPolicy, typename _Traits>
    auto
    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
    _M_insert_unique_node(size_type __bkt, __hash_code __code,
			  __node_ptr __node, size_type __n_elt)
    -> iterator
    {
      const __rehash_state& __saved_state = _M_rehash_policy._M_state();
      std::pair<bool, std::size_t> __do_rehash
	= _M_rehash_policy._M_need_rehash(_M_bucket_count, _M_element_count,
					  __n_elt);

      if (__do_rehash.first)
	{
	  _M_rehash(__do_rehash.second, __saved_state);
	  __bkt = _M_bucket_index(__code);
	}

      this->_M_store_code(*__node, __code);

      // Always insert at the beginning of the bucket.
      _M_insert_bucket_begin(__bkt, __node);
      ++_M_element_count;
      return iterator(__node);
    }

  template<typename _Key, typename _Value, typename _Alloc,
	   typename _ExtractKey, typename _Equal,
	   typename _Hash, typename _RangeHash, typename _Unused,
	   typename _RehashPolicy, typename _Traits>
    auto
    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
    _M_insert_multi_node(__node_ptr __hint,
			 __hash_code __code, __node_ptr __node)
    -> iterator
    {
      const __rehash_state& __saved_state = _M_rehash_policy._M_state();
      std::pair<bool, std::size_t> __do_rehash
	= _M_rehash_policy._M_need_rehash(_M_bucket_count, _M_element_count, 1);

      if (__do_rehash.first)
	_M_rehash(__do_rehash.second, __saved_state);

      this->_M_store_code(*__node, __code);
      const key_type& __k = _ExtractKey{}(__node->_M_v());
      size_type __bkt = _M_bucket_index(__code);

      // Find the node before an equivalent one or use hint if it exists and
      // if it is equivalent.
      __node_base_ptr __prev
	= __builtin_expect(__hint != nullptr, false)
	  && this->_M_equals(__k, __code, *__hint)
	    ? __hint
	    : _M_find_before_node(__bkt, __k, __code);

      if (__prev)
	{
	  // Insert after the node before the equivalent one.
	  __node->_M_nxt = __prev->_M_nxt;
	  __prev->_M_nxt = __node;
	  if (__builtin_expect(__prev == __hint, false))
	    // hint might be the last bucket node, in this case we need to
	    // update next bucket.
	    if (__node->_M_nxt
		&& !this->_M_equals(__k, __code, *__node->_M_next()))
	      {
		size_type __next_bkt = _M_bucket_index(*__node->_M_next());
		if (__next_bkt != __bkt)
		  _M_buckets[__next_bkt] = __node;
	      }
	}
      else
	// The inserted node has no equivalent in the hashtable. We must
	// insert the new node at the beginning of the bucket to preserve
	// equivalent elements' relative positions.
	_M_insert_bucket_begin(__bkt, __node);
      ++_M_element_count;
      return iterator(__node);
    }

  // Insert v if no element with its key is already present.
  template<typename _Key, typename _Value, typename _Alloc,
	   typename _ExtractKey, typename _Equal,
	   typename _Hash, typename _RangeHash, typename _Unused,
	   typename _RehashPolicy, typename _Traits>
    template<typename _Kt, typename _Arg, typename _NodeGenerator>
      auto
      _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
		 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
      _M_insert_unique(_Kt&& __k, _Arg&& __v,
		       const _NodeGenerator& __node_gen)
      -> pair<iterator, bool>
      {
	if (size() <= __small_size_threshold())
	  for (auto __it = begin(); __it != end(); ++__it)
	    if (this->_M_key_equals_tr(__k, *__it._M_cur))
	      return { __it, false };

	__hash_code __code = this->_M_hash_code_tr(__k);
	size_type __bkt = _M_bucket_index(__code);

	if (size() > __small_size_threshold())
	  if (__node_ptr __node = _M_find_node_tr(__bkt, __k, __code))
	    return { iterator(__node), false };

	_Scoped_node __node {
	  __node_builder_t::_S_build(std::forward<_Kt>(__k),
				     std::forward<_Arg>(__v),
				     __node_gen),
	  this
	};
	auto __pos
	  = _M_insert_unique_node(__bkt, __code, __node._M_node);
	__node._M_node = nullptr;
	return { __pos, true };
      }

  // Insert v unconditionally.
  template<typename _Key, typename _Value, typename _Alloc,
	   typename _ExtractKey, typename _Equal,
	   typename _Hash, typename _RangeHash, typename _Unused,
	   typename _RehashPolicy, typename _Traits>
    template<typename _Arg, typename _NodeGenerator>
      auto
      _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
		 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
      _M_insert(const_iterator __hint, _Arg&& __v,
		const _NodeGenerator& __node_gen,
		false_type /* __uks */)
      -> iterator
      {
	// First allocate new node so that we don't do anything if it throws.
	_Scoped_node __node{ __node_gen(std::forward<_Arg>(__v)), this };

	// Second compute the hash code so that we don't rehash if it throws.
	auto __res = this->_M_compute_hash_code(
	  __hint, _ExtractKey{}(__node._M_node->_M_v()));

	auto __pos
	  = _M_insert_multi_node(__res.first._M_cur, __res.second,
				 __node._M_node);
	__node._M_node = nullptr;
	return __pos;
      }

  template<typename _Key, typename _Value, typename _Alloc,
	   typename _ExtractKey, typename _Equal,
	   typename _Hash, typename _RangeHash, typename _Unused,
	   typename _RehashPolicy, typename _Traits>
    auto
    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
    erase(const_iterator __it)
    -> iterator
    {
      __node_ptr __n = __it._M_cur;
      std::size_t __bkt = _M_bucket_index(*__n);

      // Look for previous node to unlink it from the erased one, this
      // is why we need buckets to contain the before begin to make
      // this search fast.
      __node_base_ptr __prev_n = _M_get_previous_node(__bkt, __n);
      return _M_erase(__bkt, __prev_n, __n);
    }

  template<typename _Key, typename _Value, typename _Alloc,
	   typename _ExtractKey, typename _Equal,
	   typename _Hash, typename _RangeHash, typename _Unused,
	   typename _RehashPolicy, typename _Traits>
    auto
    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
    _M_erase(size_type __bkt, __node_base_ptr __prev_n, __node_ptr __n)
    -> iterator
    {
      if (__prev_n == _M_buckets[__bkt])
	_M_remove_bucket_begin(__bkt, __n->_M_next(),
	  __n->_M_nxt ? _M_bucket_index(*__n->_M_next()) : 0);
      else if (__n->_M_nxt)
	{
	  size_type __next_bkt = _M_bucket_index(*__n->_M_next());
	  if (__next_bkt != __bkt)
	    _M_buckets[__next_bkt] = __prev_n;
	}

      __prev_n->_M_nxt = __n->_M_nxt;
      iterator __result(__n->_M_next());
      this->_M_deallocate_node(__n);
      --_M_element_count;

      return __result;
    }

  template<typename _Key, typename _Value, typename _Alloc,
	   typename _ExtractKey, typename _Equal,
	   typename _Hash, typename _RangeHash, typename _Unused,
	   typename _RehashPolicy, typename _Traits>
    auto
    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
    _M_erase(true_type /* __uks */, const key_type& __k)
    -> size_type
    {
      __node_base_ptr __prev_n;
      __node_ptr __n;
      std::size_t __bkt;
      if (size() <= __small_size_threshold())
	{
	  __prev_n = _M_find_before_node(__k);
	  if (!__prev_n)
	    return 0;

	  // We found a matching node, erase it.
	  __n = static_cast<__node_ptr>(__prev_n->_M_nxt);
	  __bkt = _M_bucket_index(*__n);
	}
      else
	{
	  __hash_code __code = this->_M_hash_code(__k);
	  __bkt = _M_bucket_index(__code);

	  // Look for the node before the first matching node.
	  __prev_n = _M_find_before_node(__bkt, __k, __code);
	  if (!__prev_n)
	    return 0;

	  // We found a matching node, erase it.
	  __n = static_cast<__node_ptr>(__prev_n->_M_nxt);
	}

      _M_erase(__bkt, __prev_n, __n);
      return 1;
    }

  template<typename _Key, typename _Value, typename _Alloc,
	   typename _ExtractKey, typename _Equal,
	   typename _Hash, typename _RangeHash, typename _Unused,
	   typename _RehashPolicy, typename _Traits>
    auto
    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
    _M_erase(false_type /* __uks */, const key_type& __k)
    -> size_type
    {
      std::size_t __bkt;
      __node_base_ptr __prev_n;
      __node_ptr __n;
      if (size() <= __small_size_threshold())
	{
	  __prev_n = _M_find_before_node(__k);
	  if (!__prev_n)
	    return 0;

	  // We found a matching node, erase it.
	  __n = static_cast<__node_ptr>(__prev_n->_M_nxt);
	  __bkt = _M_bucket_index(*__n);
	}
      else
	{
	  __hash_code __code = this->_M_hash_code(__k);
	  __bkt = _M_bucket_index(__code);

	  // Look for the node before the first matching node.
	  __prev_n = _M_find_before_node(__bkt, __k, __code);
	  if (!__prev_n)
	    return 0;

	  __n = static_cast<__node_ptr>(__prev_n->_M_nxt);
	}

      // _GLIBCXX_RESOLVE_LIB_DEFECTS
      // 526. Is it undefined if a function in the standard changes
      // in parameters?
      // We use one loop to find all matching nodes and another to deallocate
      // them so that the key stays valid during the first loop. It might be
      // invalidated indirectly when destroying nodes.
      __node_ptr __n_last = __n->_M_next();
      while (__n_last && this->_M_node_equals(*__n, *__n_last))
	__n_last = __n_last->_M_next();

      std::size_t __n_last_bkt = __n_last ? _M_bucket_index(*__n_last) : __bkt;

      // Deallocate nodes.
      size_type __result = 0;
      do
	{
	  __node_ptr __p = __n->_M_next();
	  this->_M_deallocate_node(__n);
	  __n = __p;
	  ++__result;
	}
      while (__n != __n_last);

      _M_element_count -= __result;
      if (__prev_n == _M_buckets[__bkt])
	_M_remove_bucket_begin(__bkt, __n_last, __n_last_bkt);
      else if (__n_last_bkt != __bkt)
	_M_buckets[__n_last_bkt] = __prev_n;
      __prev_n->_M_nxt = __n_last;
      return __result;
    }

  template<typename _Key, typename _Value, typename _Alloc,
	   typename _ExtractKey, typename _Equal,
	   typename _Hash, typename _RangeHash, typename _Unused,
	   typename _RehashPolicy, typename _Traits>
    auto
    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
    erase(const_iterator __first, const_iterator __last)
    -> iterator
    {
      __node_ptr __n = __first._M_cur;
      __node_ptr __last_n = __last._M_cur;
      if (__n == __last_n)
	return iterator(__n);

      std::size_t __bkt = _M_bucket_index(*__n);

      __node_base_ptr __prev_n = _M_get_previous_node(__bkt, __n);
      bool __is_bucket_begin = __n == _M_bucket_begin(__bkt);
      std::size_t __n_bkt = __bkt;
      for (;;)
	{
	  do
	    {
	      __node_ptr __tmp = __n;
	      __n = __n->_M_next();
	      this->_M_deallocate_node(__tmp);
	      --_M_element_count;
	      if (!__n)
		break;
	      __n_bkt = _M_bucket_index(*__n);
	    }
	  while (__n != __last_n && __n_bkt == __bkt);
	  if (__is_bucket_begin)
	    _M_remove_bucket_begin(__bkt, __n, __n_bkt);
	  if (__n == __last_n)
	    break;
	  __is_bucket_begin = true;
	  __bkt = __n_bkt;
	}

      if (__n && (__n_bkt != __bkt || __is_bucket_begin))
	_M_buckets[__n_bkt] = __prev_n;
      __prev_n->_M_nxt = __n;
      return iterator(__n);
    }

  template<typename _Key, typename _Value, typename _Alloc,
	   typename _ExtractKey, typename _Equal,
	   typename _Hash, typename _RangeHash, typename _Unused,
	   typename _RehashPolicy, typename _Traits>
    void
    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
    clear() noexcept
    {
      this->_M_deallocate_nodes(_M_begin());
      __builtin_memset(_M_buckets, 0,
		       _M_bucket_count * sizeof(__node_base_ptr));
      _M_element_count = 0;
      _M_before_begin._M_nxt = nullptr;
    }

  template<typename _Key, typename _Value, typename _Alloc,
	   typename _ExtractKey, typename _Equal,
	   typename _Hash, typename _RangeHash, typename _Unused,
	   typename _RehashPolicy, typename _Traits>
    void
    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
    rehash(size_type __bkt_count)
    {
      const __rehash_state& __saved_state = _M_rehash_policy._M_state();
      __bkt_count
	= std::max(_M_rehash_policy._M_bkt_for_elements(_M_element_count + 1),
		   __bkt_count);
      __bkt_count = _M_rehash_policy._M_next_bkt(__bkt_count);

      if (__bkt_count != _M_bucket_count)
	_M_rehash(__bkt_count, __saved_state);
      else
	// No rehash, restore previous state to keep it consistent with
	// container state.
	_M_rehash_policy._M_reset(__saved_state);
    }

  template<typename _Key, typename _Value, typename _Alloc,
	   typename _ExtractKey, typename _Equal,
	   typename _Hash, typename _RangeHash, typename _Unused,
	   typename _RehashPolicy, typename _Traits>
    void
    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
    _M_rehash(size_type __bkt_count, const __rehash_state& __state)
    {
      __try
	{
	  _M_rehash_aux(__bkt_count, __unique_keys{});
	}
      __catch(...)
	{
	  // A failure here means that buckets allocation failed.  We only
	  // have to restore hash policy previous state.
	  _M_rehash_policy._M_reset(__state);
	  __throw_exception_again;
	}
    }

  // Rehash when there is no equivalent elements.
  template<typename _Key, typename _Value, typename _Alloc,
	   typename _ExtractKey, typename _Equal,
	   typename _Hash, typename _RangeHash, typename _Unused,
	   typename _RehashPolicy, typename _Traits>
    void
    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
    _M_rehash_aux(size_type __bkt_count, true_type /* __uks */)
    {
      __buckets_ptr __new_buckets = _M_allocate_buckets(__bkt_count);
      __node_ptr __p = _M_begin();
      _M_before_begin._M_nxt = nullptr;
      std::size_t __bbegin_bkt = 0;
      while (__p)
	{
	  __node_ptr __next = __p->_M_next();
	  std::size_t __bkt
	    = __hash_code_base::_M_bucket_index(*__p, __bkt_count);
	  if (!__new_buckets[__bkt])
	    {
	      __p->_M_nxt = _M_before_begin._M_nxt;
	      _M_before_begin._M_nxt = __p;
	      __new_buckets[__bkt] = &_M_before_begin;
	      if (__p->_M_nxt)
		__new_buckets[__bbegin_bkt] = __p;
	      __bbegin_bkt = __bkt;
	    }
	  else
	    {
	      __p->_M_nxt = __new_buckets[__bkt]->_M_nxt;
	      __new_buckets[__bkt]->_M_nxt = __p;
	    }

	  __p = __next;
	}

      _M_deallocate_buckets();
      _M_bucket_count = __bkt_count;
      _M_buckets = __new_buckets;
    }

  // Rehash when there can be equivalent elements, preserve their relative
  // order.
  template<typename _Key, typename _Value, typename _Alloc,
	   typename _ExtractKey, typename _Equal,
	   typename _Hash, typename _RangeHash, typename _Unused,
	   typename _RehashPolicy, typename _Traits>
    void
    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
    _M_rehash_aux(size_type __bkt_count, false_type /* __uks */)
    {
      __buckets_ptr __new_buckets = _M_allocate_buckets(__bkt_count);
      __node_ptr __p = _M_begin();
      _M_before_begin._M_nxt = nullptr;
      std::size_t __bbegin_bkt = 0;
      std::size_t __prev_bkt = 0;
      __node_ptr __prev_p = nullptr;
      bool __check_bucket = false;

      while (__p)
	{
	  __node_ptr __next = __p->_M_next();
	  std::size_t __bkt
	    = __hash_code_base::_M_bucket_index(*__p, __bkt_count);

	  if (__prev_p && __prev_bkt == __bkt)
	    {
	      // Previous insert was already in this bucket, we insert after
	      // the previously inserted one to preserve equivalent elements
	      // relative order.
	      __p->_M_nxt = __prev_p->_M_nxt;
	      __prev_p->_M_nxt = __p;

	      // Inserting after a node in a bucket require to check that we
	      // haven't change the bucket last node, in this case next
	      // bucket containing its before begin node must be updated. We
	      // schedule a check as soon as we move out of the sequence of
	      // equivalent nodes to limit the number of checks.
	      __check_bucket = true;
	    }
	  else
	    {
	      if (__check_bucket)
		{
		  // Check if we shall update the next bucket because of
		  // insertions into __prev_bkt bucket.
		  if (__prev_p->_M_nxt)
		    {
		      std::size_t __next_bkt
			= __hash_code_base::_M_bucket_index(
			  *__prev_p->_M_next(), __bkt_count);
		      if (__next_bkt != __prev_bkt)
			__new_buckets[__next_bkt] = __prev_p;
		    }
		  __check_bucket = false;
		}

	      if (!__new_buckets[__bkt])
		{
		  __p->_M_nxt = _M_before_begin._M_nxt;
		  _M_before_begin._M_nxt = __p;
		  __new_buckets[__bkt] = &_M_before_begin;
		  if (__p->_M_nxt)
		    __new_buckets[__bbegin_bkt] = __p;
		  __bbegin_bkt = __bkt;
		}
	      else
		{
		  __p->_M_nxt = __new_buckets[__bkt]->_M_nxt;
		  __new_buckets[__bkt]->_M_nxt = __p;
		}
	    }
	  __prev_p = __p;
	  __prev_bkt = __bkt;
	  __p = __next;
	}

      if (__check_bucket && __prev_p->_M_nxt)
	{
	  std::size_t __next_bkt
	    = __hash_code_base::_M_bucket_index(*__prev_p->_M_next(),
						__bkt_count);
	  if (__next_bkt != __prev_bkt)
	    __new_buckets[__next_bkt] = __prev_p;
	}

      _M_deallocate_buckets();
      _M_bucket_count = __bkt_count;
      _M_buckets = __new_buckets;
    }

#if __cplusplus > 201402L
  template<typename, typename, typename> class _Hash_merge_helper { };
#endif // C++17

#if __cpp_deduction_guides >= 201606
  // Used to constrain deduction guides
  template<typename _Hash>
    using _RequireNotAllocatorOrIntegral
      = __enable_if_t<!__or_<is_integral<_Hash>, __is_allocator<_Hash>>::value>;
#endif

/// @endcond
_GLIBCXX_END_NAMESPACE_VERSION
} // namespace std

#endif // _HASHTABLE_H