neon_mathfun.cpp 12.6 KB
Newer Older
1 2 3 4 5
/**
 * \file dnn/src/arm_common/elemwise/neon_mathfun.cpp
 *
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
6
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
7 8 9 10 11 12 13
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
 *
 * This file has been modified by Megvii ("Megvii Modifications").
14
 * All Megvii Modifications are Copyright (C) 2014-2021 Megvii Inc. All rights
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
 * reserved.
 *
 */

/* NEON implementation of sin, cos, exp and log

   Inspired by Intel Approximate Math library, and based on the
   corresponding algorithms of the cephes math library
*/

/* Copyright (C) 2011  Julien Pommier

  This software is provided 'as-is', without any express or implied
  warranty.  In no event will the authors be held liable for any damages
  arising from the use of this software.

  Permission is granted to anyone to use this software for any purpose,
  including commercial applications, and to alter it and redistribute it
  freely, subject to the following restrictions:

  1. The origin of this software must not be misrepresented; you must not
     claim that you wrote the original software. If you use this software
     in a product, an acknowledgment in the product documentation would be
     appreciated but is not required.
  2. Altered source versions must be plainly marked as such, and must not be
     misrepresented as being the original software.
  3. This notice may not be removed or altered from any source distribution.

  (this is the zlib license)
*/

#include "./neon_mathfun.h"

namespace megdnn {
namespace arm_common {

#define c_inv_mant_mask ~0x7f800000u
#define c_cephes_SQRTHF 0.707106781186547524
#define c_cephes_log_p0 7.0376836292E-2
#define c_cephes_log_p1 -1.1514610310E-1
#define c_cephes_log_p2 1.1676998740E-1
#define c_cephes_log_p3 -1.2420140846E-1
#define c_cephes_log_p4 +1.4249322787E-1
#define c_cephes_log_p5 -1.6668057665E-1
#define c_cephes_log_p6 +2.0000714765E-1
#define c_cephes_log_p7 -2.4999993993E-1
#define c_cephes_log_p8 +3.3333331174E-1
#define c_cephes_log_q1 -2.12194440e-4
#define c_cephes_log_q2 0.693359375

/**
 * natural logarithm computed for 4 simultaneous float return NaN for x <= 0
 */
v4sf log_ps_f32(v4sf x) {
    v4sf one = vdupq_n_f32(1);

M
Megvii Engine Team 已提交
71
    x = vmaxq_f32(x, vdupq_n_f32(0)); /* force flush to zero on denormal values */
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
    v4su invalid_mask = vcleq_f32(x, vdupq_n_f32(0));

    v4si ux = vreinterpretq_s32_f32(x);

    v4si emm0 = vshrq_n_s32(ux, 23);

    /* keep only the fractional part */
    ux = vandq_s32(ux, vdupq_n_s32(c_inv_mant_mask));
    ux = vorrq_s32(ux, vreinterpretq_s32_f32(vdupq_n_f32(0.5f)));
    x = vreinterpretq_f32_s32(ux);

    emm0 = vsubq_s32(emm0, vdupq_n_s32(0x7f));
    v4sf e = vcvtq_f32_s32(emm0);

    e = vaddq_f32(e, one);

    /* part2:
89 90 91 92 93
     *     if( x < SQRTHF ) {
     *       e -= 1;
     *       x = x + x - 1.0;
     *     } else { x = x - 1.0; }
     */
94 95 96
    v4su mask = vcltq_f32(x, vdupq_n_f32(c_cephes_SQRTHF));
    v4sf tmp = vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(x), mask));
    x = vsubq_f32(x, one);
M
Megvii Engine Team 已提交
97 98
    e = vsubq_f32(
            e, vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(one), mask)));
99 100 101 102 103
    x = vaddq_f32(x, tmp);

    v4sf z = vmulq_f32(x, x);

    v4sf y = vdupq_n_f32(c_cephes_log_p0);
104 105 106 107 108 109 110 111
    y = fma_ps_f32(vdupq_n_f32(c_cephes_log_p1), y, x);
    y = fma_ps_f32(vdupq_n_f32(c_cephes_log_p2), y, x);
    y = fma_ps_f32(vdupq_n_f32(c_cephes_log_p3), y, x);
    y = fma_ps_f32(vdupq_n_f32(c_cephes_log_p4), y, x);
    y = fma_ps_f32(vdupq_n_f32(c_cephes_log_p5), y, x);
    y = fma_ps_f32(vdupq_n_f32(c_cephes_log_p6), y, x);
    y = fma_ps_f32(vdupq_n_f32(c_cephes_log_p7), y, x);
    y = fma_ps_f32(vdupq_n_f32(c_cephes_log_p8), y, x);
112 113 114 115
    y = vmulq_f32(y, x);

    y = vmulq_f32(y, z);

116
    y = fma_ps_f32(y, e, vdupq_n_f32(c_cephes_log_q1));
117

118
    y = vmlsq_f32(y, z, vdupq_n_f32(0.5f));
119 120

    x = vaddq_f32(x, y);
121
    x = fma_ps_f32(x, e, vdupq_n_f32(c_cephes_log_q2));
M
Megvii Engine Team 已提交
122
    x = vreinterpretq_f32_u32(vorrq_u32(
123
            vreinterpretq_u32_f32(x), invalid_mask));  // negative arg will be NAN
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
    return x;
}

#define c_exp_hi 88.3762626647949f
#define c_exp_lo -88.3762626647949f

#define c_cephes_LOG2EF 1.44269504088896341
#define c_cephes_exp_C1 0.693359375
#define c_cephes_exp_C2 -2.12194440e-4

#define c_cephes_exp_p0 1.9875691500E-4
#define c_cephes_exp_p1 1.3981999507E-3
#define c_cephes_exp_p2 8.3334519073E-3
#define c_cephes_exp_p3 4.1665795894E-2
#define c_cephes_exp_p4 1.6666665459E-1
#define c_cephes_exp_p5 5.0000001201E-1

/* exp() computed for 4 float at once */
v4sf exp_ps_f32(v4sf x) {
    v4sf tmp, fx;

    v4sf one = vdupq_n_f32(1);
    x = vminq_f32(x, vdupq_n_f32(c_exp_hi));
    x = vmaxq_f32(x, vdupq_n_f32(c_exp_lo));

    /* express exp(x) as exp(g + n*log(2)) */
150
    fx = fma_ps_f32(vdupq_n_f32(0.5f), x, vdupq_n_f32(c_cephes_LOG2EF));
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167

    /* perform a floorf */
    tmp = vcvtq_f32_s32(vcvtq_s32_f32(fx));

    /* if greater, subtract 1 */
    v4su mask = vcgtq_f32(tmp, fx);
    mask = vandq_u32(mask, vreinterpretq_u32_f32(one));

    fx = vsubq_f32(tmp, vreinterpretq_f32_u32(mask));

    tmp = vmulq_f32(fx, vdupq_n_f32(c_cephes_exp_C1));
    v4sf z = vmulq_f32(fx, vdupq_n_f32(c_cephes_exp_C2));
    x = vsubq_f32(x, tmp);
    x = vsubq_f32(x, z);

    z = vmulq_f32(x, x);

168 169 170 171 172 173 174 175
    v4sf y = vdupq_n_f32(c_cephes_exp_p0);
    y = fma_ps_f32(vdupq_n_f32(c_cephes_exp_p1), y, x);
    y = fma_ps_f32(vdupq_n_f32(c_cephes_exp_p2), y, x);
    y = fma_ps_f32(vdupq_n_f32(c_cephes_exp_p3), y, x);
    y = fma_ps_f32(vdupq_n_f32(c_cephes_exp_p4), y, x);
    y = fma_ps_f32(vdupq_n_f32(c_cephes_exp_p5), y, x);

    y = fma_ps_f32(x, y, z);
176 177 178
    y = vaddq_f32(y, one);

    /* build 2^n */
179
    v4si mm;
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
    mm = vcvtq_s32_f32(fx);
    mm = vaddq_s32(mm, vdupq_n_s32(0x7f));
    mm = vshlq_n_s32(mm, 23);
    v4sf pow2n = vreinterpretq_f32_s32(mm);

    y = vmulq_f32(y, pow2n);
    return y;
}

#if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
float16x8_t exp_ps_f16(float16x8_t x) {
    float32x4_t low = vcvt_f32_f16(vget_low_f16(x));
    float32x4_t high = vcvt_f32_f16(vget_high_f16(x));
    low = exp_ps_f32(low);
    high = exp_ps_f32(high);

    return vcombine_f16(vcvt_f16_f32(low), vcvt_f16_f32(high));
}
#endif

#define c_minus_cephes_DP1 -0.78515625
#define c_minus_cephes_DP2 -2.4187564849853515625e-4
#define c_minus_cephes_DP3 -3.77489497744594108e-8
M
Megvii Engine Team 已提交
203 204 205 206 207 208 209
#define c_sincof_p0        -1.9515295891E-4
#define c_sincof_p1        8.3321608736E-3
#define c_sincof_p2        -1.6666654611E-1
#define c_coscof_p0        2.443315711809948E-005
#define c_coscof_p1        -1.388731625493765E-003
#define c_coscof_p2        4.166664568298827E-002
#define c_cephes_FOPI      1.27323954473516  // 4 / M_PI
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225

/* evaluation of 4 sines & cosines at once.

   The code is the exact rewriting of the cephes sinf function.
   Precision is excellent as long as x < 8192 (I did not bother to
   take into account the special handling they have for greater values
   -- it does not return garbage for arguments over 8192, though, but
   the extra precision is missing).

   Note that it is such that sinf((float)M_PI) = 8.74e-8, which is the
   surprising but correct result.

   Note also that when you compute sin(x), cos(x) is available at
   almost no extra price so both sin_ps_f32 and cos_ps_f32 make use of
   sincos_ps_f32..
  */
226 227 228
void sincos_ps_f32(v4sf x, v4sf* ysin, v4sf* ycos) {
    // any x
    v4sf y;
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246

    v4su emm2;

    v4su sign_mask_sin, sign_mask_cos;
    sign_mask_sin = vcltq_f32(x, vdupq_n_f32(0));
    x = vabsq_f32(x);

    /* scale by 4/Pi */
    y = vmulq_f32(x, vdupq_n_f32(c_cephes_FOPI));

    /* store the integer part of y in mm0 */
    emm2 = vcvtq_u32_f32(y);
    /* j=(j+1) & (~1) (see the cephes sources) */
    emm2 = vaddq_u32(emm2, vdupq_n_u32(1));
    emm2 = vandq_u32(emm2, vdupq_n_u32(~1));
    y = vcvtq_f32_u32(emm2);

    /* get the polynom selection mask
247 248 249 250 251
     *     there is one polynom for 0 <= x <= Pi/4
     *     and another one for Pi/4<x<=Pi/2
     *
     *     Both branches will be computed.
     */
252 253 254
    v4su poly_mask = vtstq_u32(emm2, vdupq_n_u32(2));

    /* The magic pass: "Extended precision modular arithmetic"
255 256 257 258
     *     x = ((x - y * DP1) - y * DP2) - y * DP3; */
    x = fma_ps_f32(x, y, vdupq_n_f32(c_minus_cephes_DP1));
    x = fma_ps_f32(x, y, vdupq_n_f32(c_minus_cephes_DP2));
    x = fma_ps_f32(x, y, vdupq_n_f32(c_minus_cephes_DP3));
259 260 261 262 263

    sign_mask_sin = veorq_u32(sign_mask_sin, vtstq_u32(emm2, vdupq_n_u32(4)));
    sign_mask_cos = vtstq_u32(vsubq_u32(emm2, vdupq_n_u32(2)), vdupq_n_u32(4));

    /* Evaluate the first polynom  (0 <= x <= Pi/4) in y1,
264
     *     and the second polynom      (Pi/4 <= x <= 0) in y2 */
265 266 267
    v4sf z = vmulq_f32(x, x);
    v4sf y1, y2;

268 269 270 271
    y1 = fma_ps_f32(vdupq_n_f32(c_coscof_p1), z, vdupq_n_f32(c_coscof_p0));
    y2 = fma_ps_f32(vdupq_n_f32(c_sincof_p1), z, vdupq_n_f32(c_sincof_p0));
    y1 = fma_ps_f32(vdupq_n_f32(c_coscof_p2), y1, z);
    y2 = fma_ps_f32(vdupq_n_f32(c_sincof_p2), y2, z);
272 273 274
    y1 = vmulq_f32(y1, z);
    y2 = vmulq_f32(y2, z);
    y1 = vmulq_f32(y1, z);
275 276
    y1 = vmlsq_f32(y1, z, vdupq_n_f32(0.5f));
    y2 = fma_ps_f32(x, y2, x);
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
    y1 = vaddq_f32(y1, vdupq_n_f32(1));

    /* select the correct result from the two polynoms */
    v4sf ys = vbslq_f32(poly_mask, y1, y2);
    v4sf yc = vbslq_f32(poly_mask, y2, y1);
    *ysin = vbslq_f32(sign_mask_sin, vnegq_f32(ys), ys);
    *ycos = vbslq_f32(sign_mask_cos, yc, vnegq_f32(yc));
}

v4sf sin_ps_f32(v4sf x) {
    v4sf ysin, ycos;
    sincos_ps_f32(x, &ysin, &ycos);
    return ysin;
}

v4sf cos_ps_f32(v4sf x) {
    v4sf ysin, ycos;
    sincos_ps_f32(x, &ysin, &ycos);
    return ycos;
}

v4sf tan_ps_f32(v4sf x) {
    v4sf ysin, ycos;
    sincos_ps_f32(x, &ysin, &ycos);
    return ysin / ycos;
}

#undef c_exp_hi
#undef c_exp_lo
#undef c_cephes_LOG2EF
#undef c_cephes_exp_C1
#undef c_cephes_exp_C2
#undef c_cephes_exp_p0
#undef c_cephes_exp_p1
#undef c_cephes_exp_p2
#undef c_cephes_exp_p3
#undef c_cephes_exp_p4
#undef c_cephes_exp_p5

#undef c_minus_cephes_DP1
#undef c_minus_cephes_DP2
#undef c_minus_cephes_DP3
#undef c_sincof_p0
#undef c_sincof_p1
#undef c_sincof_p2
#undef c_coscof_p0
#undef c_coscof_p1
#undef c_coscof_p2
#undef c_cephes_FOPI

#undef c_inv_mant_mask
#undef c_cephes_SQRTHF
#undef c_cephes_log_p0
#undef c_cephes_log_p1
#undef c_cephes_log_p2
#undef c_cephes_log_p3
#undef c_cephes_log_p4
#undef c_cephes_log_p5
#undef c_cephes_log_p6
#undef c_cephes_log_p7
#undef c_cephes_log_p8
#undef c_cephes_log_q1
#undef c_cephes_log_q2

341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
static const struct {
    float lower_range;
    float upper_range;
    float alpha_9;
    float alpha_7;
    float alpha_5;
    float alpha_3;
    float alpha_1;
    float beta_10;
    float beta_8;
    float beta_6;
    float beta_4;
    float beta_2;
    float beta_0;
    float one_half;
} sigmoid_constants = {
        -18.0f,
        18.0f,
        4.37031012579801e-11f,
        1.15627324459942e-07f,
        6.08574864600143e-05f,
        8.51377133304701e-03f,
        2.48287947061529e-01f,
        6.10247389755681e-13f,
        5.76102136993427e-09f,
        6.29106785017040e-06f,
        1.70198817374094e-03f,
        1.16817656904453e-01f,
        9.93151921023180e-01f,
        0.5f,
};

v4sf sigmoid_ps_f32(v4sf src) {
    auto val = vmaxq_f32(vdupq_n_f32(sigmoid_constants.lower_range), src);
    val = vminq_f32(vdupq_n_f32(sigmoid_constants.upper_range), val);
    auto squared = vmulq_f32(val, val);
377
    auto p = fma_ps_f32(
378 379
            vdupq_n_f32(sigmoid_constants.alpha_7), squared,
            vdupq_n_f32(sigmoid_constants.alpha_9));
380 381 382
    p = fma_ps_f32(vdupq_n_f32(sigmoid_constants.alpha_5), p, squared);
    p = fma_ps_f32(vdupq_n_f32(sigmoid_constants.alpha_3), p, squared);
    p = fma_ps_f32(vdupq_n_f32(sigmoid_constants.alpha_1), p, squared);
383
    p = vmulq_f32(p, val);
384
    auto q = fma_ps_f32(
385 386
            vdupq_n_f32(sigmoid_constants.beta_8), squared,
            vdupq_n_f32(sigmoid_constants.beta_10));
387 388 389 390
    q = fma_ps_f32(vdupq_n_f32(sigmoid_constants.beta_6), q, squared);
    q = fma_ps_f32(vdupq_n_f32(sigmoid_constants.beta_4), q, squared);
    q = fma_ps_f32(vdupq_n_f32(sigmoid_constants.beta_2), q, squared);
    q = fma_ps_f32(vdupq_n_f32(sigmoid_constants.beta_0), q, squared);
391 392 393 394 395 396 397 398 399 400 401 402 403
    return vaddq_f32(div_ps_f32(p, q), vdupq_n_f32(sigmoid_constants.one_half));
}

#if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
float16x8_t sigmoid_ps_f16(float16x8_t x) {
    float32x4_t low = vcvt_f32_f16(vget_low_f16(x));
    float32x4_t high = vcvt_f32_f16(vget_high_f16(x));
    low = sigmoid_ps_f32(low);
    high = sigmoid_ps_f32(high);
    return vcombine_f16(vcvt_f16_f32(low), vcvt_f16_f32(high));
}
#endif

404 405 406 407
}  // namespace arm_common
}  // namespace megdnn

// vim: syntax=cpp.doxygen