stm32f4xx_hal_adc.c 61.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
/**
  ******************************************************************************
  * @file    stm32f4xx_hal_adc.c
  * @author  MCD Application Team
  * @brief   This file provides firmware functions to manage the following 
  *          functionalities of the Analog to Digital Convertor (ADC) peripheral:
  *           + Initialization and de-initialization functions
  *           + IO operation functions
  *           + State and errors functions
  *         
  @verbatim
  ==============================================================================
                    ##### ADC Peripheral features #####
  ==============================================================================
  [..] 
  (#) 12-bit, 10-bit, 8-bit or 6-bit configurable resolution.
  (#) Interrupt generation at the end of conversion, end of injected conversion,  
      and in case of analog watchdog or overrun events
  (#) Single and continuous conversion modes.
  (#) Scan mode for automatic conversion of channel 0 to channel x.
  (#) Data alignment with in-built data coherency.
  (#) Channel-wise programmable sampling time.
  (#) External trigger option with configurable polarity for both regular and 
      injected conversion.
  (#) Dual/Triple mode (on devices with 2 ADCs or more).
  (#) Configurable DMA data storage in Dual/Triple ADC mode. 
  (#) Configurable delay between conversions in Dual/Triple interleaved mode.
  (#) ADC conversion type (refer to the datasheets).
  (#) ADC supply requirements: 2.4 V to 3.6 V at full speed and down to 1.8 V at 
      slower speed.
  (#) ADC input range: VREF(minus) = VIN = VREF(plus).
  (#) DMA request generation during regular channel conversion.


                     ##### How to use this driver #####
  ==============================================================================
  [..]
  (#)Initialize the ADC low level resources by implementing the HAL_ADC_MspInit():
       (##) Enable the ADC interface clock using __HAL_RCC_ADC_CLK_ENABLE()
       (##) ADC pins configuration
             (+++) Enable the clock for the ADC GPIOs using the following function:
                   __HAL_RCC_GPIOx_CLK_ENABLE()  
             (+++) Configure these ADC pins in analog mode using HAL_GPIO_Init() 
       (##) In case of using interrupts (e.g. HAL_ADC_Start_IT())
             (+++) Configure the ADC interrupt priority using HAL_NVIC_SetPriority()
             (+++) Enable the ADC IRQ handler using HAL_NVIC_EnableIRQ()
             (+++) In ADC IRQ handler, call HAL_ADC_IRQHandler()
       (##) In case of using DMA to control data transfer (e.g. HAL_ADC_Start_DMA())
             (+++) Enable the DMAx interface clock using __HAL_RCC_DMAx_CLK_ENABLE()
             (+++) Configure and enable two DMA streams stream for managing data
                 transfer from peripheral to memory (output stream)
             (+++) Associate the initialized DMA handle to the CRYP DMA handle
                 using  __HAL_LINKDMA()
             (+++) Configure the priority and enable the NVIC for the transfer complete
                 interrupt on the two DMA Streams. The output stream should have higher
                 priority than the input stream.
                       
    *** Configuration of ADC, groups regular/injected, channels parameters ***
  ==============================================================================
  [..]
  (#) Configure the ADC parameters (resolution, data alignment, ...)
      and regular group parameters (conversion trigger, sequencer, ...)
      using function HAL_ADC_Init().

  (#) Configure the channels for regular group parameters (channel number, 
      channel rank into sequencer, ..., into regular group)
      using function HAL_ADC_ConfigChannel().

  (#) Optionally, configure the injected group parameters (conversion trigger, 
      sequencer, ..., of injected group)
      and the channels for injected group parameters (channel number, 
      channel rank into sequencer, ..., into injected group)
      using function HAL_ADCEx_InjectedConfigChannel().

  (#) Optionally, configure the analog watchdog parameters (channels
      monitored, thresholds, ...) using function HAL_ADC_AnalogWDGConfig().

  (#) Optionally, for devices with several ADC instances: configure the 
      multimode parameters using function HAL_ADCEx_MultiModeConfigChannel().

                       *** Execution of ADC conversions ***
  ==============================================================================
  [..]  
  (#) ADC driver can be used among three modes: polling, interruption,
      transfer by DMA.    

     *** Polling mode IO operation ***
     =================================
     [..]    
       (+) Start the ADC peripheral using HAL_ADC_Start() 
       (+) Wait for end of conversion using HAL_ADC_PollForConversion(), at this stage
           user can specify the value of timeout according to his end application      
       (+) To read the ADC converted values, use the HAL_ADC_GetValue() function.
       (+) Stop the ADC peripheral using HAL_ADC_Stop()
       
     *** Interrupt mode IO operation ***    
     ===================================
     [..]    
       (+) Start the ADC peripheral using HAL_ADC_Start_IT() 
       (+) Use HAL_ADC_IRQHandler() called under ADC_IRQHandler() Interrupt subroutine
       (+) At ADC end of conversion HAL_ADC_ConvCpltCallback() function is executed and user can 
           add his own code by customization of function pointer HAL_ADC_ConvCpltCallback 
       (+) In case of ADC Error, HAL_ADC_ErrorCallback() function is executed and user can 
           add his own code by customization of function pointer HAL_ADC_ErrorCallback
       (+) Stop the ADC peripheral using HAL_ADC_Stop_IT()     

     *** DMA mode IO operation ***    
     ==============================
     [..]    
       (+) Start the ADC peripheral using HAL_ADC_Start_DMA(), at this stage the user specify the length 
           of data to be transferred at each end of conversion 
       (+) At The end of data transfer by HAL_ADC_ConvCpltCallback() function is executed and user can 
           add his own code by customization of function pointer HAL_ADC_ConvCpltCallback 
       (+) In case of transfer Error, HAL_ADC_ErrorCallback() function is executed and user can 
           add his own code by customization of function pointer HAL_ADC_ErrorCallback
       (+) Stop the ADC peripheral using HAL_ADC_Stop_DMA()
                    
     *** ADC HAL driver macros list ***
     ============================================= 
     [..]
       Below the list of most used macros in ADC HAL driver.
       
      (+) __HAL_ADC_ENABLE : Enable the ADC peripheral
      (+) __HAL_ADC_DISABLE : Disable the ADC peripheral
      (+) __HAL_ADC_ENABLE_IT: Enable the ADC end of conversion interrupt
      (+) __HAL_ADC_DISABLE_IT: Disable the ADC end of conversion interrupt
      (+) __HAL_ADC_GET_IT_SOURCE: Check if the specified ADC interrupt source is enabled or disabled
      (+) __HAL_ADC_CLEAR_FLAG: Clear the ADC's pending flags
      (+) __HAL_ADC_GET_FLAG: Get the selected ADC's flag status
      (+) ADC_GET_RESOLUTION: Return resolution bits in CR1 register 
      
     [..] 
       (@) You can refer to the ADC HAL driver header file for more useful macros 

                      *** Deinitialization of ADC ***
  ==============================================================================
  [..]
  (#) Disable the ADC interface
     (++) ADC clock can be hard reset and disabled at RCC top level.
     (++) Hard reset of ADC peripherals
          using macro __HAL_RCC_ADC_FORCE_RESET(), __HAL_RCC_ADC_RELEASE_RESET().
     (++) ADC clock disable using the equivalent macro/functions as configuration step.
               (+++) Example:
                   Into HAL_ADC_MspDeInit() (recommended code location) or with
                   other device clock parameters configuration:
               (+++) HAL_RCC_GetOscConfig(&RCC_OscInitStructure);
               (+++) RCC_OscInitStructure.OscillatorType = RCC_OSCILLATORTYPE_HSI;
               (+++) RCC_OscInitStructure.HSIState = RCC_HSI_OFF; (if not used for system clock)
               (+++) HAL_RCC_OscConfig(&RCC_OscInitStructure);

  (#) ADC pins configuration
     (++) Disable the clock for the ADC GPIOs using macro __HAL_RCC_GPIOx_CLK_DISABLE()

  (#) Optionally, in case of usage of ADC with interruptions:
     (++) Disable the NVIC for ADC using function HAL_NVIC_DisableIRQ(ADCx_IRQn)

  (#) Optionally, in case of usage of DMA:
        (++) Deinitialize the DMA using function HAL_DMA_DeInit().
        (++) Disable the NVIC for DMA using function HAL_NVIC_DisableIRQ(DMAx_Channelx_IRQn)   

    @endverbatim
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; COPYRIGHT(c) 2017 STMicroelectronics</center></h2>
  *
  * Redistribution and use in source and binary forms, with or without modification,
  * are permitted provided that the following conditions are met:
  *   1. Redistributions of source code must retain the above copyright notice,
  *      this list of conditions and the following disclaimer.
  *   2. Redistributions in binary form must reproduce the above copyright notice,
  *      this list of conditions and the following disclaimer in the documentation
  *      and/or other materials provided with the distribution.
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
  *      may be used to endorse or promote products derived from this software
  *      without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  *
  ******************************************************************************
  */ 

/* Includes ------------------------------------------------------------------*/
#include "stm32f4xx_hal.h"

/** @addtogroup STM32F4xx_HAL_Driver
  * @{
  */

/** @defgroup ADC ADC
  * @brief ADC driver modules
  * @{
  */ 

#ifdef HAL_ADC_MODULE_ENABLED
    
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/** @addtogroup ADC_Private_Functions
  * @{
  */
/* Private function prototypes -----------------------------------------------*/
static void ADC_Init(ADC_HandleTypeDef* hadc);
static void ADC_DMAConvCplt(DMA_HandleTypeDef *hdma);
static void ADC_DMAError(DMA_HandleTypeDef *hdma);
static void ADC_DMAHalfConvCplt(DMA_HandleTypeDef *hdma);
/**
  * @}
  */
/* Exported functions --------------------------------------------------------*/
/** @defgroup ADC_Exported_Functions ADC Exported Functions
  * @{
  */

/** @defgroup ADC_Exported_Functions_Group1 Initialization and de-initialization functions 
 *  @brief    Initialization and Configuration functions 
 *
@verbatim    
 ===============================================================================
              ##### Initialization and de-initialization functions #####
 ===============================================================================
    [..]  This section provides functions allowing to:
      (+) Initialize and configure the ADC. 
      (+) De-initialize the ADC. 
         
@endverbatim
  * @{
  */

/**
  * @brief  Initializes the ADCx peripheral according to the specified parameters 
  *         in the ADC_InitStruct and initializes the ADC MSP.
  *           
  * @note   This function is used to configure the global features of the ADC ( 
  *         ClockPrescaler, Resolution, Data Alignment and number of conversion), however,
  *         the rest of the configuration parameters are specific to the regular
  *         channels group (scan mode activation, continuous mode activation,
  *         External trigger source and edge, DMA continuous request after the  
  *         last transfer and End of conversion selection).
  *             
  * @param  hadc pointer to a ADC_HandleTypeDef structure that contains
  *         the configuration information for the specified ADC.  
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_ADC_Init(ADC_HandleTypeDef* hadc)
{
  HAL_StatusTypeDef tmp_hal_status = HAL_OK;
  
  /* Check ADC handle */
  if(hadc == NULL)
  {
    return HAL_ERROR;
  }
  
  /* Check the parameters */
  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
  assert_param(IS_ADC_CLOCKPRESCALER(hadc->Init.ClockPrescaler));
  assert_param(IS_ADC_RESOLUTION(hadc->Init.Resolution));
  assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ScanConvMode));
  assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode));
  assert_param(IS_ADC_EXT_TRIG(hadc->Init.ExternalTrigConv));
  assert_param(IS_ADC_DATA_ALIGN(hadc->Init.DataAlign));
  assert_param(IS_ADC_REGULAR_LENGTH(hadc->Init.NbrOfConversion));
  assert_param(IS_FUNCTIONAL_STATE(hadc->Init.DMAContinuousRequests));
  assert_param(IS_ADC_EOCSelection(hadc->Init.EOCSelection));
  assert_param(IS_FUNCTIONAL_STATE(hadc->Init.DiscontinuousConvMode));
  
  if(hadc->Init.ExternalTrigConv != ADC_SOFTWARE_START)
  {
    assert_param(IS_ADC_EXT_TRIG_EDGE(hadc->Init.ExternalTrigConvEdge));
  }
  
  if(hadc->State == HAL_ADC_STATE_RESET)
  {
    /* Initialize ADC error code */
    ADC_CLEAR_ERRORCODE(hadc);
    
    /* Allocate lock resource and initialize it */
    hadc->Lock = HAL_UNLOCKED;
    
    /* Init the low level hardware */
    HAL_ADC_MspInit(hadc);
  }
  
  /* Configuration of ADC parameters if previous preliminary actions are      */ 
  /* correctly completed.                                                     */
  if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL))
  {
    /* Set ADC state */
    ADC_STATE_CLR_SET(hadc->State,
                      HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY,
                      HAL_ADC_STATE_BUSY_INTERNAL);
    
    /* Set ADC parameters */
    ADC_Init(hadc);
    
    /* Set ADC error code to none */
    ADC_CLEAR_ERRORCODE(hadc);
    
    /* Set the ADC state */
    ADC_STATE_CLR_SET(hadc->State,
                      HAL_ADC_STATE_BUSY_INTERNAL,
                      HAL_ADC_STATE_READY);
  }
  else
  {
    tmp_hal_status = HAL_ERROR;
  }
  
  /* Release Lock */
  __HAL_UNLOCK(hadc);

  /* Return function status */
  return tmp_hal_status;
}

/**
  * @brief  Deinitializes the ADCx peripheral registers to their default reset values. 
  * @param  hadc pointer to a ADC_HandleTypeDef structure that contains
  *         the configuration information for the specified ADC.  
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_ADC_DeInit(ADC_HandleTypeDef* hadc)
{
  HAL_StatusTypeDef tmp_hal_status = HAL_OK;
  
  /* Check ADC handle */
  if(hadc == NULL)
  {
    return HAL_ERROR;
  }
  
  /* Check the parameters */
  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
  
  /* Set ADC state */
  SET_BIT(hadc->State, HAL_ADC_STATE_BUSY_INTERNAL);
  
  /* Stop potential conversion on going, on regular and injected groups */
  /* Disable ADC peripheral */
  __HAL_ADC_DISABLE(hadc);
  
  /* Configuration of ADC parameters if previous preliminary actions are      */ 
  /* correctly completed.                                                     */
  if(HAL_IS_BIT_CLR(hadc->Instance->CR2, ADC_CR2_ADON))
  {
    /* DeInit the low level hardware */
    HAL_ADC_MspDeInit(hadc);
    
    /* Set ADC error code to none */
    ADC_CLEAR_ERRORCODE(hadc);
    
    /* Set ADC state */
    hadc->State = HAL_ADC_STATE_RESET;
  }
  
  /* Process unlocked */
  __HAL_UNLOCK(hadc);
  
  /* Return function status */
  return tmp_hal_status;
}

/**
  * @brief  Initializes the ADC MSP.
  * @param  hadc pointer to a ADC_HandleTypeDef structure that contains
  *         the configuration information for the specified ADC.  
  * @retval None
  */
__weak void HAL_ADC_MspInit(ADC_HandleTypeDef* hadc)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hadc);
  /* NOTE : This function Should not be modified, when the callback is needed,
            the HAL_ADC_MspInit could be implemented in the user file
   */ 
}

/**
  * @brief  DeInitializes the ADC MSP.
  * @param  hadc pointer to a ADC_HandleTypeDef structure that contains
  *         the configuration information for the specified ADC.  
  * @retval None
  */
__weak void HAL_ADC_MspDeInit(ADC_HandleTypeDef* hadc)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hadc);
  /* NOTE : This function Should not be modified, when the callback is needed,
            the HAL_ADC_MspDeInit could be implemented in the user file
   */ 
}

/**
  * @}
  */

/** @defgroup ADC_Exported_Functions_Group2 IO operation functions
 *  @brief    IO operation functions 
 *
@verbatim   
 ===============================================================================
             ##### IO operation functions #####
 ===============================================================================  
    [..]  This section provides functions allowing to:
      (+) Start conversion of regular channel.
      (+) Stop conversion of regular channel.
      (+) Start conversion of regular channel and enable interrupt.
      (+) Stop conversion of regular channel and disable interrupt.
      (+) Start conversion of regular channel and enable DMA transfer.
      (+) Stop conversion of regular channel and disable DMA transfer.
      (+) Handle ADC interrupt request. 
               
@endverbatim
  * @{
  */

/**
  * @brief  Enables ADC and starts conversion of the regular channels.
  * @param  hadc pointer to a ADC_HandleTypeDef structure that contains
  *         the configuration information for the specified ADC.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_ADC_Start(ADC_HandleTypeDef* hadc)
{
  __IO uint32_t counter = 0U;
  ADC_Common_TypeDef *tmpADC_Common;
  
  /* Check the parameters */
  assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode));
  assert_param(IS_ADC_EXT_TRIG_EDGE(hadc->Init.ExternalTrigConvEdge)); 
  
  /* Process locked */
  __HAL_LOCK(hadc);
  
  /* Enable the ADC peripheral */
  /* Check if ADC peripheral is disabled in order to enable it and wait during 
  Tstab time the ADC's stabilization */
  if((hadc->Instance->CR2 & ADC_CR2_ADON) != ADC_CR2_ADON)
  {  
    /* Enable the Peripheral */
    __HAL_ADC_ENABLE(hadc);
    
    /* Delay for ADC stabilization time */
    /* Compute number of CPU cycles to wait for */
    counter = (ADC_STAB_DELAY_US * (SystemCoreClock / 1000000U));
    while(counter != 0U)
    {
      counter--;
    }
  }
  
  /* Start conversion if ADC is effectively enabled */
  if(HAL_IS_BIT_SET(hadc->Instance->CR2, ADC_CR2_ADON))
  {
    /* Set ADC state                                                          */
    /* - Clear state bitfield related to regular group conversion results     */
    /* - Set state bitfield related to regular group operation                */
    ADC_STATE_CLR_SET(hadc->State,
                      HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_REG_OVR,
                      HAL_ADC_STATE_REG_BUSY);
    
    /* If conversions on group regular are also triggering group injected,    */
    /* update ADC state.                                                      */
    if (READ_BIT(hadc->Instance->CR1, ADC_CR1_JAUTO) != RESET)
    {
      ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY);  
    }
    
    /* State machine update: Check if an injected conversion is ongoing */
    if (HAL_IS_BIT_SET(hadc->State, HAL_ADC_STATE_INJ_BUSY))
    {
      /* Reset ADC error code fields related to conversions on group regular */
      CLEAR_BIT(hadc->ErrorCode, (HAL_ADC_ERROR_OVR | HAL_ADC_ERROR_DMA));         
    }
    else
    {
      /* Reset ADC all error code fields */
      ADC_CLEAR_ERRORCODE(hadc);
    } 

    /* Process unlocked */
    /* Unlock before starting ADC conversions: in case of potential           */
    /* interruption, to let the process to ADC IRQ Handler.                   */
    __HAL_UNLOCK(hadc);

    /* Pointer to the common control register to which is belonging hadc    */
    /* (Depending on STM32F4 product, there may be up to 3 ADCs and 1 common */
    /* control register)                                                    */
    tmpADC_Common = ADC_COMMON_REGISTER(hadc);

    /* Clear regular group conversion flag and overrun flag */
    /* (To ensure of no unknown state from potential previous ADC operations) */
    __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOC | ADC_FLAG_OVR);
    
    /* Check if Multimode enabled */
    if(HAL_IS_BIT_CLR(tmpADC_Common->CCR, ADC_CCR_MULTI))
    {
      /* if no external trigger present enable software conversion of regular channels */
      if((hadc->Instance->CR2 & ADC_CR2_EXTEN) == RESET) 
      {
        /* Enable the selected ADC software conversion for regular group */
        hadc->Instance->CR2 |= (uint32_t)ADC_CR2_SWSTART;
      }
    }
    else
    {
      /* if instance of handle correspond to ADC1 and  no external trigger present enable software conversion of regular channels */
      if((hadc->Instance == ADC1) && ((hadc->Instance->CR2 & ADC_CR2_EXTEN) == RESET))
      {
        /* Enable the selected ADC software conversion for regular group */
          hadc->Instance->CR2 |= (uint32_t)ADC_CR2_SWSTART;
      }
    }
  }
  
  /* Return function status */
  return HAL_OK;
}

/**
  * @brief  Disables ADC and stop conversion of regular channels.
  * 
  * @note   Caution: This function will stop also injected channels.  
  *
  * @param  hadc pointer to a ADC_HandleTypeDef structure that contains
  *         the configuration information for the specified ADC.
  *
  * @retval HAL status.
  */
HAL_StatusTypeDef HAL_ADC_Stop(ADC_HandleTypeDef* hadc)
{
  /* Check the parameters */
  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
  
  /* Process locked */
  __HAL_LOCK(hadc);
  
  /* Stop potential conversion on going, on regular and injected groups */
  /* Disable ADC peripheral */
  __HAL_ADC_DISABLE(hadc);
  
  /* Check if ADC is effectively disabled */
  if(HAL_IS_BIT_CLR(hadc->Instance->CR2, ADC_CR2_ADON))
  {
    /* Set ADC state */
    ADC_STATE_CLR_SET(hadc->State,
                      HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY,
                      HAL_ADC_STATE_READY);
  }
  
  /* Process unlocked */
  __HAL_UNLOCK(hadc);
  
  /* Return function status */
  return HAL_OK;
}

/**
  * @brief  Poll for regular conversion complete
  * @note   ADC conversion flags EOS (end of sequence) and EOC (end of
  *         conversion) are cleared by this function.
  * @note   This function cannot be used in a particular setup: ADC configured 
  *         in DMA mode and polling for end of each conversion (ADC init
  *         parameter "EOCSelection" set to ADC_EOC_SINGLE_CONV).
  *         In this case, DMA resets the flag EOC and polling cannot be
  *         performed on each conversion. Nevertheless, polling can still 
  *         be performed on the complete sequence.
  * @param  hadc pointer to a ADC_HandleTypeDef structure that contains
  *         the configuration information for the specified ADC.
  * @param  Timeout Timeout value in millisecond.  
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_ADC_PollForConversion(ADC_HandleTypeDef* hadc, uint32_t Timeout)
{
  uint32_t tickstart = 0U;
 
  /* Verification that ADC configuration is compliant with polling for      */
  /* each conversion:                                                       */
  /* Particular case is ADC configured in DMA mode and ADC sequencer with   */
  /* several ranks and polling for end of each conversion.                  */
  /* For code simplicity sake, this particular case is generalized to       */
  /* ADC configured in DMA mode and polling for end of each conversion.     */
  if (HAL_IS_BIT_SET(hadc->Instance->CR2, ADC_CR2_EOCS) &&
      HAL_IS_BIT_SET(hadc->Instance->CR2, ADC_CR2_DMA)    )
  {
    /* Update ADC state machine to error */
    SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
    
    /* Process unlocked */
    __HAL_UNLOCK(hadc);
    
    return HAL_ERROR;
  }

  /* Get tick */ 
  tickstart = HAL_GetTick();

  /* Check End of conversion flag */
  while(!(__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_EOC)))
  {
    /* Check if timeout is disabled (set to infinite wait) */
    if(Timeout != HAL_MAX_DELAY)
    {
      if((Timeout == 0U) || ((HAL_GetTick() - tickstart ) > Timeout))
      {
        /* Update ADC state machine to timeout */
        SET_BIT(hadc->State, HAL_ADC_STATE_TIMEOUT);
        
        /* Process unlocked */
        __HAL_UNLOCK(hadc);
        
        return HAL_TIMEOUT;
      }
    }
  }
  
  /* Clear regular group conversion flag */
  __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_STRT | ADC_FLAG_EOC);
  
  /* Update ADC state machine */
  SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC);
  
  /* Determine whether any further conversion upcoming on group regular       */
  /* by external trigger, continuous mode or scan sequence on going.          */
  /* Note: On STM32F4, there is no independent flag of end of sequence.       */
  /*       The test of scan sequence on going is done either with scan        */
  /*       sequence disabled or with end of conversion flag set to            */
  /*       of end of sequence.                                                */
  if(ADC_IS_SOFTWARE_START_REGULAR(hadc)                   &&
     (hadc->Init.ContinuousConvMode == DISABLE)            &&
     (HAL_IS_BIT_CLR(hadc->Instance->SQR1, ADC_SQR1_L) ||
      HAL_IS_BIT_CLR(hadc->Instance->CR2, ADC_CR2_EOCS)  )   )
  {
    /* Set ADC state */
    CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY);   
    
    if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_INJ_BUSY))
    { 
      SET_BIT(hadc->State, HAL_ADC_STATE_READY);
    }
  }
  
  /* Return ADC state */
  return HAL_OK;
}

/**
  * @brief  Poll for conversion event
  * @param  hadc pointer to a ADC_HandleTypeDef structure that contains
  *         the configuration information for the specified ADC.
  * @param  EventType the ADC event type.
  *          This parameter can be one of the following values:
  *            @arg ADC_AWD_EVENT: ADC Analog watch Dog event.
  *            @arg ADC_OVR_EVENT: ADC Overrun event.
  * @param  Timeout Timeout value in millisecond.   
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_ADC_PollForEvent(ADC_HandleTypeDef* hadc, uint32_t EventType, uint32_t Timeout)
{
  uint32_t tickstart = 0U;
  
  /* Check the parameters */
  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
  assert_param(IS_ADC_EVENT_TYPE(EventType));

  /* Get tick */
  tickstart = HAL_GetTick();

  /* Check selected event flag */
  while(!(__HAL_ADC_GET_FLAG(hadc,EventType)))
  {
    /* Check for the Timeout */
    if(Timeout != HAL_MAX_DELAY)
    {
      if((Timeout == 0U) || ((HAL_GetTick() - tickstart ) > Timeout))
      {
        /* Update ADC state machine to timeout */
        SET_BIT(hadc->State, HAL_ADC_STATE_TIMEOUT);
        
        /* Process unlocked */
        __HAL_UNLOCK(hadc);
        
        return HAL_TIMEOUT;
      }
    }
  }
  
  /* Analog watchdog (level out of window) event */
  if(EventType == ADC_AWD_EVENT)
  {
    /* Set ADC state */
    SET_BIT(hadc->State, HAL_ADC_STATE_AWD1);
      
    /* Clear ADC analog watchdog flag */
    __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD);
  }
  /* Overrun event */
  else
  {
    /* Set ADC state */
    SET_BIT(hadc->State, HAL_ADC_STATE_REG_OVR);
    /* Set ADC error code to overrun */
    SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_OVR);
    
    /* Clear ADC overrun flag */
    __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_OVR);
  }
  
  /* Return ADC state */
  return HAL_OK;
}


/**
  * @brief  Enables the interrupt and starts ADC conversion of regular channels.
  * @param  hadc pointer to a ADC_HandleTypeDef structure that contains
  *         the configuration information for the specified ADC.
  * @retval HAL status.
  */
HAL_StatusTypeDef HAL_ADC_Start_IT(ADC_HandleTypeDef* hadc)
{
  __IO uint32_t counter = 0U;
  ADC_Common_TypeDef *tmpADC_Common;
  
  /* Check the parameters */
  assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode));
  assert_param(IS_ADC_EXT_TRIG_EDGE(hadc->Init.ExternalTrigConvEdge)); 
  
  /* Process locked */
  __HAL_LOCK(hadc);
  
  /* Enable the ADC peripheral */
  /* Check if ADC peripheral is disabled in order to enable it and wait during 
  Tstab time the ADC's stabilization */
  if((hadc->Instance->CR2 & ADC_CR2_ADON) != ADC_CR2_ADON)
  {  
    /* Enable the Peripheral */
    __HAL_ADC_ENABLE(hadc);
    
    /* Delay for ADC stabilization time */
    /* Compute number of CPU cycles to wait for */
    counter = (ADC_STAB_DELAY_US * (SystemCoreClock / 1000000U));
    while(counter != 0U)
    {
      counter--;
    }
  }
  
  /* Start conversion if ADC is effectively enabled */
  if(HAL_IS_BIT_SET(hadc->Instance->CR2, ADC_CR2_ADON))
  {
    /* Set ADC state                                                          */
    /* - Clear state bitfield related to regular group conversion results     */
    /* - Set state bitfield related to regular group operation                */
    ADC_STATE_CLR_SET(hadc->State,
                      HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_REG_OVR,
                      HAL_ADC_STATE_REG_BUSY);
    
    /* If conversions on group regular are also triggering group injected,    */
    /* update ADC state.                                                      */
    if (READ_BIT(hadc->Instance->CR1, ADC_CR1_JAUTO) != RESET)
    {
      ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY);  
    }
    
    /* State machine update: Check if an injected conversion is ongoing */
    if (HAL_IS_BIT_SET(hadc->State, HAL_ADC_STATE_INJ_BUSY))
    {
      /* Reset ADC error code fields related to conversions on group regular */
      CLEAR_BIT(hadc->ErrorCode, (HAL_ADC_ERROR_OVR | HAL_ADC_ERROR_DMA));         
    }
    else
    {
      /* Reset ADC all error code fields */
      ADC_CLEAR_ERRORCODE(hadc);
    }

    /* Process unlocked */
    /* Unlock before starting ADC conversions: in case of potential           */
    /* interruption, to let the process to ADC IRQ Handler.                   */
    __HAL_UNLOCK(hadc);

    /* Pointer to the common control register to which is belonging hadc    */
    /* (Depending on STM32F4 product, there may be up to 3 ADCs and 1 common */
    /* control register)                                                    */
    tmpADC_Common = ADC_COMMON_REGISTER(hadc);

    /* Clear regular group conversion flag and overrun flag */
    /* (To ensure of no unknown state from potential previous ADC operations) */
    __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOC | ADC_FLAG_OVR);
    
    /* Enable end of conversion interrupt for regular group */
    __HAL_ADC_ENABLE_IT(hadc, (ADC_IT_EOC | ADC_IT_OVR));
    
    /* Check if Multimode enabled */
    if(HAL_IS_BIT_CLR(tmpADC_Common->CCR, ADC_CCR_MULTI))
    {
      /* if no external trigger present enable software conversion of regular channels */
      if((hadc->Instance->CR2 & ADC_CR2_EXTEN) == RESET) 
      {
        /* Enable the selected ADC software conversion for regular group */
        hadc->Instance->CR2 |= (uint32_t)ADC_CR2_SWSTART;
      }
    }
    else
    {
      /* if instance of handle correspond to ADC1 and  no external trigger present enable software conversion of regular channels */
      if((hadc->Instance == ADC1) && ((hadc->Instance->CR2 & ADC_CR2_EXTEN) == RESET))
      {
        /* Enable the selected ADC software conversion for regular group */
          hadc->Instance->CR2 |= (uint32_t)ADC_CR2_SWSTART;
      }
    }
  }
  
  /* Return function status */
  return HAL_OK;
}

/**
  * @brief  Disables the interrupt and stop ADC conversion of regular channels.
  * 
  * @note   Caution: This function will stop also injected channels.  
  *
  * @param  hadc pointer to a ADC_HandleTypeDef structure that contains
  *         the configuration information for the specified ADC.
  * @retval HAL status.
  */
HAL_StatusTypeDef HAL_ADC_Stop_IT(ADC_HandleTypeDef* hadc)
{
  /* Check the parameters */
  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
  
  /* Process locked */
  __HAL_LOCK(hadc);
  
  /* Stop potential conversion on going, on regular and injected groups */
  /* Disable ADC peripheral */
  __HAL_ADC_DISABLE(hadc);
  
  /* Check if ADC is effectively disabled */
  if(HAL_IS_BIT_CLR(hadc->Instance->CR2, ADC_CR2_ADON))
  {
  	/* Disable ADC end of conversion interrupt for regular group */
    __HAL_ADC_DISABLE_IT(hadc, (ADC_IT_EOC | ADC_IT_OVR));

    /* Set ADC state */
    ADC_STATE_CLR_SET(hadc->State,
                      HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY,
                      HAL_ADC_STATE_READY);
  }
  
  /* Process unlocked */
  __HAL_UNLOCK(hadc);
  
  /* Return function status */
  return HAL_OK;
}

/**
  * @brief  Handles ADC interrupt request  
  * @param  hadc pointer to a ADC_HandleTypeDef structure that contains
  *         the configuration information for the specified ADC.
  * @retval None
  */
void HAL_ADC_IRQHandler(ADC_HandleTypeDef* hadc)
{
  uint32_t tmp1 = 0U, tmp2 = 0U;
  
  /* Check the parameters */
  assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode));
  assert_param(IS_ADC_REGULAR_LENGTH(hadc->Init.NbrOfConversion));
  assert_param(IS_ADC_EOCSelection(hadc->Init.EOCSelection));
  
  tmp1 = __HAL_ADC_GET_FLAG(hadc, ADC_FLAG_EOC);
  tmp2 = __HAL_ADC_GET_IT_SOURCE(hadc, ADC_IT_EOC);
  /* Check End of conversion flag for regular channels */
  if(tmp1 && tmp2)
  {
    /* Update state machine on conversion status if not in error state */
    if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL))
    {
      /* Set ADC state */
      SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC); 
    }
    
    /* Determine whether any further conversion upcoming on group regular   */
    /* by external trigger, continuous mode or scan sequence on going.      */
    /* Note: On STM32F4, there is no independent flag of end of sequence.   */
    /*       The test of scan sequence on going is done either with scan    */
    /*       sequence disabled or with end of conversion flag set to        */
    /*       of end of sequence.                                            */
    if(ADC_IS_SOFTWARE_START_REGULAR(hadc)                   &&
       (hadc->Init.ContinuousConvMode == DISABLE)            &&
       (HAL_IS_BIT_CLR(hadc->Instance->SQR1, ADC_SQR1_L) || 
        HAL_IS_BIT_CLR(hadc->Instance->CR2, ADC_CR2_EOCS)  )   )
    {
      /* Disable ADC end of single conversion interrupt on group regular */
      /* Note: Overrun interrupt was enabled with EOC interrupt in          */
      /* HAL_ADC_Start_IT(), but is not disabled here because can be used   */
      /* by overrun IRQ process below.                                      */
      __HAL_ADC_DISABLE_IT(hadc, ADC_IT_EOC);
      
      /* Set ADC state */
      CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY);
      
      if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_INJ_BUSY))
      {
        SET_BIT(hadc->State, HAL_ADC_STATE_READY);
      }
    }
    
    /* Conversion complete callback */ 
    HAL_ADC_ConvCpltCallback(hadc);
    
    /* Clear regular group conversion flag */
    __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_STRT | ADC_FLAG_EOC);
  }
  
  tmp1 = __HAL_ADC_GET_FLAG(hadc, ADC_FLAG_JEOC);
  tmp2 = __HAL_ADC_GET_IT_SOURCE(hadc, ADC_IT_JEOC);                               
  /* Check End of conversion flag for injected channels */
  if(tmp1 && tmp2)
  {
    /* Update state machine on conversion status if not in error state */
    if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL))
    {
      /* Set ADC state */
      SET_BIT(hadc->State, HAL_ADC_STATE_INJ_EOC);
    }

    /* Determine whether any further conversion upcoming on group injected  */
    /* by external trigger, scan sequence on going or by automatic injected */
    /* conversion from group regular (same conditions as group regular      */
    /* interruption disabling above).                                       */
    if(ADC_IS_SOFTWARE_START_INJECTED(hadc)                    &&
       (HAL_IS_BIT_CLR(hadc->Instance->JSQR, ADC_JSQR_JL)  ||
        HAL_IS_BIT_CLR(hadc->Instance->CR2, ADC_CR2_EOCS)    ) &&
       (HAL_IS_BIT_CLR(hadc->Instance->CR1, ADC_CR1_JAUTO) &&
        (ADC_IS_SOFTWARE_START_REGULAR(hadc)       &&
        (hadc->Init.ContinuousConvMode == DISABLE)   )       )   )
    {
      /* Disable ADC end of single conversion interrupt on group injected */
      __HAL_ADC_DISABLE_IT(hadc, ADC_IT_JEOC);
      
      /* Set ADC state */
      CLEAR_BIT(hadc->State, HAL_ADC_STATE_INJ_BUSY);   

      if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_REG_BUSY))
      { 
        SET_BIT(hadc->State, HAL_ADC_STATE_READY);
      }
    }

    /* Conversion complete callback */ 
    HAL_ADCEx_InjectedConvCpltCallback(hadc);
    
    /* Clear injected group conversion flag */
    __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_JSTRT | ADC_FLAG_JEOC));
  }
  
  tmp1 = __HAL_ADC_GET_FLAG(hadc, ADC_FLAG_AWD);
  tmp2 = __HAL_ADC_GET_IT_SOURCE(hadc, ADC_IT_AWD);                          
  /* Check Analog watchdog flag */
  if(tmp1 && tmp2)
  {
    if(__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_AWD))
    {
      /* Set ADC state */
      SET_BIT(hadc->State, HAL_ADC_STATE_AWD1);
      
      /* Level out of window callback */ 
      HAL_ADC_LevelOutOfWindowCallback(hadc);
      
      /* Clear the ADC analog watchdog flag */
      __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD);
    }
  }
  
  tmp1 = __HAL_ADC_GET_FLAG(hadc, ADC_FLAG_OVR);
  tmp2 = __HAL_ADC_GET_IT_SOURCE(hadc, ADC_IT_OVR);
  /* Check Overrun flag */
  if(tmp1 && tmp2)
  {
    /* Note: On STM32F4, ADC overrun can be set through other parameters    */
    /*       refer to description of parameter "EOCSelection" for more      */
    /*       details.                                                       */
    
    /* Set ADC error code to overrun */
    SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_OVR);
    
    /* Clear ADC overrun flag */
    __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_OVR);
    
    /* Error callback */ 
    HAL_ADC_ErrorCallback(hadc);
    
    /* Clear the Overrun flag */
    __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_OVR);
  }
}

/**
  * @brief  Enables ADC DMA request after last transfer (Single-ADC mode) and enables ADC peripheral  
  * @param  hadc pointer to a ADC_HandleTypeDef structure that contains
  *         the configuration information for the specified ADC.
  * @param  pData The destination Buffer address.
  * @param  Length The length of data to be transferred from ADC peripheral to memory.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_ADC_Start_DMA(ADC_HandleTypeDef* hadc, uint32_t* pData, uint32_t Length)
{
  __IO uint32_t counter = 0U;
  ADC_Common_TypeDef *tmpADC_Common;
  
  /* Check the parameters */
  assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode));
  assert_param(IS_ADC_EXT_TRIG_EDGE(hadc->Init.ExternalTrigConvEdge)); 
  
  /* Process locked */
  __HAL_LOCK(hadc);
  
  /* Enable the ADC peripheral */
  /* Check if ADC peripheral is disabled in order to enable it and wait during 
  Tstab time the ADC's stabilization */
  if((hadc->Instance->CR2 & ADC_CR2_ADON) != ADC_CR2_ADON)
  {  
    /* Enable the Peripheral */
    __HAL_ADC_ENABLE(hadc);
    
    /* Delay for ADC stabilization time */
    /* Compute number of CPU cycles to wait for */
    counter = (ADC_STAB_DELAY_US * (SystemCoreClock / 1000000U));
    while(counter != 0U)
    {
      counter--;
    }
  }
  
  /* Start conversion if ADC is effectively enabled */
  if(HAL_IS_BIT_SET(hadc->Instance->CR2, ADC_CR2_ADON))
  {
    /* Set ADC state                                                          */
    /* - Clear state bitfield related to regular group conversion results     */
    /* - Set state bitfield related to regular group operation                */
    ADC_STATE_CLR_SET(hadc->State,
                      HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_REG_OVR,
                      HAL_ADC_STATE_REG_BUSY);
    
    /* If conversions on group regular are also triggering group injected,    */
    /* update ADC state.                                                      */
    if (READ_BIT(hadc->Instance->CR1, ADC_CR1_JAUTO) != RESET)
    {
      ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY);  
    }
    
    /* State machine update: Check if an injected conversion is ongoing */
    if (HAL_IS_BIT_SET(hadc->State, HAL_ADC_STATE_INJ_BUSY))
    {
      /* Reset ADC error code fields related to conversions on group regular */
      CLEAR_BIT(hadc->ErrorCode, (HAL_ADC_ERROR_OVR | HAL_ADC_ERROR_DMA));         
    }
    else
    {
      /* Reset ADC all error code fields */
      ADC_CLEAR_ERRORCODE(hadc);
    }

    /* Process unlocked */
    /* Unlock before starting ADC conversions: in case of potential           */
    /* interruption, to let the process to ADC IRQ Handler.                   */
    __HAL_UNLOCK(hadc);   

    /* Pointer to the common control register to which is belonging hadc    */
    /* (Depending on STM32F4 product, there may be up to 3 ADCs and 1 common */
    /* control register)                                                    */
    tmpADC_Common = ADC_COMMON_REGISTER(hadc);

    /* Set the DMA transfer complete callback */
    hadc->DMA_Handle->XferCpltCallback = ADC_DMAConvCplt;

    /* Set the DMA half transfer complete callback */
    hadc->DMA_Handle->XferHalfCpltCallback = ADC_DMAHalfConvCplt;
    
    /* Set the DMA error callback */
    hadc->DMA_Handle->XferErrorCallback = ADC_DMAError;

    
    /* Manage ADC and DMA start: ADC overrun interruption, DMA start, ADC     */
    /* start (in case of SW start):                                           */
    
    /* Clear regular group conversion flag and overrun flag */
    /* (To ensure of no unknown state from potential previous ADC operations) */
    __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOC | ADC_FLAG_OVR);

    /* Enable ADC overrun interrupt */
    __HAL_ADC_ENABLE_IT(hadc, ADC_IT_OVR);
    
    /* Enable ADC DMA mode */
    hadc->Instance->CR2 |= ADC_CR2_DMA;
    
    /* Start the DMA channel */
    HAL_DMA_Start_IT(hadc->DMA_Handle, (uint32_t)&hadc->Instance->DR, (uint32_t)pData, Length);
    
    /* Check if Multimode enabled */
    if(HAL_IS_BIT_CLR(tmpADC_Common->CCR, ADC_CCR_MULTI))
    {
      /* if no external trigger present enable software conversion of regular channels */
      if((hadc->Instance->CR2 & ADC_CR2_EXTEN) == RESET) 
      {
        /* Enable the selected ADC software conversion for regular group */
        hadc->Instance->CR2 |= (uint32_t)ADC_CR2_SWSTART;
      }
    }
    else
    {
      /* if instance of handle correspond to ADC1 and  no external trigger present enable software conversion of regular channels */
      if((hadc->Instance == ADC1) && ((hadc->Instance->CR2 & ADC_CR2_EXTEN) == RESET))
      {
        /* Enable the selected ADC software conversion for regular group */
          hadc->Instance->CR2 |= (uint32_t)ADC_CR2_SWSTART;
      }
    }
  }
  
  /* Return function status */
  return HAL_OK;
}

/**
  * @brief  Disables ADC DMA (Single-ADC mode) and disables ADC peripheral    
  * @param  hadc pointer to a ADC_HandleTypeDef structure that contains
  *         the configuration information for the specified ADC.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_ADC_Stop_DMA(ADC_HandleTypeDef* hadc)
{
  HAL_StatusTypeDef tmp_hal_status = HAL_OK;
  
  /* Check the parameters */
  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
  
  /* Process locked */
  __HAL_LOCK(hadc);
  
  /* Stop potential conversion on going, on regular and injected groups */
  /* Disable ADC peripheral */
  __HAL_ADC_DISABLE(hadc);
  
  /* Check if ADC is effectively disabled */
  if(HAL_IS_BIT_CLR(hadc->Instance->CR2, ADC_CR2_ADON))
  {
    /* Disable the selected ADC DMA mode */
    hadc->Instance->CR2 &= ~ADC_CR2_DMA;
    
    /* Disable the DMA channel (in case of DMA in circular mode or stop while */
    /* DMA transfer is on going)                                              */
    tmp_hal_status = HAL_DMA_Abort(hadc->DMA_Handle);
    
    /* Disable ADC overrun interrupt */
    __HAL_ADC_DISABLE_IT(hadc, ADC_IT_OVR);
    
    /* Set ADC state */
    ADC_STATE_CLR_SET(hadc->State,
                      HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY,
                      HAL_ADC_STATE_READY);
  }
  
  /* Process unlocked */
  __HAL_UNLOCK(hadc);
  
  /* Return function status */
  return tmp_hal_status;
}

/**
  * @brief  Gets the converted value from data register of regular channel.
  * @param  hadc pointer to a ADC_HandleTypeDef structure that contains
  *         the configuration information for the specified ADC.
  * @retval Converted value
  */
uint32_t HAL_ADC_GetValue(ADC_HandleTypeDef* hadc)
{       
  /* Return the selected ADC converted value */ 
  return hadc->Instance->DR;
}

/**
  * @brief  Regular conversion complete callback in non blocking mode 
  * @param  hadc pointer to a ADC_HandleTypeDef structure that contains
  *         the configuration information for the specified ADC.
  * @retval None
  */
__weak void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hadc);
  /* NOTE : This function Should not be modified, when the callback is needed,
            the HAL_ADC_ConvCpltCallback could be implemented in the user file
   */
}

/**
  * @brief  Regular conversion half DMA transfer callback in non blocking mode 
  * @param  hadc pointer to a ADC_HandleTypeDef structure that contains
  *         the configuration information for the specified ADC.
  * @retval None
  */
__weak void HAL_ADC_ConvHalfCpltCallback(ADC_HandleTypeDef* hadc)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hadc);
  /* NOTE : This function Should not be modified, when the callback is needed,
            the HAL_ADC_ConvHalfCpltCallback could be implemented in the user file
   */
}

/**
  * @brief  Analog watchdog callback in non blocking mode 
  * @param  hadc pointer to a ADC_HandleTypeDef structure that contains
  *         the configuration information for the specified ADC.
  * @retval None
  */
__weak void HAL_ADC_LevelOutOfWindowCallback(ADC_HandleTypeDef* hadc)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hadc);
  /* NOTE : This function Should not be modified, when the callback is needed,
            the HAL_ADC_LevelOoutOfWindowCallback could be implemented in the user file
   */
}

/**
  * @brief  Error ADC callback.
  * @note   In case of error due to overrun when using ADC with DMA transfer 
  *         (HAL ADC handle paramater "ErrorCode" to state "HAL_ADC_ERROR_OVR"):
  *         - Reinitialize the DMA using function "HAL_ADC_Stop_DMA()".
  *         - If needed, restart a new ADC conversion using function
  *           "HAL_ADC_Start_DMA()"
  *           (this function is also clearing overrun flag)
  * @param  hadc pointer to a ADC_HandleTypeDef structure that contains
  *         the configuration information for the specified ADC.
  * @retval None
  */
__weak void HAL_ADC_ErrorCallback(ADC_HandleTypeDef *hadc)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hadc);
  /* NOTE : This function Should not be modified, when the callback is needed,
            the HAL_ADC_ErrorCallback could be implemented in the user file
   */
}

/**
  * @}
  */
  
/** @defgroup ADC_Exported_Functions_Group3 Peripheral Control functions
 *  @brief   	Peripheral Control functions 
 *
@verbatim   
 ===============================================================================
             ##### Peripheral Control functions #####
 ===============================================================================  
    [..]  This section provides functions allowing to:
      (+) Configure regular channels. 
      (+) Configure injected channels.
      (+) Configure multimode.
      (+) Configure the analog watch dog.
      
@endverbatim
  * @{
  */

  /**
  * @brief  Configures for the selected ADC regular channel its corresponding
  *         rank in the sequencer and its sample time.
  * @param  hadc pointer to a ADC_HandleTypeDef structure that contains
  *         the configuration information for the specified ADC.
  * @param  sConfig ADC configuration structure. 
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_ADC_ConfigChannel(ADC_HandleTypeDef* hadc, ADC_ChannelConfTypeDef* sConfig)
{
  __IO uint32_t counter = 0U;
  ADC_Common_TypeDef *tmpADC_Common;
  
  /* Check the parameters */
  assert_param(IS_ADC_CHANNEL(sConfig->Channel));
  assert_param(IS_ADC_REGULAR_RANK(sConfig->Rank));
  assert_param(IS_ADC_SAMPLE_TIME(sConfig->SamplingTime));
  
  /* Process locked */
  __HAL_LOCK(hadc);
    
  /* if ADC_Channel_10 ... ADC_Channel_18 is selected */
  if (sConfig->Channel > ADC_CHANNEL_9)
  {
    /* Clear the old sample time */
    hadc->Instance->SMPR1 &= ~ADC_SMPR1(ADC_SMPR1_SMP10, sConfig->Channel);
    
    /* Set the new sample time */
    hadc->Instance->SMPR1 |= ADC_SMPR1(sConfig->SamplingTime, sConfig->Channel);
  }
  else /* ADC_Channel include in ADC_Channel_[0..9] */
  {
    /* Clear the old sample time */
    hadc->Instance->SMPR2 &= ~ADC_SMPR2(ADC_SMPR2_SMP0, sConfig->Channel);
    
    /* Set the new sample time */
    hadc->Instance->SMPR2 |= ADC_SMPR2(sConfig->SamplingTime, sConfig->Channel);
  }
  
  /* For Rank 1 to 6 */
  if (sConfig->Rank < 7U)
  {
    /* Clear the old SQx bits for the selected rank */
    hadc->Instance->SQR3 &= ~ADC_SQR3_RK(ADC_SQR3_SQ1, sConfig->Rank);
    
    /* Set the SQx bits for the selected rank */
    hadc->Instance->SQR3 |= ADC_SQR3_RK(sConfig->Channel, sConfig->Rank);
  }
  /* For Rank 7 to 12 */
  else if (sConfig->Rank < 13U)
  {
    /* Clear the old SQx bits for the selected rank */
    hadc->Instance->SQR2 &= ~ADC_SQR2_RK(ADC_SQR2_SQ7, sConfig->Rank);
    
    /* Set the SQx bits for the selected rank */
    hadc->Instance->SQR2 |= ADC_SQR2_RK(sConfig->Channel, sConfig->Rank);
  }
  /* For Rank 13 to 16 */
  else
  {
    /* Clear the old SQx bits for the selected rank */
    hadc->Instance->SQR1 &= ~ADC_SQR1_RK(ADC_SQR1_SQ13, sConfig->Rank);
    
    /* Set the SQx bits for the selected rank */
    hadc->Instance->SQR1 |= ADC_SQR1_RK(sConfig->Channel, sConfig->Rank);
  }

    /* Pointer to the common control register to which is belonging hadc    */
    /* (Depending on STM32F4 product, there may be up to 3 ADCs and 1 common */
    /* control register)                                                    */
    tmpADC_Common = ADC_COMMON_REGISTER(hadc);

  /* if ADC1 Channel_18 is selected enable VBAT Channel */
  if ((hadc->Instance == ADC1) && (sConfig->Channel == ADC_CHANNEL_VBAT))
  {
    /* Enable the VBAT channel*/
    tmpADC_Common->CCR |= ADC_CCR_VBATE;
  }
  
  /* if ADC1 Channel_16 or Channel_17 is selected enable TSVREFE Channel(Temperature sensor and VREFINT) */
  if ((hadc->Instance == ADC1) && ((sConfig->Channel == ADC_CHANNEL_TEMPSENSOR) || (sConfig->Channel == ADC_CHANNEL_VREFINT)))
  {
    /* Enable the TSVREFE channel*/
    tmpADC_Common->CCR |= ADC_CCR_TSVREFE;
    
    if((sConfig->Channel == ADC_CHANNEL_TEMPSENSOR))
    {
      /* Delay for temperature sensor stabilization time */
      /* Compute number of CPU cycles to wait for */
      counter = (ADC_TEMPSENSOR_DELAY_US * (SystemCoreClock / 1000000U));
      while(counter != 0U)
      {
        counter--;
      }
    }
  }
  
  /* Process unlocked */
  __HAL_UNLOCK(hadc);
  
  /* Return function status */
  return HAL_OK;
}

/**
  * @brief  Configures the analog watchdog.
  * @note Analog watchdog thresholds can be modified while ADC conversion
  * is on going.
  * In this case, some constraints must be taken into account:
  * The programmed threshold values are effective from the next
  * ADC EOC (end of unitary conversion).
  * Considering that registers write delay may happen due to
  * bus activity, this might cause an uncertainty on the
  * effective timing of the new programmed threshold values.
  * @param  hadc pointer to a ADC_HandleTypeDef structure that contains
  *         the configuration information for the specified ADC.
  * @param  AnalogWDGConfig  pointer to an ADC_AnalogWDGConfTypeDef structure 
  *         that contains the configuration information of ADC analog watchdog.
  * @retval HAL status	  
  */
HAL_StatusTypeDef HAL_ADC_AnalogWDGConfig(ADC_HandleTypeDef* hadc, ADC_AnalogWDGConfTypeDef* AnalogWDGConfig)
{
#ifdef USE_FULL_ASSERT  
  uint32_t tmp = 0U;
#endif /* USE_FULL_ASSERT  */  
  
  /* Check the parameters */
  assert_param(IS_ADC_ANALOG_WATCHDOG(AnalogWDGConfig->WatchdogMode));
  assert_param(IS_ADC_CHANNEL(AnalogWDGConfig->Channel));
  assert_param(IS_FUNCTIONAL_STATE(AnalogWDGConfig->ITMode));

#ifdef USE_FULL_ASSERT  
  tmp = ADC_GET_RESOLUTION(hadc);
  assert_param(IS_ADC_RANGE(tmp, AnalogWDGConfig->HighThreshold));
  assert_param(IS_ADC_RANGE(tmp, AnalogWDGConfig->LowThreshold));
#endif /* USE_FULL_ASSERT  */
  
  /* Process locked */
  __HAL_LOCK(hadc);
  
  if(AnalogWDGConfig->ITMode == ENABLE)
  {
    /* Enable the ADC Analog watchdog interrupt */
    __HAL_ADC_ENABLE_IT(hadc, ADC_IT_AWD);
  }
  else
  {
    /* Disable the ADC Analog watchdog interrupt */
    __HAL_ADC_DISABLE_IT(hadc, ADC_IT_AWD);
  }
  
  /* Clear AWDEN, JAWDEN and AWDSGL bits */
  hadc->Instance->CR1 &=  ~(ADC_CR1_AWDSGL | ADC_CR1_JAWDEN | ADC_CR1_AWDEN);
  
  /* Set the analog watchdog enable mode */
  hadc->Instance->CR1 |= AnalogWDGConfig->WatchdogMode;
  
  /* Set the high threshold */
  hadc->Instance->HTR = AnalogWDGConfig->HighThreshold;
  
  /* Set the low threshold */
  hadc->Instance->LTR = AnalogWDGConfig->LowThreshold;
  
  /* Clear the Analog watchdog channel select bits */
  hadc->Instance->CR1 &= ~ADC_CR1_AWDCH;
  
  /* Set the Analog watchdog channel */
  hadc->Instance->CR1 |= (uint32_t)((uint16_t)(AnalogWDGConfig->Channel));
  
  /* Process unlocked */
  __HAL_UNLOCK(hadc);
  
  /* Return function status */
  return HAL_OK;
}

/**
  * @}
  */

/** @defgroup ADC_Exported_Functions_Group4 ADC Peripheral State functions
 *  @brief   ADC Peripheral State functions 
 *
@verbatim   
 ===============================================================================
            ##### Peripheral State and errors functions #####
 ===============================================================================  
    [..]
    This subsection provides functions allowing to
      (+) Check the ADC state
      (+) Check the ADC Error
         
@endverbatim
  * @{
  */
  
/**
  * @brief  return the ADC state
  * @param  hadc pointer to a ADC_HandleTypeDef structure that contains
  *         the configuration information for the specified ADC.
  * @retval HAL state
  */
uint32_t HAL_ADC_GetState(ADC_HandleTypeDef* hadc)
{
  /* Return ADC state */
  return hadc->State;
}

/**
  * @brief  Return the ADC error code
  * @param  hadc pointer to a ADC_HandleTypeDef structure that contains
  *         the configuration information for the specified ADC.
  * @retval ADC Error Code
  */
uint32_t HAL_ADC_GetError(ADC_HandleTypeDef *hadc)
{
  return hadc->ErrorCode;
}

/**
  * @}
  */

/** @addtogroup ADC_Private_Functions
  * @{
  */

/**
  * @brief  Initializes the ADCx peripheral according to the specified parameters 
  *         in the ADC_InitStruct without initializing the ADC MSP.       
  * @param  hadc pointer to a ADC_HandleTypeDef structure that contains
  *         the configuration information for the specified ADC.  
  * @retval None
  */
static void ADC_Init(ADC_HandleTypeDef* hadc)
{
  ADC_Common_TypeDef *tmpADC_Common;
  
  /* Set ADC parameters */
  /* Pointer to the common control register to which is belonging hadc    */
  /* (Depending on STM32F4 product, there may be up to 3 ADCs and 1 common */
  /* control register)                                                    */
  tmpADC_Common = ADC_COMMON_REGISTER(hadc);
  
  /* Set the ADC clock prescaler */
  tmpADC_Common->CCR &= ~(ADC_CCR_ADCPRE);
  tmpADC_Common->CCR |=  hadc->Init.ClockPrescaler;
  
  /* Set ADC scan mode */
  hadc->Instance->CR1 &= ~(ADC_CR1_SCAN);
  hadc->Instance->CR1 |=  ADC_CR1_SCANCONV(hadc->Init.ScanConvMode);
  
  /* Set ADC resolution */
  hadc->Instance->CR1 &= ~(ADC_CR1_RES);
  hadc->Instance->CR1 |=  hadc->Init.Resolution;
  
  /* Set ADC data alignment */
  hadc->Instance->CR2 &= ~(ADC_CR2_ALIGN);
  hadc->Instance->CR2 |= hadc->Init.DataAlign;
  
  /* Enable external trigger if trigger selection is different of software  */
  /* start.                                                                 */
  /* Note: This configuration keeps the hardware feature of parameter       */
  /*       ExternalTrigConvEdge "trigger edge none" equivalent to           */
  /*       software start.                                                  */
  if(hadc->Init.ExternalTrigConv != ADC_SOFTWARE_START)
  {
    /* Select external trigger to start conversion */
    hadc->Instance->CR2 &= ~(ADC_CR2_EXTSEL);
    hadc->Instance->CR2 |= hadc->Init.ExternalTrigConv;
    
    /* Select external trigger polarity */
    hadc->Instance->CR2 &= ~(ADC_CR2_EXTEN);
    hadc->Instance->CR2 |= hadc->Init.ExternalTrigConvEdge;
  }
  else
  {
    /* Reset the external trigger */
    hadc->Instance->CR2 &= ~(ADC_CR2_EXTSEL);
    hadc->Instance->CR2 &= ~(ADC_CR2_EXTEN);
  }
  
  /* Enable or disable ADC continuous conversion mode */
  hadc->Instance->CR2 &= ~(ADC_CR2_CONT);
  hadc->Instance->CR2 |= ADC_CR2_CONTINUOUS(hadc->Init.ContinuousConvMode);
  
  if(hadc->Init.DiscontinuousConvMode != DISABLE)
  {
    assert_param(IS_ADC_REGULAR_DISC_NUMBER(hadc->Init.NbrOfDiscConversion));
  
    /* Enable the selected ADC regular discontinuous mode */
    hadc->Instance->CR1 |= (uint32_t)ADC_CR1_DISCEN;
    
    /* Set the number of channels to be converted in discontinuous mode */
    hadc->Instance->CR1 &= ~(ADC_CR1_DISCNUM);
    hadc->Instance->CR1 |=  ADC_CR1_DISCONTINUOUS(hadc->Init.NbrOfDiscConversion);
  }
  else
  {
    /* Disable the selected ADC regular discontinuous mode */
    hadc->Instance->CR1 &= ~(ADC_CR1_DISCEN);
  }
  
  /* Set ADC number of conversion */
  hadc->Instance->SQR1 &= ~(ADC_SQR1_L);
  hadc->Instance->SQR1 |=  ADC_SQR1(hadc->Init.NbrOfConversion);
  
  /* Enable or disable ADC DMA continuous request */
  hadc->Instance->CR2 &= ~(ADC_CR2_DDS);
  hadc->Instance->CR2 |= ADC_CR2_DMAContReq(hadc->Init.DMAContinuousRequests);
  
  /* Enable or disable ADC end of conversion selection */
  hadc->Instance->CR2 &= ~(ADC_CR2_EOCS);
  hadc->Instance->CR2 |= ADC_CR2_EOCSelection(hadc->Init.EOCSelection);
}

/**
  * @brief  DMA transfer complete callback. 
  * @param  hdma pointer to a DMA_HandleTypeDef structure that contains
  *                the configuration information for the specified DMA module.
  * @retval None
  */
static void ADC_DMAConvCplt(DMA_HandleTypeDef *hdma)   
{
  /* Retrieve ADC handle corresponding to current DMA handle */
  ADC_HandleTypeDef* hadc = ( ADC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
  
  /* Update state machine on conversion status if not in error state */
  if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL | HAL_ADC_STATE_ERROR_DMA))
  {
    /* Update ADC state machine */
    SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC);
    
    /* Determine whether any further conversion upcoming on group regular   */
    /* by external trigger, continuous mode or scan sequence on going.      */
    /* Note: On STM32F4, there is no independent flag of end of sequence.   */
    /*       The test of scan sequence on going is done either with scan    */
    /*       sequence disabled or with end of conversion flag set to        */
    /*       of end of sequence.                                            */
    if(ADC_IS_SOFTWARE_START_REGULAR(hadc)                   &&
       (hadc->Init.ContinuousConvMode == DISABLE)            &&
       (HAL_IS_BIT_CLR(hadc->Instance->SQR1, ADC_SQR1_L) || 
        HAL_IS_BIT_CLR(hadc->Instance->CR2, ADC_CR2_EOCS)  )   )
    {
      /* Disable ADC end of single conversion interrupt on group regular */
      /* Note: Overrun interrupt was enabled with EOC interrupt in          */
      /* HAL_ADC_Start_IT(), but is not disabled here because can be used   */
      /* by overrun IRQ process below.                                      */
      __HAL_ADC_DISABLE_IT(hadc, ADC_IT_EOC);
      
      /* Set ADC state */
      CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY);   
      
      if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_INJ_BUSY))
      {
        SET_BIT(hadc->State, HAL_ADC_STATE_READY);
      }
    }
    
    /* Conversion complete callback */
    HAL_ADC_ConvCpltCallback(hadc);
  }
  else
  {
    /* Call DMA error callback */
    hadc->DMA_Handle->XferErrorCallback(hdma);
  }
}

/**
  * @brief  DMA half transfer complete callback. 
  * @param  hdma pointer to a DMA_HandleTypeDef structure that contains
  *                the configuration information for the specified DMA module.
  * @retval None
  */
static void ADC_DMAHalfConvCplt(DMA_HandleTypeDef *hdma)   
{
  ADC_HandleTypeDef* hadc = ( ADC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
  /* Conversion complete callback */
  HAL_ADC_ConvHalfCpltCallback(hadc); 
}

/**
  * @brief  DMA error callback 
  * @param  hdma pointer to a DMA_HandleTypeDef structure that contains
  *                the configuration information for the specified DMA module.
  * @retval None
  */
static void ADC_DMAError(DMA_HandleTypeDef *hdma)   
{
  ADC_HandleTypeDef* hadc = ( ADC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
  hadc->State= HAL_ADC_STATE_ERROR_DMA;
  /* Set ADC error code to DMA error */
  hadc->ErrorCode |= HAL_ADC_ERROR_DMA;
  HAL_ADC_ErrorCallback(hadc); 
}

/**
  * @}
  */

/**
  * @}
  */

#endif /* HAL_ADC_MODULE_ENABLED */
/**
  * @}
  */ 

/**
  * @}
  */ 

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/