einsum.py 30.5 KB
Newer Older
T
Tongxin Bai 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import itertools
16
import numpy as np
T
Tongxin Bai 已提交
17 18
import re

19
from .linalg import dot, matmul, transpose
Z
zhiboniu 已提交
20
from .manipulation import squeeze, unsqueeze, reshape
T
Tongxin Bai 已提交
21 22
from .math import multiply
from .math import sum as paddle_sum
23 24 25 26
from ..fluid.framework import _in_legacy_dygraph
from paddle import _C_ops
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype
from ..fluid.layer_helper import LayerHelper
T
Tongxin Bai 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268

from paddle.common_ops_import import dygraph_only

__all__ = []


def parse_op_labels(labelstr, operand):
    '''
    Parse labels for an input operand.

    Parameters
    ----------
    labelstr:
        the input label string
    operand:
        the input operand

    Returns
    -------
    the input operand's full label string in which all anonymous dimensions are 
    labeled in dots. 
    '''
    # Sanity checks
    for c in labelstr.replace('.', ''):
        assert c.isalpha(), (
            f"Invalid equation: {c} is not a valid label, which should be letters."
        )

    assert labelstr.replace('...', '', 1).find('.') == -1, (
        f"Invalid equation: `.` is found outside of an ellipsis.")

    # Check shape. Note, in Paddle a tensor rank is always nonzero
    ndims = len(operand.shape)
    assert ndims > 0

    full_labelstr = labelstr.replace('...', '.' * (ndims - len(labelstr) + 3))

    assert len(full_labelstr) == ndims, (
        f"Invalid equation: the label string '{labelstr}' misses dimensions.")

    return full_labelstr


def parse_labels(labelstr, operands):
    '''
    Parse label strings for all input operands.
    
    Parameters
    ----------
    labelstr:
        The equation's label string
    operands:
        The input operands
    
    Returns
    -------
    list of full label strings for all input operands
    '''

    nop_labels = labelstr.split(',')
    assert len(nop_labels) == len(operands), (
        f"Invalid equation: the number of operands is {len(operands)}, "
        f"but found {len(nop_labels)} segments in the label equation.")

    return list(map(parse_op_labels, nop_labels, operands))


def validate_rhs(rhs, input_labels, n_bcast_dims):
    '''
    Check whether the equation's right hand side is valid 
    '''
    # Sanity check.
    if n_bcast_dims > 0:
        assert '...' in rhs, (
            f"Invalid equation: missing ellipsis in output labels.")

    rhs = rhs.replace('...', '')
    rhs_set = set(rhs)

    # Hidden assumption: availble labels don't include '.'
    assert '.' not in input_labels

    # Verify that output labels all come from the set of input labels
    non_input_labels = rhs_set.difference(input_labels)
    assert not non_input_labels, (
        f"Invalid equation: "
        f"output label {sorted(non_input_labels)} not used by any input.")
    # Verify that output labels are not duplicate
    assert len(rhs) == len(rhs_set), (
        f"Invalid equation: duplicate output labels are found.")


def build_view(in_labels, out_labels):
    '''
    Build an inverse map of dimension indices. Three conditions must hold for 
    the result to be meaningful. 
    First, no duplicate letter labels in each label string.
    Second, the number of dots in dimout_labels >= that in in_labels.
    Third, dots are contiguous in each label string.

    Parameters
    ----------
    in_labels:
        The dimension labels to map to
    out_labels:
        The dimension labels to map from
    
    Returns
    -------
    The inverse map from out_labels to in_labels. The length of the inverse map equals that of
    out_labels. -1 is filled if there's no matching intput dimension for a specific label.

    Examples
    --------
    in_labels = 'ij..', out_labels = '..ji'
    inv_map = [2, 3, 1, 0]
    in_labels = 'ij..', out_labels = '..kji'
    inv_map = [2, 3, -1, 1, 0]
    '''

    inv_map = [-1] * len(out_labels)

    # First build the broadcast dimension mapping
    # Find the broadcast index range in out_labels
    r = re.search(r'\.+', out_labels)
    if r:
        start, end = r.start(), r.end()
        s = re.search(r'\.+', in_labels)
        # fill the broadcast dimension indices from right to left.
        if s:
            for ax, dim in zip(
                    range(start, end)[::-1], range(s.start(), s.end())[::-1]):
                inv_map[ax] = dim

    # Now work on non-broadcast dimensions 
    if r:
        it = itertools.chain(range(start), range(end, len(out_labels)))
    else:
        it = iter(range(len(out_labels)))

    for i in it:
        inv_map[i] = in_labels.find(out_labels[i])

    return inv_map


def build_global_view(nop_labels, rhs, n_bcast_dims):
    '''
    Build the global view, which is a layout of all dimension labels
    plus an index table that maps from the layout to the dimensions
    in each operand. In the global view, the dimensions are arranged
    such that output ones are put on the left and contraction ones
    are put on the right.  

    Parameters
    ----------
    nop_labels:
        The input full label strings of all input operands
    rhs:
        The equation right hand side
    n_bcast_dims:
        The maxium number of broadcast dimensions
    
    Returns
    -------
    A tuple of g_labels, g_view, g_nout, g_count
    g_labels:
        the layout of all labels in a string
    g_view:
        the index table
    g_nout:
        the number of output dimensions
    g_count:
        the counter array for dimension contractions
    '''
    # Put all labels in alphabetical order
    concat = sorted(''.join(nop_labels).replace('.', ''))
    labels, count = [], []
    for a, b in zip(['.'] + concat, concat):
        if a != b:
            labels.append(b)
            count.append(1)
        else:
            count[-1] += 1

    if rhs != None:
        validate_rhs(rhs, labels, n_bcast_dims)
        g_labels_out = rhs.replace('...', '.' * n_bcast_dims)
    else:
        g_labels_out = '.' * n_bcast_dims + ''.join(
            l for l, c in zip(labels, count) if c == 1)

    for i in range(len(count))[::-1]:
        if labels[i] in g_labels_out:
            labels.pop(i)
            count.pop(i)

    g_labels_sum = ''.join(labels)
    g_labels = g_labels_out + g_labels_sum
    g_view = list(map(lambda i: build_view(i, g_labels), nop_labels))
    g_nout = len(g_labels_out)
    g_count = count

    return g_labels, g_view, g_nout, g_count


def build_global_shape(g_view, g_labels, op_shapes):
    '''
    The global shape is the shape of all dimensions rearranged and broadcasting 
    to the global view. It's a reference data structure for einsum planning.

    Parameters
    ----------
    g_view:
        the global view
    op_shapes:
        the shapes of the all operands

    Returns
    -------
    g_shape:
        the global shape vector
    g_masks:
        list of shape masks for each operand. A dimension's shape mask is a boolean
        indicating whether its size > 1, in other words, it's not squeezable
    '''
    view_shapes = []
    g_masks = []

    for view, op_shape in zip(g_view, op_shapes):
        view_shapes.append([op_shape[dim] if dim > -1 else 1 for dim in view])

    g_shape = [set(sizes_per_ax) - {1} for sizes_per_ax in zip(*view_shapes)]

    non_bcastable = [ax for ax, sizes in enumerate(g_shape) if len(sizes) > 1]

    assert not non_bcastable, (
        f"Invalid operands: label {g_labels[non_bcastable[0]]} "
        f"corresponds to non-broadcastable dimensions.")

    g_shape = [sizes.pop() if len(sizes) > 0 else 1 for sizes in g_shape]

269 270
    g_masks = [[s > 1 or s == -1 for s in view_shape]
               for view_shape in view_shapes]
T
Tongxin Bai 已提交
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287

    return g_shape, g_masks


def has_duplicated_labels(labels):
    '''
    Returns True if there is any duplicate label.
    '''
    labels = labels.replace('.', '')
    return len(labels) > len(set(labels))


def diagonalize(labels, operand):
    '''
    Merges dimensions with duplicate labels. 
    
    For those dimensions with duplicate labels, merge them into one dimension
288 289
    which represents the diagonal elements. This requires the dimensions with
    duplicate labels are equal sized.
T
Tongxin Bai 已提交
290 291 292 293 294
    
    Examples
    -------- 
    'ijj...i' would be merged into 'ij...'
    '''
295 296
    assert not has_duplicated_labels(labels), (
        f'Duplicate labels are not supported.')
T
Tongxin Bai 已提交
297

298
    return labels, operand
T
Tongxin Bai 已提交
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314


def plan_reduce(plan, op, reduce_dims, keepdim):
    '''
    Add reduce to the plan
    '''
    varname = f'op{op}'

    f = lambda var, dims: paddle_sum(var, dims, keepdim=keepdim)
    step = f, [varname], varname, reduce_dims
    plan.add_step(step)


def plan_scalar_prod(plan, op1, op2):
    varnames = [f'op{op1}', f'op{op2}']
    f = lambda var1, var2: paddle_sum(var1) * var2
315
    # f = lambda var1, var2: var1 * var2
T
Tongxin Bai 已提交
316 317 318 319
    step = f, varnames, varnames[1]
    plan.add_step(step)


320
def plan_matmul(plan, g_view, op1, op2, g_supports, g_shape, I, J1, J2, K):
T
Tongxin Bai 已提交
321 322 323 324 325 326 327 328 329
    '''
    plan matmul
    '''
    # Transpose and re-shape op1 and op2 in I, J1, K and I, J2, K
    # Then apply matmul(x, y, transpose_x=False, tranpose_y=True)
    var1, var2 = f'op{op1}', f'op{op2}'

    op1_view, op2_view = [g_view[op] for op in (op1, op2)]

330 331 332 333
    I1 = [idx for idx in I if op1_view[idx] >= 0]
    I2 = [idx for idx in I if op2_view[idx] >= 0]
    op1_view = np.array(op1_view)
    op1_dims = op1_view[I1 + J1 + K]
T
Tongxin Bai 已提交
334

335 336
    op2_view = np.array(op2_view)
    op2_dims = op2_view[I2 + J2 + K]
T
Tongxin Bai 已提交
337

338 339 340 341
    op1_mask, op2_mask = [g_supports[op] for op in (op1, op2)]
    op1_vshape = np.array([s if m else 1 for s, m in zip(g_shape, op1_mask)])
    op2_vshape = np.array([s if m else 1 for s, m in zip(g_shape, op2_mask)])
    vshape = np.maximum(op1_vshape, op2_vshape)
T
Tongxin Bai 已提交
342

343
    i1, i2, j1, j2, k = map(len, (I1, I2, J1, J2, K))
T
Tongxin Bai 已提交
344

345
    if any(op1_dims != np.arange(len(op1_dims))):
T
Tongxin Bai 已提交
346
        # print(f'perm1: {perm1}')
347
        step = transpose, [var1], var1, list(op1_dims)
T
Tongxin Bai 已提交
348 349
        plan.add_step(step)

350
    if any(op2_dims != np.arange(len(op2_dims))):
T
Tongxin Bai 已提交
351
        # print(f'perm2: {perm2}')
352
        step = transpose, [var2], var2, list(op2_dims)
T
Tongxin Bai 已提交
353 354
        plan.add_step(step)

355 356 357 358 359 360 361
    # Check if conditions hold for turnning the operation into a matmul
    if j1 + j2 > 0 and k > 0 and -1 not in np.concatenate(
        (op1_vshape, op2_vshape)):
        op1_shape = list(op1_vshape[I]) + [np.prod(op1_vshape[J1])
                                           ] + [np.prod(op1_vshape[K])]
        op2_shape = list(op2_vshape[I]) + [np.prod(op2_vshape[J2])
                                           ] + [np.prod(op2_vshape[K])]
T
Tongxin Bai 已提交
362

363 364
        # Merge J dims and K dims by reshaping
        step = reshape, [var1], var1, op1_shape
T
Tongxin Bai 已提交
365
        plan.add_step(step)
366
        step = reshape, [var2], var2, op2_shape
T
Tongxin Bai 已提交
367 368 369 370 371 372
        plan.add_step(step)

        # Matmul
        step = matmul, [var1, var2], var2, False, True
        plan.add_step(step)

373 374 375
        # Reshape back
        shape = list(vshape[I + J1 + J2])
        step = reshape, [var2], var2, shape
T
Tongxin Bai 已提交
376 377
        plan.add_step(step)

378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
    elif j1 == j2 == k == 1:
        # Can still do matmul even unknown shapes are present
        step = matmul, [var1, var2], var2, False, True
        plan.add_step(step)

    # In the rest cases we opt for ops other than matmul 
    else:
        # unsqueeze operands include J1...J2... dimensions
        if j2:
            fill = list(range(i1 + j1, i1 + j1 + j2))
            step = unsqueeze, [var1], var1, fill
            plan.add_step(step)
        if j1:
            fill = list(range(i2, i2 + j1))
            step = unsqueeze, [var2], var2, fill
            plan.add_step(step)
        # In case of no dimensions to contract, do an elementwise multiply
        if k == 0:
            # make broadcast
            step = multiply, [var1, var2], var2
            plan.add_step(step)
        # Contract and no join, turn into a dot
        elif j1 + j2 == 0 and k == 1:
            step = unsqueeze, [var1], var1, [-2]
            plan.add_step(step)
            step = unsqueeze, [var2], var2, [-1]
            plan.add_step(step)
            step = matmul, [var1, var2], var2
            plan.add_step(step)
            step = squeeze, [var2], var2, [-1, -2]
            plan.add_step(step)
        elif j1 + j2 == 0 and not-1 in np.concatenate(
            (op1_vshape[K], op2_vshape[K])):
            assert all(op1_vshape[K] == op2_vshape[K])
            step = reshape, [var1], var1, list(op1_vshape[
                I]) + [1] + [np.prod(op1_vshape[K])]
            plan.add_step(step)
            step = reshape, [var2], var2, list(op2_vshape[
                I]) + [1] + [np.prod(op2_vshape[K])]
            plan.add_step(step)
            step = matmul, [var1, var2], var2, False, True
            plan.add_step(step)
            step = squeeze, [var2], var2, [-1, -2]
            plan.add_step(step)
        else:
            step = multiply, [var1, var2], var2
            plan.add_step(step)
            reduce_dims = list(range(-k, 0))
            plan_reduce(plan, op2, reduce_dims, keepdim=False)

T
Tongxin Bai 已提交
428 429
    # Wrap up, updating auxiliary data
    # Updating g_mask for I and J axes
430 431
    for ax in I + J1 + J2:
        op2_mask[ax] = vshape[ax] > 1 or vshape[ax] == -1
T
Tongxin Bai 已提交
432 433 434 435 436 437 438 439 440 441

    for ax in K:
        op2_mask[ax] = False

    for ax in range(len(op2_view)):
        op2_view[ax] = -1
    dim = 0
    for ax in I + J1 + J2:
        op2_view[ax], dim = dim, dim + 1

442 443
    g_view[op2] = list(op2_view)

T
Tongxin Bai 已提交
444

445
def plan_summation(plan, g_view, op1, op2, g_supports, g_shape, g_count,
T
Tongxin Bai 已提交
446 447 448 449 450
                   n_bcast):
    '''
    Plan various kinds of summation
    '''
    op1_view, op2_view = g_view[op1], g_view[op2]
451
    op1_mask, op2_mask = g_supports[op1], g_supports[op2]
T
Tongxin Bai 已提交
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482

    ndim = len(op1_view)
    nout = ndim - len(g_count)

    count = [0] * nout + g_count

    I, K, J1, J2 = list(range(n_bcast)), [], [], []

    for ax, dim1, dim2 in zip(
            range(n_bcast, ndim), op1_view[n_bcast:], op2_view[n_bcast:]):

        if (dim1 != -1) != (dim2 != -1):
            if dim1 != -1:
                J1.append(ax)
            else:
                J2.append(ax)
        elif dim1 != -1:
            fold = int(op1_mask[ax]) + int(op2_mask[ax])
            if ax >= nout and fold == count[ax]:
                # Ready to fold the dimensions
                K.append(ax)
                count[ax] -= fold
            else:
                I.append(ax)
                count[ax] -= max(fold - 1, 0)

    # Update g_count
    g_count[:] = count[nout:]

    # Now it's OK to merge the K dims as the same shape holds
    # print(f'I: {I}   J1: {J1}    J2: {J2}   K: {K}')
483
    plan_matmul(plan, g_view, op1, op2, g_supports, g_shape, I, J1, J2, K)
T
Tongxin Bai 已提交
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554


def rearrange(axes):
    perm, fill = [], []
    for ax, dim in enumerate(axes):
        if dim < 0:
            fill.append(ax)
        else:
            perm.append(dim)
    # Trivial permutation returns []
    if all(i == dim for i, dim in enumerate(perm)):
        perm = []

    return perm, fill


def plan_broadcast(plan, operands, nop_axes):
    '''
    Plan broadcast across
    '''
    nop = len(operands)
    varnames = [f'op{i}' for i in range(nop)]

    for i, op_axes in zip(range(nop), nop_axes):
        # Re-arrange the dimesions according to the global layout
        perm, fill = rearrange(op_axes)
        var = varnames[i]
        if perm:
            step = transpose, [var], var, perm
            plan.add_step(step)
        if fill:
            step = unsqueeze, [var], var, fill
            plan.add_step(step)

    def f(*args):
        expr = ' * '.join(varnames)
        return eval(expr, dict(zip(varnames, args)))

    step = f, varnames, None
    plan.add_step(step)


class Plan:
    def __init__(self):
        self.env = {}
        self.steps = []

    def add_step(self, step):
        self.steps.append(step)

    def get_var(self, varname):
        return self.env[varname] if varname in self.env else None

    def set_var(self, varname, var):
        self.env[varname] = var

    def show(self):
        res = None
        for f, in_varnames, out_varname, *args in self.steps:
            print(repr((out_varname, f, *in_varnames, *args)))
        return res

    def execute(self):
        res = None
        for f, in_varnames, out_varname, *args in self.steps:
            res = f(*map(self.get_var, in_varnames), *args)
            if out_varname:
                self.set_var(out_varname, res)
        return res


555
def plan_einsum(operands, g_view, g_shape, g_supports, g_count, n_bcast):
T
Tongxin Bai 已提交
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
    '''
    Plans the actual execution steps.
    Results
    -------
    the execution plan
    '''
    nop = len(operands)
    ndim = len(g_view[0])
    nout = ndim - len(g_count)

    # Initialize a plan with an environment
    plan = Plan()
    op_names = [f'op{i}' for i in range(nop)]
    list(map(plan.set_var, op_names, operands))

    # In case no dimensions to combine, do broadcast straight across
    if not g_count:
        plan_broadcast(plan, operands, g_view)
        return plan

576 577 578
    # Down count degenerate contraction dimensions.
    for view, support in zip(g_view, g_supports):
        # To collect the down count number, we use a type casting trick
T
Tongxin Bai 已提交
579
        down_count = [
580 581
            int((d + 1) and (not s))
            for d, s in zip(view[nout:], support[nout:])
T
Tongxin Bai 已提交
582
        ]
583 584
        for i, count in enumerate(down_count):
            g_count[i] -= count
T
Tongxin Bai 已提交
585

586 587
    # Reduce any dimension for which g_support is set and g_count == 1
    for i, view, mask in zip(range(nop), g_view, g_supports):
T
Tongxin Bai 已提交
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
        to_reduce = []
        for dim, masked, count in zip(view[nout:], mask[nout:], g_count):
            to_reduce.append(dim if (masked and count == 1) else -1)

        reduce_dims = list(filter(lambda x: x > -1, to_reduce))
        if reduce_dims:
            plan_reduce(plan, i, reduce_dims, keepdim=True)

        # Unset mask and decrease g_count for the reduced dimensions
        for i, d in enumerate(to_reduce):
            ax = i + nout
            mask[ax] = mask[ax] and (d == -1)
            g_count[i] -= 0 if d == -1 else 1

    # Plan the summations over the operand sequence
    for i in range(nop):
        # plan a single step

        if i == 0:
            continue

        # We'd like to arrange the dimensions in the following way:
        # [I...  J... K...]
        # [I...  J... K...]
        # where  
        #       I... are aligned and not to be combined immediately 
        #       J... are not aligned and not to be combined immediately
        #       K... are aligned and should be immediately combined
        # At this point the non-trivial broadcast dimensinos in K are already reduced
        # and removed. That means all K dimensions are aligned and their sizes are not 1.
        # We then inspect the layout of I,J,K plus the above observation to make
        # specializatoin decisions.  The current strategy is set as follows:
        #  (1) if I... J... K... are all empty, it's multiplying a scalar
        #  (2) if K... are empty, better use a broadcast
        #  (3) if I... J... empty and K... not empty, a vector-vector multiply (or a dot)
        #  (4) Elsewise, either I... or J... not empty, and K... not empty, use a general matmul

        # Resolve the summation kind: dot, matmul or *
626 627
        if not any(g_supports[i - 1]):
            # op1 is a one element tensor.
T
Tongxin Bai 已提交
628 629
            plan_scalar_prod(plan, i - 1, i)
        else:
630
            plan_summation(plan, g_view, i - 1, i, g_supports, g_shape, g_count,
T
Tongxin Bai 已提交
631 632 633 634
                           n_bcast)

    # for ax, dim in enumerate(g_view[nop-1][:nout]):
    #     assert dim == ax
635
    assert all(not masked for masked in g_supports[nop - 1][nout:])
T
Tongxin Bai 已提交
636 637 638 639

    view = g_view[-1]
    if any(ax != dim for ax, dim in enumerate(view[:nout])):
        perm = [dim for dim in view if dim >= 0]
640 641 642 643
        if sorted(perm) != perm:
            varname = f'op{nop-1}'
            step = transpose, [varname], varname, perm
            plan.add_step(step)
T
Tongxin Bai 已提交
644
        dim = 0
645
        unsqueeze_dims = []
T
Tongxin Bai 已提交
646 647 648
        for ax, d in enumerate(view):
            if d != -1:
                view[ax], dim = dim, dim + 1
649 650 651 652 653 654 655
        for ax, d in enumerate(view[:nout]):
            if d == -1:
                unsqueeze_dims.append(ax)
        if unsqueeze_dims:
            varname = f'op{nop-1}'
            step = unsqueeze, [varname], varname, unsqueeze_dims
            plan.add_step(step)
T
Tongxin Bai 已提交
656 657 658 659 660 661 662 663 664 665 666

    squeeze_dims = [dim for dim in view[nout:] if dim != -1]
    if squeeze_dims:
        # plan_reduce(plan, nop-1, reduce_dims, keepdim=False)
        varname = f'op{nop-1}'
        step = squeeze, [varname], varname, squeeze_dims
        plan.add_step(step)

    return plan


667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
def einsum_v2(equation, *operands):
    if _in_legacy_dygraph():
        # dygraph
        return _C_ops.einsum(operands, 'equation', equation)
    # static graph 
    for inp in operands:
        check_variable_and_dtype(inp, 'dtype', ['float32', 'float64'], 'einsum')
    check_type(equation, 'equation', str, 'einsum')
    helper = LayerHelper('einsum', **locals())
    out = helper.create_variable_for_type_inference(dtype=operands[0].dtype)
    attrs = dict()
    attrs['equation'] = equation
    helper.append_op(
        type='einsum',
        inputs={'Operands': operands},
        outputs={'Out': out},
        attrs=attrs, )
    return out


T
Tongxin Bai 已提交
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
def einsum(equation, *operands):
    r"""
    einsum(equation, *operands)

    The current version of this API should be used in dygraph only mode.

    Einsum offers a tensor operation API which allows using the Einstein summation
    convention or Einstain notation. It takes as input one or multiple tensors and
    produces as output one tensor.

    Einsum is able to perform a variety of tensor operations. Following lists a few:

        - for single operand
            - trace
            - diagonal
            - transpose
            - sum
        - for double operands
            - dot
            - outer
            - broadcasting and elementwise multiply
            - matrix multiply
            - batched matrix multiply
        - for many operads
            - broadcasting multiply
            - chained matrix multiply
    
    **The summation notation**

        - The tensor dimensions are labeled using uncased English letters. E.g., `ijk`
        relates to a three dimensional tensor whose dimensions are labeled i, j, and k.
        - The equation is `,` separated into terms, each being a distinct input's
        dimension label string.
        - Ellipsis `...` enables broadcasting by automatically converting the unlabeled
        dimensions into broadcasting dimensions. 
        - Singular labels are called free labels, duplicate are dummy labels. Dummy labeled
        dimensions will be reduced and removed in the output.
        - Output labels can be explicitly specified on the right hand side of `->` or omitted.
        In the latter case, the output labels will be inferred from the input labels.
            - Inference of output labels
                - Broadcasting label `...`, if present, is put on the leftmost position.
                - Free labels are reordered alphabetically and put after `...`.
            - On explicit output labels
                - If broadcasting is enabled, then `...` must be present.
                - The output labels can be an empty, an indication to output as a scalar
                the sum over the original output.
                - Non-input labels are invalid.
                - Duplicate labels are invalid.
                - For any dummmy label which is present for the output, it's promoted to
                a free label.
                - For any free label which is not present for the output, it's lowered to
                a dummy label.
        - Examples
Z
zhiboniu 已提交
740
            - '...ij, ...jk', where i and k are free labels, j is dummy. The output label
T
Tongxin Bai 已提交
741 742
            string is '...ik'
            - 'ij -> i', where i is a free label and j is a dummy label. 
Z
zhiboniu 已提交
743
            - '...ij, ...jk -> ...ijk', where i, j and k are all free labels.
T
Tongxin Bai 已提交
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
            - '...ij, ...jk -> ij', an invalid equation since `...` is not present for
            the output.

    **The summation rule**

    The summation procedure can be outlined as follows, although the actual steps taken
    may vary significantly due to implementation specific optimization.

        - Step 1: preparation for broadcasting, that is, transposing and unsqueezing
        the input operands to have each resulting dimension identically labeled across
        all the input operands.
        - Step 2: broadcasting multiply all the resulting operands from step 1.
        - Step 3: reducing dummy labeled dimensions.
        - Step 4: transposing the result tensor to match the output labels.

    **On trace and diagonal**

    The trace and diagonal are planned yet unimplemented features. 

    Args:
        equation (`str`):
            The summation terms using the Einstein summation notation.
        operands (`list|Tensor`):
            The input tensors over which to compute the Einstein summation. The number of
            operands should equal the number of input terms in the equation.
    
    Returns:
        result (`Tensor`): the result tensor.
    
    Examples:
        .. code-block:: python

        import paddle
        paddle.seed(102)
        x = paddle.rand([4])
        y = paddle.rand([5])

        # sum
        print(paddle.einsum('i->', x))
        # Tensor(shape=[], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
        #   1.95791852)

        # dot
        print(paddle.einsum('i,i->', x, x))
        # Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
        #   [1.45936954])
        
        # outer
        print(paddle.einsum("i,j->ij", x, y))
        # Tensor(shape=[4, 5], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
        #   [[0.00079869, 0.00120950, 0.00136844, 0.00187187, 0.00192194],
        #    [0.23455200, 0.35519385, 0.40186870, 0.54970956, 0.56441545],
        #    [0.11773264, 0.17828843, 0.20171674, 0.27592498, 0.28330654],
        #    [0.32897076, 0.49817693, 0.56364071, 0.77099484, 0.79162055]])
        
        A = paddle.rand([2, 3, 2])
        B = paddle.rand([2, 2, 3])
        
        # transpose
        print(paddle.einsum('ijk->kji', A))
        #  Tensor(shape=[2, 3, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
        #   [[[0.95649719, 0.49684682],
        #     [0.80071914, 0.46258664],
        #     [0.49814570, 0.33383518]],
        #
        #    [[0.07637714, 0.29374704],
        #     [0.51470858, 0.51907635],
        #     [0.99066722, 0.55802226]]])
        
        # batch matrix multiplication
        print(paddle.einsum('ijk, ikl->ijl', A,B))
        # Tensor(shape=[2, 3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
        #   [[[0.32172769, 0.50617385, 0.41394392],
        #     [0.51736701, 0.49921003, 0.38730967],
        #     [0.69078457, 0.42282537, 0.30161136]],
        #
        #    [[0.32043904, 0.18164253, 0.27810261],
        #     [0.50226176, 0.24512935, 0.39881429],
        #     [0.51476848, 0.23367381, 0.39229113]]])
        
        # Ellipsis transpose
        print(paddle.einsum('...jk->...kj', A))
        # Tensor(shape=[2, 2, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
        #   [[[0.95649719, 0.80071914, 0.49814570],
        #     [0.07637714, 0.51470858, 0.99066722]],
        #
        #    [[0.49684682, 0.46258664, 0.33383518],
        #     [0.29374704, 0.51907635, 0.55802226]]])
        
        # Ellipsis batch matrix multiplication
        print(paddle.einsum('...jk, ...kl->...jl', A,B))
        # Tensor(shape=[2, 3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
        #   [[[0.32172769, 0.50617385, 0.41394392],
        #     [0.51736701, 0.49921003, 0.38730967],
        #     [0.69078457, 0.42282537, 0.30161136]],
        #
        #    [[0.32043904, 0.18164253, 0.27810261],
        #     [0.50226176, 0.24512935, 0.39881429],
        #     [0.51476848, 0.23367381, 0.39229113]]])
    """
844 845 846
    import os
    if int(os.environ.get('FLAGS_new_einsum', "0")):
        return einsum_v2(equation, *operands)
T
Tongxin Bai 已提交
847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883

    nop = len(operands)
    assert nop > 0, "At least one operand is expected."

    # Part the equation to left hand side and right hand side
    lhs, *rhs = equation.lower().replace(' ', '').split('->')
    assert len(rhs) < 2, "Invalid equation: multiple `->` were found."

    # Note, we distinguish between 'ij->' and 'ij' by setting rhs to '' and None
    rhs = rhs[0] if rhs else None

    # Parse labels for each operand and count the number of occurrences for each alphabet label
    nop_labels = parse_labels(lhs, operands)

    # Diagonalize the operands which have duplicate labels
    nop_labels, operands = list(zip(*map(diagonalize, nop_labels, operands)))

    # To handle broadcasting, we should first know how many dimensions are there
    # We need to use that number to generate output labels
    # e.g. 1 for ['ij', 'i.', '.k']
    n_bcast_dims = max(map(lambda s: s.count('.'), nop_labels))

    # Build the data structures for planning. It's helpful to think of all the operands
    # broadcasting together from a global view. In this view, dimensions from multiple 
    # operands are mapped to the same position if they are labeled uniquely. Broadcasting
    # dimensions are mapped to adjacent positions with the right bound fixed. Subject to
    # each operand, the map is injective but for all operands the map is on-to.  
    # g_labels:
    #   The labels of the global view 
    # g_view:
    #   Includes a list of maps from each operand's dimensions to the global view's dimensions
    #   which we refer to as ax or axes in the code to distinguish from operand's dims
    # g_shape:
    #   The shape of the global view. The size of each dimension is what the aligned dimensions
    #   should broadcast to
    # g_nout:
    #   Number of output axes
884 885
    # g_supports
    #   Booleans indicating each operand's non-trivial dimensions
T
Tongxin Bai 已提交
886 887 888 889 890
    # g_count
    #   Counting how many non-trivial dimensions remain for each ax

    g_labels, g_view, g_nout, g_count = build_global_view(nop_labels, rhs,
                                                          n_bcast_dims)
891
    g_shape, g_supports = build_global_shape(g_view, g_labels,
T
Tongxin Bai 已提交
892 893 894
                                             [op.shape for op in operands])

    # Now we're ready to build up an execution plan
895
    args = operands, g_view, g_shape, g_supports, g_count, n_bcast_dims
T
Tongxin Bai 已提交
896 897 898 899
    plan = plan_einsum(*args)
    result = plan.execute()

    return result