common.py 58.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

X
xiaoting 已提交
15
import warnings
16 17
import paddle
from ...fluid.framework import in_dygraph_mode, default_main_program
X
xiaoting 已提交
18
from paddle.fluid.layer_helper import LayerHelper
L
littletomatodonkey 已提交
19
from paddle.fluid.layers.tensor import Variable, fill_constant, zeros, concat
X
xiaoting 已提交
20

21
# TODO: define the common functions to build a neural network  
22 23 24 25 26
from ...fluid.layers import label_smooth  #DEFINE_ALIAS
from ...fluid import one_hot  #DEFINE_ALIAS
from ...fluid.layers import pad2d  #DEFINE_ALIAS
from ...fluid.layers import unfold  #DEFINE_ALIAS
from ...fluid.layers import assign  #DEFINE_ALIAS
L
littletomatodonkey 已提交
27 28 29
from ...fluid.layers import squeeze  #DEFINE_ALIAS
from ...fluid.layers import unsqueeze  #DEFINE_ALIAS
from ...fluid.layers import elementwise_mul  #DEFINE_ALIAS
Y
Yang Zhang 已提交
30 31 32
from ...tensor import clip
from ...tensor import sum
from ...tensor import sqrt
X
xiaoting 已提交
33

34 35
#from ...fluid.layers import fc  #DEFINE_ALIAS
from ...fluid.layers import pad_constant_like  #DEFINE_ALIAS
36 37
from ...fluid.framework import in_dygraph_mode
from ...fluid import core, dygraph_utils
38 39
from ...fluid import core, layers
from ...fluid.data_feeder import check_variable_and_dtype
40

41 42
__all__ = [
    'dropout',
43 44
    'dropout2d',
    'dropout3d',
45
    'alpha_dropout',
46 47 48 49 50
    #       'embedding',
    #       'fc',
    'label_smooth',
    'one_hot',
    'pad',
51
    'pad_constant_like',
52 53 54 55
    'pad2d',
    'unfold',
    #       'bilinear_tensor_product',
    'assign',
L
littletomatodonkey 已提交
56
    'interpolate',
X
xiaoting 已提交
57
    'upsample',
58
    'bilinear',
L
littletomatodonkey 已提交
59
    'cosine_similarity',
60
]
X
xiaoting 已提交
61 62


X
xiaoting 已提交
63
def interpolate(x,
64 65 66 67
                size=None,
                scale_factor=None,
                mode='nearest',
                align_corners=False,
X
xiaoting 已提交
68
                align_mode=0,
69 70
                data_format='NCHW',
                name=None):
X
xiaoting 已提交
71
    """
S
swtkiwi 已提交
72

X
xiaoting 已提交
73
    This op resizes a batch of images.
74 75
    The input must be a 3-D Tensor of the shape (num_batches, channels, in_w)
    or 4-D (num_batches, channels, in_h, in_w), or a 5-D Tensor of the shape
X
xiaoting 已提交
76 77
    (num_batches, channels, in_d, in_h, in_w) or (num_batches, in_d, in_h, in_w, channels),
    and the resizing only applies on the three dimensions(depth, height and width).
X
xiaoting 已提交
78

X
xiaoting 已提交
79
    Supporting resample methods:
80 81 82 83 84 85 86 87 88
        'linear' : Linear interpolation
        'bilinear' : Bilinear interpolation
        'trilinear' : Trilinear interpolation
        'nearest' : Nearest neighbor interpolation
        'bicubic' : Bicubic interpolation

    Linear interpolation is the method of using a line connecting two known quantities 
    to determine the value of an unknown quantity between the two known quantities. 
    
X
xiaoting 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimension(in height direction) and the 4th dimension(in width
    direction) on input tensor.

    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
    again in the other direction.

    Trilinear interpolation is an extension of linear interpolation for
    interpolating functions of three variables (e.g. D-direction,
    H-direction and W-direction in this op) on a rectilinear 3D grid.
    The linear interpolation is performed on three directions.
X
xiaoting 已提交
103
    align_corners and align_mode are optional parameters,the calculation method
X
xiaoting 已提交
104 105 106 107 108 109 110 111 112 113 114
    of interpolation can be selected by them.

    Bicubic interpolation is an extension of cubic interpolation for interpolating
    data points on a two-dimensional regular grid. The interpolated surface is
    smoother than corresponding surfaces obtained by bilinear interpolation or
    nearest-neighbor interpolation.

    Example:

    .. code-block:: text

115
        For scale_factor:
X
xiaoting 已提交
116 117 118 119 120
            if align_corners = True && out_size > 1 :
              scale_factor = (in_size-1.0)/(out_size-1.0)
            else:
              scale_factor = float(in_size/out_size)

121 122 123 124 125 126 127 128 129 130 131
        Linear interpolation:
            if:
                align_corners = False , align_mode = 0
                input : (N,C,W_in)
                output: (N,C,W_out) where:
                W_out = (W_{in}+0.5) * scale_{factor} - 0.5
            else:
                input : (N,C,W_in)
                output: (N,C,W_out) where:
                W_out = W_{in} * scale_{factor}
        
X
xiaoting 已提交
132
        Nearest neighbor interpolation:
X
xiaoting 已提交
133

X
xiaoting 已提交
134 135 136 137 138
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
139

X
xiaoting 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
        Bilinear interpolation:
          if:
              align_corners = False , align_mode = 0
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

        Bicubic interpolation:
          if:
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

        Trilinear interpolation:
          if:
              align_corners = False , align_mode = 0
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

181 182 183
    For details of linear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Linear_interpolation.
    
X
xiaoting 已提交
184 185
    For details of nearest neighbor interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.
186
    
X
xiaoting 已提交
187 188
    For details of bilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bilinear_interpolation.
189
    
X
xiaoting 已提交
190 191
    For details of trilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Trilinear_interpolation.
192
    
X
xiaoting 已提交
193 194
    For details of bicubic interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bicubic_interpolation
195
    
X
xiaoting 已提交
196
    Parameters:
X
xiaoting 已提交
197
        x (Tensor): 3-D, 4-D or 5-D Tensor, its data type is float32, float64, or uint8,
X
xiaoting 已提交
198
                          its data format is specified by :attr:`data_format`.
X
xiaoting 已提交
199
        size (list|tuple|Tensor|None): Output shape of image resize
200 201 202
             layer, the shape is (out_w, ) when input is a 3-D Tensor, the shape is (out_h, out_w) 
             when input is a 4-D Tensor and is (out_d, out_h, out_w) when input is a 5-D Tensor. 
             Default: None. If a list, each element can be an integer or a Tensor Variable of shape: [1].
X
xiaoting 已提交
203
             If a Tensor Variable, its dimensions size should be a 1.
X
xiaoting 已提交
204
        scale_factor (float|Tensor|list|None): The multiplier for the input height or width. At
205
             least one of :attr:`out_shape` or :attr:`scale_factor` must be set.
X
xiaoting 已提交
206
             And :attr:`out_shape` has a higher priority than :attr:`scale_factor`.Has to match input size if it is a list.
X
xiaoting 已提交
207
             Default: None.
208 209
        mode (str): The resample method. It supports 'linear', 'nearest', 'bilinear',
                       'bicubic' and 'trilinear' currently. Default: 'nearest'
X
xiaoting 已提交
210 211
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the
                               input and output tensors are aligned, preserving the values at the
X
xiaoting 已提交
212
                               corner pixels.This only has an effect when 'linear', 'bilinear', 'bicubic' or 'trilinear'.
213 214 215 216
                               Default: False
        align_mode(int)  :  An optional for linear/bilinear/trilinear interpolation. Refer to the formula in the example above,
                            it can be \'0\' for src_idx = scale_factor*(dst_indx+0.5)-0.5 , can be \'1\' for
                            src_idx = scale_factor*dst_index.
X
xiaoting 已提交
217
        data_format (str, optional): Specify the data format of the input, and the data format of the output
218
            will be consistent with that of the input. An optional string from:`NCW`, `NWC`,  `"NCHW"`, `"NHWC"`, `"NCDHW"`,
X
xiaoting 已提交
219 220 221
            `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored
            in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
222 223 224
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`
X
xiaoting 已提交
225
    Returns:
226
        A 3-D Tensor of the shape (num_batches, channels, out_w) or (num_batches, out_w, channels),
X
xiaoting 已提交
227 228 229
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),
        or 5-D Tensor of the shape (num_batches, channels, out_d, out_h, out_w) or (num_batches, out_d, out_h, out_w, channels).
    Raises:
X
xiaoting 已提交
230
        TypeError: size should be a list or tuple or Tensor.
231 232 233 234 235 236 237 238 239 240
        ValueError: The 'mode' of image_resize can only be 'linear', 'bilinear',
                    'trilinear', 'bicubic', or 'nearest' currently.
        ValueError: 'linear' only support 3-D tensor.
        ValueError: 'bilinear', 'bicubic' and 'nearest' only support 4-D tensor.
        ValueError: 'trilinear' only support 5-D tensor.
        ValueError: One of size and scale_factor must not be None.
        ValueError: size length should be 1 for input 3-D tensor.
        ValueError: size length should be 2 for input 4-D tensor.
        ValueError: size length should be 3 for input 5-D tensor.
        ValueError: scale_factor should be greater than zero.
X
xiaoting 已提交
241 242
        TypeError: align_corners should be a bool value
        ValueError: align_mode can only be '0' or '1'
243 244
        ValueError: data_format can only be 'NCW', 'NWC', 'NCHW', 'NHWC', 'NCDHW' or 'NDHWC'.

X
xiaoting 已提交
245 246 247 248 249
    Examples:
        .. code-block:: python

	    import paddle
	    import numpy as np
X
xiaoting 已提交
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
            import paddle.nn.functional as F
            paddle.disable_static()
            
            # given out size
            input_data = np.random.rand(2,3,6,10).astype("float32")
            x = paddle.to_tensor(input_data)
            output_1 = F.interpolate(x=x, size=[12,12])
    	    print(output_1.shape)
	    # [2L, 3L, 12L, 12L]
            
            # given scale
            output_2 = F.interpolate(x=x, scale_factor=[2,1])
            print(output_2.shape)
            # [2L, 3L, 12L, 10L]
            
            # bilinear interp
            output_3 = F.interpolate(x=x, scale_factor=[2,1], mode="bilinear")
            print(output_2.shape)
            # [2L, 3L, 12L, 10L]
X
xiaoting 已提交
269
    """
270 271 272 273 274 275 276 277 278 279 280
    data_format = data_format.upper()
    resample = mode.upper()
    resample_type = mode.lower()

    resample_methods = [
        'LINEAR',
        'BILINEAR',
        'TRILINEAR',
        'NEAREST',
        'BICUBIC',
    ]
X
xiaoting 已提交
281 282
    if resample not in resample_methods:
        raise ValueError(
283 284
            "The 'resample' of image_resize can only be 'linaer', 'bilinear', 'trilinear', "
            " 'bicubic' or 'nearest' currently.")
X
xiaoting 已提交
285

X
xiaoting 已提交
286
    if resample in ['LINEAR'] and len(x.shape) != 3:
287
        raise ValueError("'linear' only support 3-D tensor.")
288

X
xiaoting 已提交
289
    if resample in ['BILINEAR', 'NEAREST', 'BICUBIC'] and len(x.shape) != 4:
X
xiaoting 已提交
290
        raise ValueError(
291
            "'bilinear', 'bicubic' and 'nearest' only support 4-D tensor.")
X
xiaoting 已提交
292
    if resample == 'TRILINEAR' and len(x.shape) != 5:
293 294 295 296
        raise ValueError("'trilinear'only support 5-D tensor.")

    if size is None and scale_factor is None:
        raise ValueError("One of size and scale_factor must not be None.")
X
xiaoting 已提交
297 298 299

    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
300

X
xiaoting 已提交
301 302
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")
X
xiaoting 已提交
303 304 305 306 307
    if align_corners != 0 and resample == 'NEAREST':
        raise ValueError(
            "align_corners option can only be set with the interpolating modes: linear | bilinear | bicubic | trilinear"
        )
    helper = LayerHelper('{}_interp_v2'.format(resample_type), **locals())
X
xiaoting 已提交
308
    dtype = helper.input_dtype()
X
xiaoting 已提交
309
    if len(x.shape) == 3 and data_format not in ['NCW', 'NWC']:
310 311
        raise ValueError(
            "Got wrong value for param `data_format`: " + data_format +
312
            " received but only `NCW` or `NWC` supported for 3-D input.")
X
xiaoting 已提交
313
    elif len(x.shape) == 4 and data_format not in ['NCHW', 'NHWC']:
X
xiaoting 已提交
314 315 316
        raise ValueError(
            "Got wrong value for param `data_format`: " + data_format +
            " received but only `NCHW` or `NHWC` supported for 4-D input.")
X
xiaoting 已提交
317
    elif len(x.shape) == 5 and data_format not in ['NCDHW', 'NDHWC']:
X
xiaoting 已提交
318 319 320 321 322 323 324
        raise ValueError(
            "Got wrong value for param `data_format`: " + data_format +
            " received but only `NCDHW` or `NDHWC` supported for 5-D input.")

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

325
    if data_format == 'NCHW' or data_format == 'NCDHW' or data_format == 'NCW':
X
xiaoting 已提交
326
        data_layout = 'NCHW'
327
    if data_format == 'NHWC' or data_format == 'NDHWC' or data_format == 'NWC':
X
xiaoting 已提交
328 329
        data_layout = 'NHWC'

X
xiaoting 已提交
330 331 332 333
    if resample == 'NEAREST':
        align_corners = False

    inputs = {"X": x}
X
xiaoting 已提交
334 335 336 337 338 339 340 341 342 343
    attrs = {
        "out_d": -1,
        "out_h": -1,
        "out_w": -1,
        "interp_method": resample_type,
        "align_corners": align_corners,
        "align_mode": align_mode,
        "data_layout": data_layout
    }

344 345
    out_shape = size
    scale = scale_factor
X
xiaoting 已提交
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
    if out_shape is not None:
        if isinstance(out_shape, Variable):
            out_shape.stop_gradient = True
            inputs['OutSize'] = out_shape
        else:
            if not (_is_list_or_turple_(out_shape)):
                raise TypeError(
                    "out_shape should be a list or tuple or Variable.")
            # Validate the shape
            contain_var = False
            for dim_idx, dim_size in enumerate(out_shape):
                if isinstance(dim_size, Variable):
                    contain_var = True
                    continue
                assert dim_size > 0, (
                    "Each dimension size given in out_shape must be greater than 0."
                )

            if contain_var:
                new_size_tensor = []
                size_list = []
                for dim in out_shape:
                    if isinstance(dim, Variable):
                        dim.stop_gradient = True
                        new_size_tensor.append(dim)
                        size_list.append(-1)
                    else:
                        assert (isinstance(dim, int))
                        temp_out = helper.create_variable_for_type_inference(
                            'int32')
                        fill_constant(
                            [1], 'int32', dim, force_cpu=True, out=temp_out)
                        new_size_tensor.append(temp_out)
                        size_list.append(dim)
                inputs['SizeTensor'] = new_size_tensor

X
xiaoting 已提交
382
            if len(x.shape) == 3:
383 384 385 386 387 388 389 390
                if len(out_shape) != 1:
                    raise ValueError(
                        "out_shape length should be 2 for input 3-D tensor")
                if contain_var:
                    attrs['out_w'] = size_list[0]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_w'] = out_shape[0]
X
xiaoting 已提交
391
            if len(x.shape) == 4:
X
xiaoting 已提交
392 393 394 395 396 397 398 399 400 401
                if len(out_shape) != 2:
                    raise ValueError("out_shape length should be 2 for "
                                     "input 4-D tensor.")
                if contain_var:
                    attrs['out_h'] = size_list[0]
                    attrs['out_w'] = size_list[1]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_h'] = out_shape[0]
                    attrs['out_w'] = out_shape[1]
X
xiaoting 已提交
402
            if len(x.shape) == 5:
X
xiaoting 已提交
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
                if len(out_shape) != 3:
                    raise ValueError("out_shape length should be 3 for "
                                     "input 5-D tensor.")
                if contain_var:
                    attrs['out_d'] = size_list[0]
                    attrs['out_h'] = size_list[1]
                    attrs['out_w'] = size_list[2]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_d'] = out_shape[0]
                    attrs['out_h'] = out_shape[1]
                    attrs['out_w'] = out_shape[2]

    else:
        if isinstance(scale, Variable):
            scale.stop_gradient = True
            inputs["Scale"] = scale
        elif isinstance(scale, float) or isinstance(scale, int):
            if scale <= 0:
                raise ValueError("Attr(scale) should be greater than zero.")
X
xiaoting 已提交
423 424 425 426 427 428 429 430 431 432 433 434 435
            scale_list = []
            for i in range(len(x.shape) - 2):
                scale_list.append(scale)
            attrs['scale'] = list(map(float, scale_list))
        elif isinstance(scale, list):
            if len(scale) != len(x.shape) - 2:
                raise ValueError("scale_shape length should be {} for "
                                 "input {}-D tensor.".format(
                                     len(x.shape) - 2, len(x.shape)))
            for value in scale:
                if value <= 0:
                    raise ValueError("Attr(scale) should be greater than zero.")
            attrs['scale'] = list(map(float, scale))
X
xiaoting 已提交
436 437
        else:
            raise TypeError(
X
xiaoting 已提交
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
                "Attr(scale)'s type should be float, int, list or Tensor.")

    if in_dygraph_mode():
        attr_list = []
        for k, v in attrs.items():
            attr_list.append(k)
            attr_list.append(v)
        dy_attr = tuple(attr_list)

        if resample_type == "linear":
            out = core.ops.linear_interp_v2(x, *dy_attr)
        if resample_type == "bilinear":
            out = core.ops.bilinear_interp_v2(x, *dy_attr)
        if resample_type == "trilinear":
            out = core.ops.trilinear_interp_v2(x, *dy_attr)
        if resample_type == "nearest":
            out = core.ops.nearest_interp_v2(x, *dy_attr)
        if resample_type == "bicubic":
            out = core.ops.bicubic_interp_v2(x, *dy_attr)
        return out
X
xiaoting 已提交
458 459
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
X
xiaoting 已提交
460
        type='{}_interp_v2'.format(resample_type),
X
xiaoting 已提交
461 462 463 464
        inputs=inputs,
        outputs={"Out": out},
        attrs=attrs)
    return out
L
littletomatodonkey 已提交
465 466


X
xiaoting 已提交
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
def upsample(x,
             size=None,
             scale_factor=None,
             mode='nearest',
             align_corners=False,
             align_mode=0,
             data_format='NCHW',
             name=None):
    """
    This op resizes a batch of images.
    The input must be a 3-D Tensor of the shape (num_batches, channels, in_w)
    or 4-D (num_batches, channels, in_h, in_w), or a 5-D Tensor of the shape
    (num_batches, channels, in_d, in_h, in_w) or (num_batches, in_d, in_h, in_w, channels),
    and the resizing only applies on the three dimensions(depth, height and width).

    Supporting resample methods:
        'linear' : Linear interpolation
        'bilinear' : Bilinear interpolation
        'trilinear' : Trilinear interpolation
        'nearest' : Nearest neighbor interpolation
        'bicubic' : Bicubic interpolation
    Linear interpolation is the method of using a line connecting two known quantities 
    to determine the value of an unknown quantity between the two known quantities. 
    
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimension(in height direction) and the 4th dimension(in width
    direction) on input tensor.
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
    again in the other direction.
    
    Bicubic interpolation is an extension of cubic interpolation for interpolating
    data points on a two-dimensional regular grid. The interpolated surface is
    smoother than corresponding surfaces obtained by bilinear interpolation or
    nearest-neighbor interpolation.
    Trilinear interpolation is an extension of linear interpolation for
    interpolating functions of three variables (e.g. D-direction,
    H-direction and W-direction in this op) on a rectilinear 3D grid.
    The linear interpolation is performed on three directions.
    align_corners and align_mode are optional parameters,the calculation method
    of interpolation can be selected by them.
    Example:
    .. code-block:: text
        For scale_factor:
            if align_corners = True && out_size > 1 :
              scale_factor = (in_size-1.0)/(out_size-1.0)
            else:
              scale_factor = float(in_size/out_size)
        Linear interpolation:
            if:
                align_corners = False , align_mode = 0
                input : (N,C,W_in)
                output: (N,C,W_out) where:
                W_out = (W_{in}+0.5) * scale_{factor} - 0.5
            else:
                input : (N,C,W_in)
                output: (N,C,W_out) where:
                W_out = W_{in} * scale_{factor}
        Nearest neighbor interpolation:
          if:
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
          else:
              align_corners = True
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
        
        Bilinear interpolation:
          if:
              align_corners = False , align_mode = 0
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
        Bicubic interpolation:
          if:
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
        Trilinear interpolation:
          if:
              align_corners = False , align_mode = 0
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
    https://en.wikipedia.org/wiki/Linear_interpolation.
    For details of linear interpolation, please refer to Wikipedia:
    
    For details of nearest neighbor interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.
    
    For details of bilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bilinear_interpolation.
    
    For details of bicubic interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bicubic_interpolation
    
    For details of trilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Trilinear_interpolation.
    
    Parameters:
        x (Tensor): 3-D, 4-D or 5-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
        size (list|tuple|Tensor|None): Output shape of image resize
             layer, the shape is (out_w, ) when input is a 3-D Tensor, the shape is (out_h, out_w) 
             when input is a 4-D Tensor and is (out_d, out_h, out_w) when input is a 5-D Tensor. 
             Default: None. If a list, each element can be an integer or a Tensor Variable of shape: [1].
             If a Tensor Variable, its dimensions size should be a 1.
        scale_factor (float|Tensor|list|None): The multiplier for the input height or width. At
             least one of :attr:`out_shape` or :attr:`scale_factor` must be set.
             And :attr:`out_shape` has a higher priority than :attr:`scale_factor`.
             Default: None.
        mode (str): The resample method. It supports 'linear', 'nearest', 'bilinear',
                       'bicubic' and 'trilinear' currently. Default: 'nearest'
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the
                               input and output tensors are aligned, preserving the values at the
                               corner pixels.
                               Default: False
        align_mode(int)  :  An optional for linear/bilinear/trilinear interpolation. Refer to the formula in the example above,
                            it can be \'0\' for src_idx = scale_factor*(dst_indx+0.5)-0.5 , can be \'1\' for
                            src_idx = scale_factor*dst_index.
        data_format (str, optional): Specify the data format of the input, and the data format of the output
            will be consistent with that of the input. An optional string from:`NCW`, `NWC`, `"NCHW"`, `"NHWC"`, `"NCDHW"`,
            `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored
            in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`
    Returns:
        A 3-D Tensor of the shape (num_batches, channels, out_w) or (num_batches, out_w, channels),
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),
        or 5-D Tensor of the shape (num_batches, channels, out_d, out_h, out_w) or (num_batches, out_d, out_h, out_w, channels).
    Raises:
        TypeError: size should be a list or tuple or Tensor.
        ValueError: The 'mode' of image_resize can only be 'linear', 'bilinear',
                    'trilinear', 'bicubic', or 'nearest' currently.
        ValueError: 'linear' only support 3-D tensor.
        ValueError: 'bilinear', 'bicubic' and 'nearest' only support 4-D tensor.
        ValueError: 'trilinear' only support 5-D tensor.
        ValueError: One of size and scale_factor must not be None.
        ValueError: size length should be 1 for input 3-D tensor.
        ValueError: size length should be 2 for input 4-D tensor.
        ValueError: size length should be 3 for input 5-D tensor.
        ValueError: scale_factor should be greater than zero.
        TypeError: align_corners should be a bool value
        ValueError: align_mode can only be '0' or '1'
        ValueError: data_format can only be 'NCW', 'NWC', 'NCHW', 'NHWC', 'NCDHW' or 'NDHWC'.
        Examples:
        .. code-block:: python
            import paddle
            import numpy as np
            import paddle.nn.functional as F
            paddle.disable_static()

            input = paddle.to_tensor(input_data)
            output = F.upsample(input=input, size=[12,12])
            print(output.shape)
            # [2L, 3L, 12L, 12L]

    """
    return interpolate(x, size, scale_factor, mode, align_corners, align_mode,
                       data_format)


659 660 661 662
def bilinear(x1, x2, weight, bias=None, name=None):
    """

    This layer performs bilinear on two inputs.
663
    See :ref:`api_nn_Bilinear` for details and output shape.
664 665 666 667 668 669 670 671 672 673

    Parameters:
       x1 (Tensor): the first input tensor, it's data type should be float32, float64.
       x2 (Tensor): the second input tensor, it's data type should be float32, float64.
       weight (Parameter): The learnable weights of this layer, shape is [out_features, in1_features, in2_features].
       bias (Parameter, optional): The learnable bias(Bias) of this layer, shape is [1, out_features]. If it is set to None, no bias will be added to the output units. The default value is None.
       name (str, optional): The default value is None. Normally there is no need for user
           to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.

    Returns:
674
       Tensor: A 2-D Tensor of shape [batch_size, out_features].
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711

    Examples:
       .. code-block:: python

        import paddle
        import numpy
        import paddle.nn.functional as F

        paddle.disable_static()
        x1 = numpy.random.random((5, 5)).astype('float32')
        x2 = numpy.random.random((5, 4)).astype('float32')
        w = numpy.random.random((1000, 5, 4)).astype('float32')
        b = numpy.random.random((1, 1000)).astype('float32')

        result = F.bilinear(paddle.to_tensor(x1), paddle.to_tensor(x2), paddle.to_tensor(w), paddle.to_tensor(b))           # result shape [5, 1000]

    """

    if in_dygraph_mode():
        return core.ops.bilinear_tensor_product(x1, x2, weight, bias)

    check_variable_and_dtype(x1, 'x1', ['float32', 'float64'], 'bilinear')
    check_variable_and_dtype(x2, 'x2', ['float32', 'float64'], 'bilinear')

    inputs = {"X": x1, "Y": x2, "Weight": weight}
    if bias is not None:
        inputs["Bias"] = bias

    helper = LayerHelper("bilinear", **locals())
    out = helper.create_variable_for_type_inference(dtype=x1.dtype)

    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    return out


712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
def dropout(x,
            p=0.5,
            axis=None,
            training=True,
            mode="upscale_in_train",
            name=None):
    """
    Dropout is a regularization technique for reducing overfitting by preventing
    neuron co-adaption during training. The dropout operator randomly sets the
    outputs of some units to zero, while upscale others according to the given
    dropout probability.

    Args:
        x (Tensor): The input tensor. The data type is float32 or float64.
        p (float | int): Probability of setting units to zero. Default 0.5.
        axis (int | list): The axis along which the dropout is performed. Default None.
        training (bool): A flag indicating whether it is in train phrase or not. Default True.
        mode(str): ['upscale_in_train'(default) | 'downscale_in_infer']

                           1. upscale_in_train(default), upscale the output at training time

                              - train: out = input * mask / ( 1.0 - dropout_prob )
                              - inference: out = input

                           2. downscale_in_infer, downscale the output at inference

                              - train: out = input * mask
                              - inference: out = input * (1.0 - dropout_prob)
740
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801

    Returns:
        A Tensor representing the dropout, has same shape and data type as `x` .

    Examples:
        We use ``p=0.5`` in the following description for simplicity.
        1. When ``axis=None`` , this is commonly used dropout, which dropout each element of x randomly.
            Let's see a simple case when x is a 2d tensor with shape 2*3:
            [[1 2 3]
             [4 5 6]]
            we generate mask with the same shape as x, which is 2*3. The value of mask is
            sampled from a Bernoulli distribution randomly. For example, we may get such mask:
            [[0 1 0]
             [1 0 1]]
            So the output is obtained from elementwise multiply of x and mask:
            [[0 2 0]
             [4 0 6]]
            Using default setting, i.e. ``mode='upscale_in_train'`` ,
            if in training phase, the final upscale output is:
            [[0 4 0 ]
             [8 0 12]]
            if in test phase, the output is the same as input:
            [[1 2 3]
             [4 5 6]]
            we can also set ``mode='downscale_in_infer'`` , then
            if in training phase, the final output is:
            [[0 2 0]
             [4 0 6]]
            if in test phase, the scale output is:
            [[0.5 1.  1.5]
             [2.  2.5 3. ]]

        2. When ``axis!=None`` , this is useful for dropping whole channels from an image or sequence.
            Let's see the simple case when x is a 2d tensor with shape 2*3 again:
            [[1 2 3]
             [4 5 6]]
            (1) If ``axis=0`` , this means the dropout is only performed in axis `0` .
                we generate mask with the shape 2*1. Only in axis `0` the value is randomly selected.
                For example, we may get such mask:
                [[1]
                 [0]]
                The output is obtained from elementwise multiply of x and mask. Doing that the mask will be
                broadcast from 2*1 to 2*3:
                [[1 1 1]
                 [0 0 0]]
                and the result after elementwise multiply is:
                [[1 2 3]
                 [0 0 0]]
                then we can do upscale or downscale according to the setting of other arguments.
            (2) If ``axis=1`` , this means the dropout is only performed in axis `1` .
                we generate mask with the shape 1*3. Only in axis `1` the value is randomly selected.
                For example, we may get such mask:
                [[1 0 1]]
                Doing elementwise multiply the mask will be broadcast from 1*3 to 2*3:
                [[1 0 1]
                 [1 0 1]]
                and the result after elementwise multiply is:
                [[1 0 3]
                 [4 0 6]]
            (3) What about ``axis=[0, 1]`` ? This means the dropout is performed in all axes of x,
                which is the same case as default setting ``axis=None`` .
802
            (4) You may note that logically `axis=None` means the dropout is performed in none axis of x,
803 804 805 806 807 808 809 810 811 812 813 814 815
                We generate mask with the shape 1*1. Whole input is randomly selected or dropped.
                For example, we may get such mask:
                [[0]]
                Doing elementwise multiply the mask will be broadcast from 1*1 to 2*3:
                [[0 0 0]
                 [0 0 0]]
                and the result after elementwise multiply is:
                [[0 0 0]
                 [0 0 0]]
                Actually this is not what we want because all elements may set to zero~
            When x is a 4d tensor with shape `NCHW`, we can set ``axis=[0,1]`` and the dropout will be performed
            in channel `N` and `C`, `H` and `W` is tied, i.e.
            paddle.nn.dropout(x, p, axis=[0,1])
816
            Please refer to ``paddle.nn.functional.dropout2d`` for more details.
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
            Similarly, when x is a 5d tensor with shape `NCDHW`, we can set ``axis=[0,1]`` to perform
            dropout3d. Please refer to ``paddle.nn.functional.dropout3d`` for more details.

        .. code-block:: python
            import paddle
            import numpy as np

            paddle.disable_static()
            x = np.array([[1,2,3], [4,5,6]]).astype('float32')
            x = paddle.to_tensor(x)
            y_train = paddle.nn.functional.dropout(x, 0.5)
            y_test = paddle.nn.functional.dropout(x, 0.5, training=False) 
            y_0 = paddle.nn.functional.dropout(x, axis=0)
            y_1 = paddle.nn.functional.dropout(x, axis=1)
            y_01 = paddle.nn.functional.dropout(x, axis=[0,1])
            print(x.numpy())
            print(y_train.numpy())
            print(y_test.numpy())
            print(y_0.numpy())
            print(y_1.numpy())
            print(y_01.numpy())

    """
    if not isinstance(p, (float, int)):
        raise TypeError("p argument should be a number")
    if p < 0 or p > 1:
        raise ValueError("p argument should between 0 and 1")
    if mode not in ('downscale_in_infer', 'upscale_in_train'):
        raise ValueError(
            "mode argument should be 'downscale_in_infer' or 'upscale_in_train'")
    if axis and not isinstance(axis, (int, list)):
        raise TypeError("datatype of axis argument should be int or list")

    if axis == None:  # commonly used dropout
        seed = None
        mode = 'downgrade_in_infer' if mode == 'downscale_in_infer' else mode  #semantic transfer

        def get_attrs(prog, dropout_prob, is_test, seed):
            if (seed is None or seed == 0) and prog.random_seed != 0:
                seed = prog.random_seed
            attrs = {
                'dropout_prob': dropout_prob,
                'is_test': is_test,
                'fix_seed': seed is not None,
                'seed': seed if seed is not None else 0,
                'dropout_implementation': mode,
            }
            return attrs

        if in_dygraph_mode():
            if default_main_program().random_seed != 0:
                seed = default_main_program().random_seed
            out, mask = core.ops.dropout(
                x, 'dropout_prob', p, 'is_test', not training, 'fix_seed',
                seed is not None, 'seed', seed
                if seed is not None else 0, 'dropout_implementation', mode)
            return out

        helper = LayerHelper('dropout', **locals())
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'dropout')

        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        mask = helper.create_variable_for_type_inference(
            dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)

        attrs = get_attrs(helper.main_program, p, not training, seed)

        helper.append_op(
            type='dropout',
            inputs={'X': [x]},
            outputs={'Out': [out],
                     'Mask': [mask]},
            attrs=attrs)
        return out
    else:  #sometimes called dropout_nd #TODO: optimize with c++
        if not in_dygraph_mode():
            check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'dropout')
        dtype = x.dtype
        keep_prob = 1 - p
        if training:
            if p == 1.:
                return layers.scale(x, scale=0.)

            scale_input = layers.scale(
                x, scale=1 / keep_prob) if mode == 'upscale_in_train' else x

            #get mask shape
            input_shape = x.shape
            drop_axes = [axis] if isinstance(axis, int) else axis
            if max(drop_axes) > len(input_shape) - 1:
                raise ValueError("axis value should less than dimensions of x:{}, but get drop_axes value:{} " \
                                 .format(len(input_shape), max(drop_axes)))
            if len(drop_axes) > len(input_shape):
                raise ValueError(
                    "length of axis should not greater than dimensions of x:{}, but get length of drop axes: {}".
                    format(len(input_shape), len(drop_axes)))
            mask_shape = [1] * len(input_shape)
            for i in drop_axes:
                mask_shape[i] = input_shape[i]

            #get mask
            random_tensor = layers.uniform_random(
                mask_shape, dtype='float32', min=0., max=1.0)
            p = layers.fill_constant(shape=[1], dtype='float32', value=p)
            keep_mask = layers.greater_equal(random_tensor, p)

            scale_input = layers.cast(scale_input, dtype)
            keep_mask = layers.cast(keep_mask, dtype)
            ret = paddle.multiply(scale_input, keep_mask, name=name)
            return ret
        else:  # test
            ret = layers.scale(
                x, scale=keep_prob) if mode == 'downscale_in_infer' else x
            return ret


def dropout2d(x, p=0.5, training=True, data_format='NCHW', name=None):
    """
    Randomly zero out entire channels (in the batched input 4d tensor with the shape `NCHW` ,
    a channel is a 2D feature map with the shape `HW` ). Each channel will be zeroed out independently
    on every forward call with probability `p` using samples from a Bernoulli distribution.

    See ``paddle.nn.functional.dropout`` for more details.

    Args:
        x (Tensor):  The input is 4-D Tensor with shape [N, C, H, W] or [N, H, W, C].
                     The data type is float32 or float64.
        p (float): Probability of setting units to zero. Default 0.5.
        training (bool): A flag indicating whether it is in train phrase or not. Default True.
        data_format (str, optional): Specify the data format of the input, and the data format of the output
                                     will be consistent with that of the input. An optional string from:
                                    `NCHW` , `NHWC` . The default is `NCHW` . When it is `NCHW` , the data is
                                    stored in the order of: [batch_size, input_channels, input_height, input_width].
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor representing the dropout2d, has same shape and data type as `x` .

    Examples:
        .. code-block:: python
            import paddle
            import numpy as np

            paddle.disable_static()
            x = np.random.random(size=(2, 3, 4, 5)).astype('float32')
            x = paddle.to_tensor(x)
            y_train = paddle.nn.functional.dropout2d(x)  #train
            y_test = paddle.nn.functional.dropout2d(x, training=False) #test
            for i in range(2):
                for j in range(3):
                    print(x.numpy()[i,j,:,:])
                    print(y_train.numpy()[i,j,:,:]) # may all 0
                    print(y_test.numpy()[i,j,:,:])
    """
    input_shape = x.shape
    if len(input_shape) != 4:
        raise ValueError("dimensions of x should be 4, but received {} != 4"\
        .format(len(input_shape)))

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
            "Attr(data_format): %s." % str(data_format))

    return dropout(
        x,
        p=p,
        axis=[0, 1] if data_format == 'NCHW' else [0, 3],
        training=training,
        mode="upscale_in_train",
        name=name)


def dropout3d(x, p=0.5, training=True, data_format='NCDHW', name=None):
    """
    Randomly zero out entire channels (in the batched input 5d tensor with the shape `NCDHW` ,
    a channel is a 3D feature map with the shape `DHW` ). Each channel will be zeroed out independently
    on every forward call with probability `p` using samples from a Bernoulli distribution.

    See ``paddle.nn.functional.dropout`` for more details.

    Args:
        x (Tensor):  The input is 5-D Tensor with shape [N, C, D, H, W] or [N, D, H, W, C].
                     The data type is float32 or float64.
        p (float): Probability of setting units to zero. Default 0.5.
        training (bool): A flag indicating whether it is in train phrase or not. Default True.
        data_format (str, optional): Specify the data format of the input, and the data format of the output
                                     will be consistent with that of the input. An optional string from:
                                    ``NCDHW``, ``NDHWC``. The default is ``NCDHW`` . When it is ``NCDHW`` , the data is
                                    stored in the order of: [batch_size, input_channels, input_depth, input_height, input_width].
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor representing the dropout3d, has same shape and data type with `x` .

    Examples:
        .. code-block:: python
            import paddle
            import numpy as np

            paddle.disable_static()
            x = np.random.random(size=(2, 3, 4, 5, 6)).astype('float32')
            x = paddle.to_tensor(x)
            y_train = paddle.nn.functional.dropout3d(x)  #train
            y_test = paddle.nn.functional.dropout3d(x, training=False) #test
            print(x.numpy()[0,0,:,:,:])
            print(y_train.numpy()[0,0,:,:,:]) # may all 0
            print(y_test.numpy()[0,0,:,:,:])
    """

    input_shape = x.shape
    if len(input_shape) != 5:
        raise ValueError("dimensions of x should be 5, but received {} != 5" \
        .format(len(input_shape)))

    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): %s." % str(data_format))

    return dropout(
        x,
        p=p,
        axis=[0, 1] if data_format == 'NCDHW' else [0, 4],
        training=training,
        mode="upscale_in_train",
        name=name)


1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
def alpha_dropout(x, p=0.5, training=True, name=None):
    """
    Alpha Dropout is a type of Dropout that maintains the self-normalizing property.
    For an input with zero mean and unit standard deviation, the output of Alpha Dropout
    maintains the original mean and standard deviation of the input.
    Alpha Dropout fits well to SELU activate function by randomly setting activations to the negative saturation value.

    Args:
        x (Tensor): The input tensor. The data type is float32 or float64.
        p (float | int): Probability of setting units to zero. Default 0.5.
        training (bool): A flag indicating whether it is in train phrase or not. Default True.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor representing the dropout, has same shape and data type as `x`.

    Examples:
        .. code-block:: python
            import paddle
            import numpy as np

            paddle.disable_static()
            x = np.array([[-1, 1], [-1, 1]]).astype('float32')
            x = paddle.to_tensor(x)
            y_train = paddle.nn.functional.alpha_dropout(x, 0.5)
            y_test = paddle.nn.functional.alpha_dropout(x, 0.5, training=False)
            print(x.numpy())
            print(y_train.numpy())
            # [[-0.10721093, 1.6655989 ], [-0.7791938, -0.7791938]] (randomly)
            print(y_test.numpy())
    """
    if not isinstance(p, (float, int)):
        raise TypeError("p argument should be a float or int")
    if p < 0 or p > 1:
        raise ValueError("p argument should between 0 and 1")

    if not in_dygraph_mode():
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'alpha_dropout')

    if training:
        #get transformation params
        alpha = 1.6732632423543772848170429916717
        scale = 1.0507009873554804934193349852946
        alpha_p = -alpha * scale
        a = ((1 - p) * (1 + p * alpha_p**2))**-0.5
        b = -a * alpha_p * p

        dtype = x.dtype
        input_shape = x.shape

        #get mask
        random_tensor = layers.uniform_random(
            input_shape, dtype='float32', min=0., max=1.0)
        p = layers.fill_constant(shape=[1], dtype='float32', value=p)
        keep_mask = layers.greater_equal(random_tensor, p)
        keep_mask = layers.cast(keep_mask, dtype)
        drop_mask = layers.elementwise_sub(
            layers.fill_constant(
                shape=input_shape, dtype=dtype, value=1.),
            keep_mask)

        #apply mask
        b = layers.fill_constant(shape=[1], dtype=dtype, value=b)
        y = layers.elementwise_add(
            paddle.multiply(x, keep_mask),
            layers.scale(
                drop_mask, scale=alpha_p))
        res = layers.elementwise_add(layers.scale(y, scale=a), b, name=name)
        return res
    else:  # test
        return x


L
littletomatodonkey 已提交
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
def pad(x, pad, mode='constant', value=0, data_format="NCHW", name=None):
    """
    Pad tensor according to 'pad' and 'mode'.
    If mode is 'reflect', pad[0] and pad[1] must be no greater
    than width-1. The height and depth dimension has the same condition.

    Parameters:
        x (Tensor): The input tensor with data type float32/double/int32/int64_t.
        pad (Tensor | List[int32]): The padding size with data type int32. [len(padding)/2] dimensions
            of input will be padded. 1. If input dimension is 3, then the pad has the form (pad_left,
            pad_right). 2. If the input dimension is 4, then the pad has the form (pad_left, pad_right, 
            pad_top, pad_bottom). 3. If the input dimension is 5, then the pad has the form 
            (pad_left, pad_right, pad_top, pad_bottom, pad_front, pad_back).
            
        mode (str): Four modes: 'constant' (default), 'reflect', 'replicate', 'circular'.
            When in 'constant' mode, this op uses a constant value to pad the input tensor.
            When in 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
            When in 'replicate' mode, uses input boundaries to pad the input tensor.
            When in 'circular' mode, uses circular input to pad the input tensor.
            Default is 'constant'
        value (float32): The value to fill the padded areas in 'constant' mode . Default is 0.0
        data_format (str): An string from: "NCL", "NLC", NHWC", "NCHW", "NCDHW", "NDHWC". Specify the data format of
           the input data.
           Default is  "NCHW"
        name (str, optional) : The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
                    
    Returns: a Tensor padded according to pad and mode and data type is same as input.
    Return Type: Tensor

    Examples:
        .. code-block:: text

            x = [[[[[1., 2., 3.],
                    [4., 5., 6.]]]]]

            Case 0:
                pad = [2, 2, 1, 1, 0, 0],
                mode = 'constant'
                value = 0
                Out = [[[[[0. 0. 0. 0. 0. 0. 0.]
                          [0. 0. 1. 2. 3. 0. 0.]
                          [0. 0. 4. 5. 6. 0. 0.]
                          [0. 0. 0. 0. 0. 0. 0.]]]]]

            Case 1:
                pad = [2, 2, 1, 1, 0, 0],
                mode = 'reflect'
                Out = [[[[[6. 5. 4. 5. 6. 5. 4.]
                          [3. 2. 1. 2. 3. 2. 1.]
                          [6. 5. 4. 5. 6. 5. 4.]
                          [3. 2. 1. 2. 3. 2. 1.]]]]]

            Case 2:
                pad = [2, 2, 1, 1, 0, 0],
                mode = 'replicate'
                Out = [[[[[1. 1. 1. 2. 3. 3. 3.]
                          [1. 1. 1. 2. 3. 3. 3.]
                          [4. 4. 4. 5. 6. 6. 6.]
                          [4. 4. 4. 5. 6. 6. 6.]]]]]

            Case 3:
                pad = [2, 2, 1, 1, 0, 0],
                mode = 'circular'
                Out = [[[[[5. 6. 4. 5. 6. 4. 5.]
                          [2. 3. 1. 2. 3. 1. 2.]
                          [5. 6. 4. 5. 6. 4. 5.]
                          [2. 3. 1. 2. 3. 1. 2.]]]]]

    Code Examples:
        .. code-block:: python
            import numpy as np
            import paddle
            import paddle.nn.functional as F
            
            paddle.disable_static()
            
            # example 1
            x_shape = (1, 1, 3)
            x = np.arange(np.prod(x_shape), dtype=np.float32).reshape(x_shape) + 1
            tensor_x = paddle.to_tensor(x)
            y = F.pad(tensor_x, pad=[2, 3], value=1, mode='constant')
            print(y.numpy())
            # [[[1. 1. 1. 2. 3. 1. 1. 1.]]]
            
            # example 2
            x_shape = (1, 1, 2, 3)
            x = np.arange(np.prod(x_shape), dtype=np.float32).reshape(x_shape) + 1
            tensor_x = paddle.to_tensor(x)
            y = F.pad(tensor_x, pad=[1, 2, 1, 1], value=1, mode='circular')
            print(y.numpy())
            # [[[[6. 4. 5. 6. 4. 5.]
            #    [3. 1. 2. 3. 1. 2.]
            #    [6. 4. 5. 6. 4. 5.]
            #    [3. 1. 2. 3. 1. 2.]]]]
    """
    assert mode in ['reflect', 'replicate', 'constant', 'circular'], \
            "mode should be one of constant, reflect, replicate, circular, but got {}.".format(mode)

    data_format = data_format.upper()
    assert data_format in ["NCL", "NCHW", "NCDHW", "NLC", "NHWC", "NDHWC"], \
        "data_format should be in one of [NCL, NCHW, NCDHW, NLC, NHWC, NDHWC], " \
        "but got {}".format(data_format)

    x_dim = len(x.shape)

    original_data_format = data_format
    unsqueezed_dim = []

    if isinstance(pad, Variable):
        if data_format in ["NCL", "NCHW", "NCDHW"]:
            data_format = "NCDHW"
            if x_dim == 3:
                pad = concat([zeros((4, ), dtype="int32"), pad], axis=0)
                unsqueezed_dim = [3, 4]
                x = unsqueeze(x, axes=unsqueezed_dim)
            elif x_dim == 4:
                pad = concat([pad, zeros((2, ), dtype="int32")], axis=0)
                unsqueezed_dim = [2]
                x = unsqueeze(x, axes=unsqueezed_dim)
        elif data_format in ["NLC", "NHWC", "NDHWC"]:
            data_format = "NDHWC"
            if x_dim == 3:
                pad = concat([zeros((4, ), dtype="int32"), pad], axis=0)
                unsqueezed_dim = [2, 3]
                x = unsqueeze(x, axes=unsqueezed_dim)
            elif x_dim == 4:
                pad = concat([pad, zeros((2, ), dtype="int32")], axis=0)
                unsqueezed_dim = [1]
                x = unsqueeze(x, axes=unsqueezed_dim)
    else:
        if data_format in ["NCL", "NCHW", "NCDHW"]:
            data_format = "NCDHW"
            if x_dim == 3:
                pad = [0, 0, 0, 0] + pad
                unsqueezed_dim = [3, 4]
                x = unsqueeze(x, axes=unsqueezed_dim)
            elif x_dim == 4:
                pad = pad + [0, 0]
                unsqueezed_dim = [2]
                x = unsqueeze(x, axes=unsqueezed_dim)
        elif data_format in ["NLC", "NHWC", "NDHWC"]:
            data_format = "NDHWC"
            if x_dim == 3:
                pad = [0, 0, 0, 0] + pad
                unsqueezed_dim = [2, 3]
                x = unsqueeze(x, axes=unsqueezed_dim)
            elif x_dim == 4:
                pad = pad + [0, 0]
                unsqueezed_dim = [1]
                x = unsqueeze(x, axes=unsqueezed_dim)

    if in_dygraph_mode():
        if isinstance(pad, Variable):
            pad = pad.numpy()
        out = core.ops.pad3d(x, "paddings", pad, "mode", mode, "value", value,
                             "data_format", data_format, "name", name)
    else:
        attrs = {'mode': mode, 'value': value, 'data_format': data_format}
        inputs = {'X': [x]}
        if isinstance(pad, Variable):
            inputs['Paddings'] = [pad]
            attrs['paddings'] = []
        else:
            attrs['paddings'] = pad

        helper = LayerHelper('pad3d', **locals())

        dtype = helper.input_dtype(input_param_name='input')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='pad3d', inputs=inputs, outputs={"Out": out}, attrs=attrs)

    if len(unsqueezed_dim) != 0:
        out = squeeze(out, axes=unsqueezed_dim)

    return out


Y
Yang Zhang 已提交
1300
def cosine_similarity(x1, x2, axis=1, eps=1e-8):
L
littletomatodonkey 已提交
1301
    """
Y
Yang Zhang 已提交
1302
    Compute cosine similarity between x1 and x2 along axis.
L
littletomatodonkey 已提交
1303 1304 1305 1306

    Parameters:
        x1 (Tensor): First input. float32/double.
        x2 (Tensor): Second input. float32/double.
Y
Yang Zhang 已提交
1307
        axis (int): Dimension of vectors to compute cosine similarity. Default is 1.
L
littletomatodonkey 已提交
1308 1309
        eps(float): Small value to avoid division by zero. Default is 1e-8.
                    
Y
Yang Zhang 已提交
1310
    Returns: a Tensor representing cosine similarity between x1 and x2 along axis.
L
littletomatodonkey 已提交
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
    Return Type: Tensor

    Examples:
        .. code-block:: text
            Case 0:
                x1 = [[0.8024077  0.9927354  0.27238318 0.8344984 ]
                     [0.48949873 0.5797396  0.65444374 0.66510963]
                     [0.1031398  0.9614342  0.08365563 0.6796464 ]
                     [0.10760343 0.7461209  0.7726148  0.5801006 ]]
                x2 = [[0.62913156 0.1536727  0.9847992  0.04591406]
                     [0.9098952  0.15715368 0.8671125  0.3156102 ]
                     [0.4427798  0.54136837 0.5276275  0.32394758]
                     [0.3769419  0.8535014  0.48041078 0.9256797 ]]
Y
Yang Zhang 已提交
1324
                axis = 1
L
littletomatodonkey 已提交
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
                eps = 1e-8
                Out: [0.5275037  0.8368967  0.75037485 0.9245899]

    Code Examples:
        .. code-block:: python
            import paddle
            import paddle.nn as nn
            import numpy as np
            paddle.disable_static()

            np.random.seed(0)
            x1 = np.random.rand(2,3)
            x2 = np.random.rand(2,3)
            x1 = paddle.to_tensor(x1)
            x2 = paddle.to_tensor(x2)
Y
Yang Zhang 已提交
1340
            result = paddle.nn.functional.cosine_similarity(x1, x2, axis=0)
L
littletomatodonkey 已提交
1341 1342 1343 1344
            print(result.numpy())
            # [0.99806249 0.9817672  0.94987036]
            
    """
Y
Yang Zhang 已提交
1345 1346 1347 1348
    w12 = sum(elementwise_mul(x1, x2), axis=axis)
    w1 = sum(elementwise_mul(x1, x1), axis=axis)
    w2 = sum(elementwise_mul(x2, x2), axis=axis)
    n12 = sqrt(clip(w1 * w2, min=eps * eps))
L
littletomatodonkey 已提交
1349 1350
    cos_sim = w12 / n12
    return cos_sim