sample.go 14.7 KB
Newer Older
H
update  
hongming 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
package metrics

import (
	"math"
	"math/rand"
	"sort"
	"sync"
	"time"
)

const rescaleThreshold = time.Hour

// Samples maintain a statistically-significant selection of values from
// a stream.
type Sample interface {
	Clear()
	Count() int64
	Max() int64
	Mean() float64
	Min() int64
	Percentile(float64) float64
	Percentiles([]float64) []float64
	Size() int
	Snapshot() Sample
	StdDev() float64
	Sum() int64
	Update(int64)
	Values() []int64
	Variance() float64
}

// ExpDecaySample is an exponentially-decaying sample using a forward-decaying
// priority reservoir.  See Cormode et al's "Forward Decay: A Practical Time
// Decay Model for Streaming Systems".
//
// <http://dimacs.rutgers.edu/~graham/pubs/papers/fwddecay.pdf>
type ExpDecaySample struct {
	alpha         float64
	count         int64
	mutex         sync.Mutex
	reservoirSize int
	t0, t1        time.Time
	values        *expDecaySampleHeap
}

// NewExpDecaySample constructs a new exponentially-decaying sample with the
// given reservoir size and alpha.
func NewExpDecaySample(reservoirSize int, alpha float64) Sample {
	if UseNilMetrics {
		return NilSample{}
	}
	s := &ExpDecaySample{
		alpha:         alpha,
		reservoirSize: reservoirSize,
		t0:            time.Now(),
		values:        newExpDecaySampleHeap(reservoirSize),
	}
	s.t1 = s.t0.Add(rescaleThreshold)
	return s
}

// Clear clears all samples.
func (s *ExpDecaySample) Clear() {
	s.mutex.Lock()
	defer s.mutex.Unlock()
	s.count = 0
	s.t0 = time.Now()
	s.t1 = s.t0.Add(rescaleThreshold)
	s.values.Clear()
}

// Count returns the number of samples recorded, which may exceed the
// reservoir size.
func (s *ExpDecaySample) Count() int64 {
	s.mutex.Lock()
	defer s.mutex.Unlock()
	return s.count
}

// Max returns the maximum value in the sample, which may not be the maximum
// value ever to be part of the sample.
func (s *ExpDecaySample) Max() int64 {
	return SampleMax(s.Values())
}

// Mean returns the mean of the values in the sample.
func (s *ExpDecaySample) Mean() float64 {
	return SampleMean(s.Values())
}

// Min returns the minimum value in the sample, which may not be the minimum
// value ever to be part of the sample.
func (s *ExpDecaySample) Min() int64 {
	return SampleMin(s.Values())
}

// Percentile returns an arbitrary percentile of values in the sample.
func (s *ExpDecaySample) Percentile(p float64) float64 {
	return SamplePercentile(s.Values(), p)
}

// Percentiles returns a slice of arbitrary percentiles of values in the
// sample.
func (s *ExpDecaySample) Percentiles(ps []float64) []float64 {
	return SamplePercentiles(s.Values(), ps)
}

// Size returns the size of the sample, which is at most the reservoir size.
func (s *ExpDecaySample) Size() int {
	s.mutex.Lock()
	defer s.mutex.Unlock()
	return s.values.Size()
}

// Snapshot returns a read-only copy of the sample.
func (s *ExpDecaySample) Snapshot() Sample {
	s.mutex.Lock()
	defer s.mutex.Unlock()
	vals := s.values.Values()
	values := make([]int64, len(vals))
	for i, v := range vals {
		values[i] = v.v
	}
	return &SampleSnapshot{
		count:  s.count,
		values: values,
	}
}

// StdDev returns the standard deviation of the values in the sample.
func (s *ExpDecaySample) StdDev() float64 {
	return SampleStdDev(s.Values())
}

// Sum returns the sum of the values in the sample.
func (s *ExpDecaySample) Sum() int64 {
	return SampleSum(s.Values())
}

// Update samples a new value.
func (s *ExpDecaySample) Update(v int64) {
	s.update(time.Now(), v)
}

// Values returns a copy of the values in the sample.
func (s *ExpDecaySample) Values() []int64 {
	s.mutex.Lock()
	defer s.mutex.Unlock()
	vals := s.values.Values()
	values := make([]int64, len(vals))
	for i, v := range vals {
		values[i] = v.v
	}
	return values
}

// Variance returns the variance of the values in the sample.
func (s *ExpDecaySample) Variance() float64 {
	return SampleVariance(s.Values())
}

// update samples a new value at a particular timestamp.  This is a method all
// its own to facilitate testing.
func (s *ExpDecaySample) update(t time.Time, v int64) {
	s.mutex.Lock()
	defer s.mutex.Unlock()
	s.count++
	if s.values.Size() == s.reservoirSize {
		s.values.Pop()
	}
	s.values.Push(expDecaySample{
		k: math.Exp(t.Sub(s.t0).Seconds()*s.alpha) / rand.Float64(),
		v: v,
	})
	if t.After(s.t1) {
		values := s.values.Values()
		t0 := s.t0
		s.values.Clear()
		s.t0 = t
		s.t1 = s.t0.Add(rescaleThreshold)
		for _, v := range values {
			v.k = v.k * math.Exp(-s.alpha*s.t0.Sub(t0).Seconds())
			s.values.Push(v)
		}
	}
}

// NilSample is a no-op Sample.
type NilSample struct{}

// Clear is a no-op.
func (NilSample) Clear() {}

// Count is a no-op.
func (NilSample) Count() int64 { return 0 }

// Max is a no-op.
func (NilSample) Max() int64 { return 0 }

// Mean is a no-op.
func (NilSample) Mean() float64 { return 0.0 }

// Min is a no-op.
func (NilSample) Min() int64 { return 0 }

// Percentile is a no-op.
func (NilSample) Percentile(p float64) float64 { return 0.0 }

// Percentiles is a no-op.
func (NilSample) Percentiles(ps []float64) []float64 {
	return make([]float64, len(ps))
}

// Size is a no-op.
func (NilSample) Size() int { return 0 }

// Sample is a no-op.
func (NilSample) Snapshot() Sample { return NilSample{} }

// StdDev is a no-op.
func (NilSample) StdDev() float64 { return 0.0 }

// Sum is a no-op.
func (NilSample) Sum() int64 { return 0 }

// Update is a no-op.
func (NilSample) Update(v int64) {}

// Values is a no-op.
func (NilSample) Values() []int64 { return []int64{} }

// Variance is a no-op.
func (NilSample) Variance() float64 { return 0.0 }

// SampleMax returns the maximum value of the slice of int64.
func SampleMax(values []int64) int64 {
	if 0 == len(values) {
		return 0
	}
	var max int64 = math.MinInt64
	for _, v := range values {
		if max < v {
			max = v
		}
	}
	return max
}

// SampleMean returns the mean value of the slice of int64.
func SampleMean(values []int64) float64 {
	if 0 == len(values) {
		return 0.0
	}
	return float64(SampleSum(values)) / float64(len(values))
}

// SampleMin returns the minimum value of the slice of int64.
func SampleMin(values []int64) int64 {
	if 0 == len(values) {
		return 0
	}
	var min int64 = math.MaxInt64
	for _, v := range values {
		if min > v {
			min = v
		}
	}
	return min
}

// SamplePercentiles returns an arbitrary percentile of the slice of int64.
func SamplePercentile(values int64Slice, p float64) float64 {
	return SamplePercentiles(values, []float64{p})[0]
}

// SamplePercentiles returns a slice of arbitrary percentiles of the slice of
// int64.
func SamplePercentiles(values int64Slice, ps []float64) []float64 {
	scores := make([]float64, len(ps))
	size := len(values)
	if size > 0 {
		sort.Sort(values)
		for i, p := range ps {
			pos := p * float64(size+1)
			if pos < 1.0 {
				scores[i] = float64(values[0])
			} else if pos >= float64(size) {
				scores[i] = float64(values[size-1])
			} else {
				lower := float64(values[int(pos)-1])
				upper := float64(values[int(pos)])
				scores[i] = lower + (pos-math.Floor(pos))*(upper-lower)
			}
		}
	}
	return scores
}

// SampleSnapshot is a read-only copy of another Sample.
type SampleSnapshot struct {
	count  int64
	values []int64
}

func NewSampleSnapshot(count int64, values []int64) *SampleSnapshot {
	return &SampleSnapshot{
		count:  count,
		values: values,
	}
}

// Clear panics.
func (*SampleSnapshot) Clear() {
	panic("Clear called on a SampleSnapshot")
}

// Count returns the count of inputs at the time the snapshot was taken.
func (s *SampleSnapshot) Count() int64 { return s.count }

// Max returns the maximal value at the time the snapshot was taken.
func (s *SampleSnapshot) Max() int64 { return SampleMax(s.values) }

// Mean returns the mean value at the time the snapshot was taken.
func (s *SampleSnapshot) Mean() float64 { return SampleMean(s.values) }

// Min returns the minimal value at the time the snapshot was taken.
func (s *SampleSnapshot) Min() int64 { return SampleMin(s.values) }

// Percentile returns an arbitrary percentile of values at the time the
// snapshot was taken.
func (s *SampleSnapshot) Percentile(p float64) float64 {
	return SamplePercentile(s.values, p)
}

// Percentiles returns a slice of arbitrary percentiles of values at the time
// the snapshot was taken.
func (s *SampleSnapshot) Percentiles(ps []float64) []float64 {
	return SamplePercentiles(s.values, ps)
}

// Size returns the size of the sample at the time the snapshot was taken.
func (s *SampleSnapshot) Size() int { return len(s.values) }

// Snapshot returns the snapshot.
func (s *SampleSnapshot) Snapshot() Sample { return s }

// StdDev returns the standard deviation of values at the time the snapshot was
// taken.
func (s *SampleSnapshot) StdDev() float64 { return SampleStdDev(s.values) }

// Sum returns the sum of values at the time the snapshot was taken.
func (s *SampleSnapshot) Sum() int64 { return SampleSum(s.values) }

// Update panics.
func (*SampleSnapshot) Update(int64) {
	panic("Update called on a SampleSnapshot")
}

// Values returns a copy of the values in the sample.
func (s *SampleSnapshot) Values() []int64 {
	values := make([]int64, len(s.values))
	copy(values, s.values)
	return values
}

// Variance returns the variance of values at the time the snapshot was taken.
func (s *SampleSnapshot) Variance() float64 { return SampleVariance(s.values) }

// SampleStdDev returns the standard deviation of the slice of int64.
func SampleStdDev(values []int64) float64 {
	return math.Sqrt(SampleVariance(values))
}

// SampleSum returns the sum of the slice of int64.
func SampleSum(values []int64) int64 {
	var sum int64
	for _, v := range values {
		sum += v
	}
	return sum
}

// SampleVariance returns the variance of the slice of int64.
func SampleVariance(values []int64) float64 {
	if 0 == len(values) {
		return 0.0
	}
	m := SampleMean(values)
	var sum float64
	for _, v := range values {
		d := float64(v) - m
		sum += d * d
	}
	return sum / float64(len(values))
}

// A uniform sample using Vitter's Algorithm R.
//
// <http://www.cs.umd.edu/~samir/498/vitter.pdf>
type UniformSample struct {
	count         int64
	mutex         sync.Mutex
	reservoirSize int
	values        []int64
}

// NewUniformSample constructs a new uniform sample with the given reservoir
// size.
func NewUniformSample(reservoirSize int) Sample {
	if UseNilMetrics {
		return NilSample{}
	}
	return &UniformSample{
		reservoirSize: reservoirSize,
		values:        make([]int64, 0, reservoirSize),
	}
}

// Clear clears all samples.
func (s *UniformSample) Clear() {
	s.mutex.Lock()
	defer s.mutex.Unlock()
	s.count = 0
	s.values = make([]int64, 0, s.reservoirSize)
}

// Count returns the number of samples recorded, which may exceed the
// reservoir size.
func (s *UniformSample) Count() int64 {
	s.mutex.Lock()
	defer s.mutex.Unlock()
	return s.count
}

// Max returns the maximum value in the sample, which may not be the maximum
// value ever to be part of the sample.
func (s *UniformSample) Max() int64 {
	s.mutex.Lock()
	defer s.mutex.Unlock()
	return SampleMax(s.values)
}

// Mean returns the mean of the values in the sample.
func (s *UniformSample) Mean() float64 {
	s.mutex.Lock()
	defer s.mutex.Unlock()
	return SampleMean(s.values)
}

// Min returns the minimum value in the sample, which may not be the minimum
// value ever to be part of the sample.
func (s *UniformSample) Min() int64 {
	s.mutex.Lock()
	defer s.mutex.Unlock()
	return SampleMin(s.values)
}

// Percentile returns an arbitrary percentile of values in the sample.
func (s *UniformSample) Percentile(p float64) float64 {
	s.mutex.Lock()
	defer s.mutex.Unlock()
	return SamplePercentile(s.values, p)
}

// Percentiles returns a slice of arbitrary percentiles of values in the
// sample.
func (s *UniformSample) Percentiles(ps []float64) []float64 {
	s.mutex.Lock()
	defer s.mutex.Unlock()
	return SamplePercentiles(s.values, ps)
}

// Size returns the size of the sample, which is at most the reservoir size.
func (s *UniformSample) Size() int {
	s.mutex.Lock()
	defer s.mutex.Unlock()
	return len(s.values)
}

// Snapshot returns a read-only copy of the sample.
func (s *UniformSample) Snapshot() Sample {
	s.mutex.Lock()
	defer s.mutex.Unlock()
	values := make([]int64, len(s.values))
	copy(values, s.values)
	return &SampleSnapshot{
		count:  s.count,
		values: values,
	}
}

// StdDev returns the standard deviation of the values in the sample.
func (s *UniformSample) StdDev() float64 {
	s.mutex.Lock()
	defer s.mutex.Unlock()
	return SampleStdDev(s.values)
}

// Sum returns the sum of the values in the sample.
func (s *UniformSample) Sum() int64 {
	s.mutex.Lock()
	defer s.mutex.Unlock()
	return SampleSum(s.values)
}

// Update samples a new value.
func (s *UniformSample) Update(v int64) {
	s.mutex.Lock()
	defer s.mutex.Unlock()
	s.count++
	if len(s.values) < s.reservoirSize {
		s.values = append(s.values, v)
	} else {
		r := rand.Int63n(s.count)
		if r < int64(len(s.values)) {
			s.values[int(r)] = v
		}
	}
}

// Values returns a copy of the values in the sample.
func (s *UniformSample) Values() []int64 {
	s.mutex.Lock()
	defer s.mutex.Unlock()
	values := make([]int64, len(s.values))
	copy(values, s.values)
	return values
}

// Variance returns the variance of the values in the sample.
func (s *UniformSample) Variance() float64 {
	s.mutex.Lock()
	defer s.mutex.Unlock()
	return SampleVariance(s.values)
}

// expDecaySample represents an individual sample in a heap.
type expDecaySample struct {
	k float64
	v int64
}

func newExpDecaySampleHeap(reservoirSize int) *expDecaySampleHeap {
	return &expDecaySampleHeap{make([]expDecaySample, 0, reservoirSize)}
}

// expDecaySampleHeap is a min-heap of expDecaySamples.
// The internal implementation is copied from the standard library's container/heap
type expDecaySampleHeap struct {
	s []expDecaySample
}

func (h *expDecaySampleHeap) Clear() {
	h.s = h.s[:0]
}

func (h *expDecaySampleHeap) Push(s expDecaySample) {
	n := len(h.s)
	h.s = h.s[0 : n+1]
	h.s[n] = s
	h.up(n)
}

func (h *expDecaySampleHeap) Pop() expDecaySample {
	n := len(h.s) - 1
	h.s[0], h.s[n] = h.s[n], h.s[0]
	h.down(0, n)

	n = len(h.s)
	s := h.s[n-1]
	h.s = h.s[0 : n-1]
	return s
}

func (h *expDecaySampleHeap) Size() int {
	return len(h.s)
}

func (h *expDecaySampleHeap) Values() []expDecaySample {
	return h.s
}

func (h *expDecaySampleHeap) up(j int) {
	for {
		i := (j - 1) / 2 // parent
		if i == j || !(h.s[j].k < h.s[i].k) {
			break
		}
		h.s[i], h.s[j] = h.s[j], h.s[i]
		j = i
	}
}

func (h *expDecaySampleHeap) down(i, n int) {
	for {
		j1 := 2*i + 1
		if j1 >= n || j1 < 0 { // j1 < 0 after int overflow
			break
		}
		j := j1 // left child
		if j2 := j1 + 1; j2 < n && !(h.s[j1].k < h.s[j2].k) {
			j = j2 // = 2*i + 2  // right child
		}
		if !(h.s[j].k < h.s[i].k) {
			break
		}
		h.s[i], h.s[j] = h.s[j], h.s[i]
		i = j
	}
}

type int64Slice []int64

func (p int64Slice) Len() int           { return len(p) }
func (p int64Slice) Less(i, j int) bool { return p[i] < p[j] }
func (p int64Slice) Swap(i, j int)      { p[i], p[j] = p[j], p[i] }