提交 9b9cfd7b 编写于 作者: 三月三net's avatar 三月三net

Python超人-宇宙模拟器

上级 4a0e6ea2
......@@ -119,11 +119,14 @@ def 场景2():
vxA, vxB = 0, 0
# https://latex.codecogs.com/svg.image?\frac{G.mA.mB}{(r1+r2)^{2}}%20=%20mA.\frac{vA^{2}}{r1}=%20mB.\frac{vB^{2}}{r1}
# https://latex.codecogs.com/svg.image?\frac{G.m_{A}.m_{B}}{(r_{1}+r_{2})^{2}}%20=%20m_{A}.\frac{v_{A}^{2}}{r_{1}}=%20m_{B}.\frac{v_{B}^{2}}{r_{1}}
# 万有引力常量 *mA * mB/ math.pow(r1+r2,2) = mA*math.pow(vyA,2)/r1
# https://latex.codecogs.com/svg.image?vyA%20=%20\sqrt{\frac{G.mA.mB}{(r1+r2)^{2}}*\frac{r1}{mA}}
# https://latex.codecogs.com/svg.image?v_{Ay}%20=%20\sqrt{\frac{G.m_{A}.m_{B}}{(r_{1}+r_{2})^{2}}*\frac{r_{1}}{m_{A}}}
vyA = -math.sqrt((万有引力常量 * mA * mB) / math.pow(r1 + r2, 2) * r1 / mA)
# 万有引力常量 *mA * mB/ math.pow(r1+r2,2) = mB*math.pow(vyB,2)/r2
# https://latex.codecogs.com/svg.image?vyB%20=%20\sqrt{\frac{G.mA.mB}{(r1+r2)^{2}}*\frac{r2}{mB}}
# https://latex.codecogs.com/svg.image?v_{By}%20=%20\sqrt{\frac{G.m_{A}.m_{B}}{(r_{1}+r_{2})^{2}}*\frac{r_{2}}{m_{B}}}
vyB = math.sqrt((万有引力常量 * mA * mB) / math.pow(r1 + r2, 2) * r2 / mB)
vA, vB = [vxA, vyA], [vxB, vyB]
星球列表 = [
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册