提交 57035816 编写于 作者: 三月三net's avatar 三月三net

Python超人-宇宙模拟器

上级 6cc0a4a3
......@@ -54,34 +54,37 @@ def get_bodies_names(bodies):
names += body.__class__.__name__ + ","
return names[0:-1]
def are_planets_in_line(positions, line_width):
# 检查行星的数量是否足够判断是否在一条线上
if len(positions) < 3:
return False
# 获取第一个行星的坐标
# 获取第一个行星的坐标
x1, y1, z1 = positions[0]
# 计算行星之间的向量差
# 计算行星之间的向量差
dx = positions[1][0] - x1
dy = positions[1][1] - y1
dz = positions[1][2] - z1
# 计算线的宽度的平方
line_width_squared = line_width**2
# 遍历剩余的行星
# 计算线的宽度的平方
line_width_squared = line_width ** 2
# 遍历剩余的行星
for i in range(2, len(positions)):
# 获取当前行星的坐标
x, y, z = positions[i]
# 计算当前行星与第一个行星之间的向量差
# 计算当前行星与第一个行星之间的向量差
current_dx = x - x1
current_dy = y - y1
current_dz = z - z1
# 计算当前行星与线之间的距离的平方
distance_squared = (current_dy * dz - current_dz * dy)**2 + (current_dz * dx - current_dx * dz)**2 + (current_dx * dy - current_dy * dx)**2
# 如果距离的平方大于线的宽度的平方,则行星不在一条线上
# 计算当前行星与线之间的距离的平方
distance_squared = (current_dy * dz - current_dz * dy) ** 2 + (current_dz * dx - current_dx * dz) ** 2 + (
current_dx * dy - current_dy * dx) ** 2
# 如果距离的平方大于线的宽度的平方,则行星不在一条线上
if distance_squared > line_width_squared:
return False
# 所有行星都在一条线上
# 所有行星都在一条线上
return True
def are_planets_in_line(planets, line_width):
if len(planets) < 2:
return False
......@@ -94,10 +97,14 @@ def are_planets_in_line(planets, line_width):
y_diff = [abs(y2 - y1) for (y1, y2) in zip(y_coords, y_coords[1:])]
z_diff = [abs(z2 - z1) for (z1, z2) in zip(z_coords, z_coords[1:])]
widths = [max(d1, d2, line_width) for (d1, d2) in zip(x_diff, y_diff)] + [line_width] + [max(d1, d2, line_width) for (d1, d2) in zip(x_diff[::-1], y_diff[::-1])]
widths = [max(d1, d2, line_width) for (d1, d2) in zip(x_diff, y_diff)] + [line_width] + [max(d1, d2, line_width) for
(d1, d2) in
zip(x_diff[::-1],
y_diff[::-1])]
return all(w == widths[0] for w in widths)
def are_planets_in_line(planets, line_width):
if len(planets) < 2:
return False
......@@ -110,10 +117,12 @@ def are_planets_in_line(planets, line_width):
y_diff = [abs(y2 - y1) for (y1, y2) in zip(y_coords, y_coords[1:])]
z_diff = [abs(z2 - z1) for (z1, z2) in zip(z_coords, z_coords[1:])]
widths = [max(d1, d2, line_width**2) for (d1, d2) in zip(x_diff, y_diff)] + [line_width**2] + [max(d1, d2, line_width**2) for (d1, d2) in zip(x_diff[::-1], y_diff[::-1])]
widths = [max(d1, d2, line_width ** 2) for (d1, d2) in zip(x_diff, y_diff)] + [line_width ** 2] + [
max(d1, d2, line_width ** 2) for (d1, d2) in zip(x_diff[::-1], y_diff[::-1])]
return all(w == widths[0] for w in widths)
current_time = Time.now()
in_line_datetimes = []
......@@ -127,12 +136,12 @@ if __name__ == '__main__':
# =====================================================================
# 以下展示的效果为太阳系真实的距离
# 由于宇宙空间尺度非常大,如果按照实际的天体大小,则无法看到天体,因此需要对天体的尺寸进行放大
sun = Sun(name="太阳", size_scale=0.4e2) # 太阳放大 40 倍,距离保持不变
sun = Sun(name="太阳", size_scale=0.4e2) # 太阳放大 40 倍,距离保持不变(size_scale=0.04e2)TODO:进行调试大小
bodies = [
sun,
Mercury(name="水星", size_scale=1.5e3), # 水星
Venus(name="金星", size_scale=1e3), # 金星
Earth(name="地球", size_scale=1e3), # 地球
Earth(name="地球", size_scale=1e3), # 地球(size_scale=10e3)TODO:进行调试大小
Moon(name="月球", size_scale=2e3), # 月球
Mars(name="火星", size_scale=1.2e3), # 火星
# Asteroids(size_scale=1e2, parent=sun, rotate_angle=-20),
......@@ -144,6 +153,7 @@ if __name__ == '__main__':
earth = bodies[3]
earth.rotate_axis_color = (255, 255, 50)
# earth.set_light_disable(True) # TODO:进行调试
names = get_bodies_names(bodies)
names = names.replace("Asteroids,", "")
......@@ -160,6 +170,9 @@ if __name__ == '__main__':
def on_ready():
# 运行前触发
camera.rotation_z = -20
# 需要按照时间和日期控制地球的自转,不能随意转动
delattr(earth.planet, "rotation_speed")
delattr(earth.planet, "rotspeed")
def on_timer_changed(time_data: TimeData):
......@@ -168,6 +181,7 @@ if __name__ == '__main__':
# earth_loc = None
earth_pos = None
sun_pos = None
positions = []
for body in bodies:
if isinstance(body, Asteroids):
......@@ -204,6 +218,19 @@ if __name__ == '__main__':
dt = time_data.get_datetime(str(current_time))
# # 日期当天的偏转角度+误差
# angle_of_day = day_of_year * (360 / 365) + 75
# # 控制地球的自转
# earth.planet.rotation_y = -(time_data.total_hours) * 15 + angle_of_day
# 需要按照时间和日期控制地球的自转,不能随意转动
# 日期是当年的第几天
day_of_year = dt.timetuple().tm_yday
# 计算出:日期当天的偏转角度 - 贴图的误差
angle_of_day = day_of_year * (360 / 365) - 120
# 控制地球的自转速度和方向,保障白天,中国面对太阳(会存在一点点的误差,可以通过上面“贴图的误差”进行调整)。
earth.planet.rotation_y = -(time_data.total_hours) * 15 - angle_of_day
# if len(in_line_datetimes) == 0:
# in_line = are_planets_in_line(positions, 5*AU)
# if in_line:
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册