提交 ea342855 编写于 作者: A aarzilli 提交者: Derek Parker

proc/native,proc/core: deduplicate linux register handling code

The linux version of proc/native and proc/core contained largely
overlapping implementations of the register handling code, deduplicate
it by moving it into proc/linutil.
上级 3129aa73
......@@ -8,6 +8,7 @@ import (
"sync"
"github.com/derekparker/delve/pkg/proc"
"github.com/derekparker/delve/pkg/proc/linutil"
)
// A SplicedMemory represents a memory space formed from multiple regions,
......@@ -154,8 +155,8 @@ type Process struct {
// Thread represents a thread in the core file being debugged.
type Thread struct {
regs linutil.AMD64Registers
th *LinuxPrStatus
fpregs []proc.Register
p *Process
common proc.CommonThread
}
......@@ -273,11 +274,12 @@ func (t *Thread) ThreadID() int {
// Registers returns the current value of the registers for this thread.
func (t *Thread) Registers(floatingPoint bool) (proc.Registers, error) {
r := &Registers{&t.th.Reg, nil}
var r linutil.AMD64Registers
r.Regs = t.regs.Regs
if floatingPoint {
r.fpregs = t.fpregs
r.Fpregs = t.regs.Fpregs
}
return r, nil
return &r, nil
}
// RestoreRegisters will only return an error for core files,
......@@ -466,61 +468,3 @@ func (p *Process) FindThread(threadID int) (proc.Thread, bool) {
t, ok := p.core.Threads[threadID]
return t, ok
}
// Registers represents the CPU registers.
type Registers struct {
*LinuxCoreRegisters
fpregs []proc.Register
}
// Slice will return a slice containing all registers and their values.
func (r *Registers) Slice() []proc.Register {
var regs = []struct {
k string
v uint64
}{
{"Rip", r.Rip},
{"Rsp", r.Rsp},
{"Rax", r.Rax},
{"Rbx", r.Rbx},
{"Rcx", r.Rcx},
{"Rdx", r.Rdx},
{"Rdi", r.Rdi},
{"Rsi", r.Rsi},
{"Rbp", r.Rbp},
{"R8", r.R8},
{"R9", r.R9},
{"R10", r.R10},
{"R11", r.R11},
{"R12", r.R12},
{"R13", r.R13},
{"R14", r.R14},
{"R15", r.R15},
{"Orig_rax", r.Orig_rax},
{"Cs", r.Cs},
{"Eflags", r.Eflags},
{"Ss", r.Ss},
{"Fs_base", r.Fs_base},
{"Gs_base", r.Gs_base},
{"Ds", r.Ds},
{"Es", r.Es},
{"Fs", r.Fs},
{"Gs", r.Gs},
}
out := make([]proc.Register, 0, len(regs))
for _, reg := range regs {
if reg.k == "Eflags" {
out = proc.AppendEflagReg(out, reg.k, reg.v)
} else {
out = proc.AppendQwordReg(out, reg.k, reg.v)
}
}
out = append(out, r.fpregs...)
return out
}
// Copy will return a copy of the registers that is guarenteed
// not to change.
func (r *Registers) Copy() proc.Registers {
return r
}
......@@ -8,44 +8,10 @@ import (
"io"
"os"
"golang.org/x/arch/x86/x86asm"
"github.com/derekparker/delve/pkg/proc"
"github.com/derekparker/delve/pkg/proc/linutil"
)
// Copied from golang.org/x/sys/unix.PtraceRegs since it's not available on
// all systems.
type LinuxCoreRegisters struct {
R15 uint64
R14 uint64
R13 uint64
R12 uint64
Rbp uint64
Rbx uint64
R11 uint64
R10 uint64
R9 uint64
R8 uint64
Rax uint64
Rcx uint64
Rdx uint64
Rsi uint64
Rdi uint64
Orig_rax uint64
Rip uint64
Cs uint64
Eflags uint64
Rsp uint64
Ss uint64
Fs_base uint64
Gs_base uint64
Ds uint64
Es uint64
Fs uint64
Gs uint64
}
// Copied from golang.org/x/sys/unix.Timeval since it's not available on all
// systems.
type LinuxCoreTimeval struct {
......@@ -62,198 +28,6 @@ const NT_X86_XSTATE elf.NType = 0x202 // Note type for notes containing X86 XSAV
// NT_AUXV is the note type for notes containing a copy of the Auxv array
const NT_AUXV elf.NType = 0x6
// PC returns the value of RIP.
func (r *LinuxCoreRegisters) PC() uint64 {
return r.Rip
}
// SP returns the value of RSP.
func (r *LinuxCoreRegisters) SP() uint64 {
return r.Rsp
}
// BP returns the value of RBP.
func (r *LinuxCoreRegisters) BP() uint64 {
return r.Rbp
}
// CX returns the value of RCX.
func (r *LinuxCoreRegisters) CX() uint64 {
return r.Rcx
}
// TLS returns the location of the thread local storate,
// which will be the value of Fs_base.
func (r *LinuxCoreRegisters) TLS() uint64 {
return r.Fs_base
}
// GAddr returns the address of the G struct. Always returns 0
// and false for core files.
func (r *LinuxCoreRegisters) GAddr() (uint64, bool) {
return 0, false
}
// Get returns the value of the register requested via the
// register number, returning an error if that register
// could not be found.
func (r *LinuxCoreRegisters) Get(n int) (uint64, error) {
reg := x86asm.Reg(n)
const (
mask8 = 0x000f
mask16 = 0x00ff
mask32 = 0xffff
)
switch reg {
// 8-bit
case x86asm.AL:
return r.Rax & mask8, nil
case x86asm.CL:
return r.Rcx & mask8, nil
case x86asm.DL:
return r.Rdx & mask8, nil
case x86asm.BL:
return r.Rbx & mask8, nil
case x86asm.AH:
return (r.Rax >> 8) & mask8, nil
case x86asm.CH:
return (r.Rcx >> 8) & mask8, nil
case x86asm.DH:
return (r.Rdx >> 8) & mask8, nil
case x86asm.BH:
return (r.Rbx >> 8) & mask8, nil
case x86asm.SPB:
return r.Rsp & mask8, nil
case x86asm.BPB:
return r.Rbp & mask8, nil
case x86asm.SIB:
return r.Rsi & mask8, nil
case x86asm.DIB:
return r.Rdi & mask8, nil
case x86asm.R8B:
return r.R8 & mask8, nil
case x86asm.R9B:
return r.R9 & mask8, nil
case x86asm.R10B:
return r.R10 & mask8, nil
case x86asm.R11B:
return r.R11 & mask8, nil
case x86asm.R12B:
return r.R12 & mask8, nil
case x86asm.R13B:
return r.R13 & mask8, nil
case x86asm.R14B:
return r.R14 & mask8, nil
case x86asm.R15B:
return r.R15 & mask8, nil
// 16-bit
case x86asm.AX:
return r.Rax & mask16, nil
case x86asm.CX:
return r.Rcx & mask16, nil
case x86asm.DX:
return r.Rdx & mask16, nil
case x86asm.BX:
return r.Rbx & mask16, nil
case x86asm.SP:
return r.Rsp & mask16, nil
case x86asm.BP:
return r.Rbp & mask16, nil
case x86asm.SI:
return r.Rsi & mask16, nil
case x86asm.DI:
return r.Rdi & mask16, nil
case x86asm.R8W:
return r.R8 & mask16, nil
case x86asm.R9W:
return r.R9 & mask16, nil
case x86asm.R10W:
return r.R10 & mask16, nil
case x86asm.R11W:
return r.R11 & mask16, nil
case x86asm.R12W:
return r.R12 & mask16, nil
case x86asm.R13W:
return r.R13 & mask16, nil
case x86asm.R14W:
return r.R14 & mask16, nil
case x86asm.R15W:
return r.R15 & mask16, nil
// 32-bit
case x86asm.EAX:
return r.Rax & mask32, nil
case x86asm.ECX:
return r.Rcx & mask32, nil
case x86asm.EDX:
return r.Rdx & mask32, nil
case x86asm.EBX:
return r.Rbx & mask32, nil
case x86asm.ESP:
return r.Rsp & mask32, nil
case x86asm.EBP:
return r.Rbp & mask32, nil
case x86asm.ESI:
return r.Rsi & mask32, nil
case x86asm.EDI:
return r.Rdi & mask32, nil
case x86asm.R8L:
return r.R8 & mask32, nil
case x86asm.R9L:
return r.R9 & mask32, nil
case x86asm.R10L:
return r.R10 & mask32, nil
case x86asm.R11L:
return r.R11 & mask32, nil
case x86asm.R12L:
return r.R12 & mask32, nil
case x86asm.R13L:
return r.R13 & mask32, nil
case x86asm.R14L:
return r.R14 & mask32, nil
case x86asm.R15L:
return r.R15 & mask32, nil
// 64-bit
case x86asm.RAX:
return r.Rax, nil
case x86asm.RCX:
return r.Rcx, nil
case x86asm.RDX:
return r.Rdx, nil
case x86asm.RBX:
return r.Rbx, nil
case x86asm.RSP:
return r.Rsp, nil
case x86asm.RBP:
return r.Rbp, nil
case x86asm.RSI:
return r.Rsi, nil
case x86asm.RDI:
return r.Rdi, nil
case x86asm.R8:
return r.R8, nil
case x86asm.R9:
return r.R9, nil
case x86asm.R10:
return r.R10, nil
case x86asm.R11:
return r.R11, nil
case x86asm.R12:
return r.R12, nil
case x86asm.R13:
return r.R13, nil
case x86asm.R14:
return r.R14, nil
case x86asm.R15:
return r.R15, nil
}
return 0, proc.ErrUnknownRegister
}
// readCore reads a core file from corePath corresponding to the executable at
// exePath. For details on the Linux ELF core format, see:
// http://www.gabriel.urdhr.fr/2015/05/29/core-file/,
......@@ -299,11 +73,11 @@ func readCore(corePath, exePath string) (*Core, error) {
switch note.Type {
case elf.NT_PRSTATUS:
t := note.Desc.(*LinuxPrStatus)
lastThread = &Thread{t, nil, nil, proc.CommonThread{}}
lastThread = &Thread{linutil.AMD64Registers{Regs: &t.Reg}, t, nil, proc.CommonThread{}}
core.Threads[int(t.Pid)] = lastThread
case NT_X86_XSTATE:
if lastThread != nil {
lastThread.fpregs = note.Desc.(*proc.LinuxX86Xstate).Decode()
lastThread.regs.Fpregs = note.Desc.(*linutil.AMD64Xstate).Decode()
}
case elf.NT_PRPSINFO:
core.Pid = int(note.Desc.(*LinuxPrPsInfo).Pid)
......@@ -415,8 +189,8 @@ func readNote(r io.ReadSeeker) (*Note, error) {
}
note.Desc = data
case NT_X86_XSTATE:
var fpregs proc.LinuxX86Xstate
if err := proc.LinuxX86XstateRead(desc, true, &fpregs); err != nil {
var fpregs linutil.AMD64Xstate
if err := linutil.AMD64XstateRead(desc, true, &fpregs); err != nil {
return nil, err
}
note.Desc = &fpregs
......@@ -516,7 +290,7 @@ type LinuxPrStatus struct {
Sighold uint64
Pid, Ppid, Pgrp, Sid int32
Utime, Stime, CUtime, CStime LinuxCoreTimeval
Reg LinuxCoreRegisters
Reg linutil.AMD64PtraceRegs
Fpvalid int32
}
......
......@@ -16,7 +16,7 @@ import (
"github.com/derekparker/delve/pkg/dwarf/godwarf"
"github.com/derekparker/delve/pkg/dwarf/op"
"github.com/derekparker/delve/pkg/proc"
"github.com/derekparker/delve/pkg/proc/core"
"github.com/derekparker/delve/pkg/proc/linutil"
)
const defaultCFA = 0xc420051d00
......@@ -88,7 +88,7 @@ func dwarfExprCheck(t *testing.T, mem proc.MemoryReadWriter, regs op.DwarfRegist
return scope
}
func dwarfRegisters(regs *core.Registers) op.DwarfRegisters {
func dwarfRegisters(regs *linutil.AMD64Registers) op.DwarfRegisters {
a := proc.AMD64Arch("linux")
dwarfRegs := a.RegistersToDwarfRegisters(regs, 0)
dwarfRegs.CFA = defaultCFA
......@@ -119,9 +119,9 @@ func TestDwarfExprRegisters(t *testing.T) {
mainfn := bi.LookupFunc["main.main"]
mem := newFakeMemory(defaultCFA, uint64(0), uint64(testCases["b"]), uint16(testCases["pair.v"]))
regs := core.Registers{LinuxCoreRegisters: &core.LinuxCoreRegisters{}}
regs.Rax = uint64(testCases["a"])
regs.Rdx = uint64(testCases["c"])
regs := linutil.AMD64Registers{Regs: &linutil.AMD64PtraceRegs{}}
regs.Regs.Rax = uint64(testCases["a"])
regs.Regs.Rdx = uint64(testCases["c"])
dwarfExprCheck(t, mem, dwarfRegisters(&regs), bi, testCases, mainfn)
}
......@@ -174,12 +174,12 @@ func TestDwarfExprComposite(t *testing.T) {
mainfn := bi.LookupFunc["main.main"]
mem := newFakeMemory(defaultCFA, uint64(0), uint64(0), uint16(testCases["pair.v"]), []byte(stringVal))
var regs core.Registers
regs.LinuxCoreRegisters = &core.LinuxCoreRegisters{}
regs.Rax = uint64(len(stringVal))
regs.Rdx = defaultCFA + 18
regs.Rcx = uint64(testCases["pair.k"])
regs.Rbx = uint64(testCases["n"])
var regs linutil.AMD64Registers
regs.Regs = &linutil.AMD64PtraceRegs{}
regs.Regs.Rax = uint64(len(stringVal))
regs.Regs.Rdx = defaultCFA + 18
regs.Regs.Rcx = uint64(testCases["pair.k"])
regs.Regs.Rbx = uint64(testCases["n"])
scope := dwarfExprCheck(t, mem, dwarfRegisters(&regs), bi, testCases, mainfn)
......@@ -214,7 +214,7 @@ func TestDwarfExprLoclist(t *testing.T) {
mainfn := bi.LookupFunc["main.main"]
mem := newFakeMemory(defaultCFA, uint16(before), uint16(after))
regs := core.Registers{LinuxCoreRegisters: &core.LinuxCoreRegisters{}}
regs := linutil.AMD64Registers{Regs: &linutil.AMD64PtraceRegs{}}
scope := &proc.EvalScope{Location: proc.Location{PC: 0x40100, Fn: mainfn}, Regs: dwarfRegisters(&regs), Mem: mem, Gvar: nil, BinInfo: bi}
......
package linutil
import (
"bytes"
"encoding/binary"
"fmt"
"golang.org/x/arch/x86/x86asm"
"github.com/derekparker/delve/pkg/proc"
)
// AMD64Registers implements the proc.Registers interface for the native/linux
// backend and core/linux backends, on AMD64.
type AMD64Registers struct {
Regs *AMD64PtraceRegs
Fpregs []proc.Register
Fpregset *AMD64Xstate
}
// AMD64PtraceRegs is the struct used by the linux kernel to return the
// general purpose registers for AMD64 CPUs.
type AMD64PtraceRegs struct {
R15 uint64
R14 uint64
R13 uint64
R12 uint64
Rbp uint64
Rbx uint64
R11 uint64
R10 uint64
R9 uint64
R8 uint64
Rax uint64
Rcx uint64
Rdx uint64
Rsi uint64
Rdi uint64
Orig_rax uint64
Rip uint64
Cs uint64
Eflags uint64
Rsp uint64
Ss uint64
Fs_base uint64
Gs_base uint64
Ds uint64
Es uint64
Fs uint64
Gs uint64
}
// Slice returns the registers as a list of (name, value) pairs.
func (r *AMD64Registers) Slice() []proc.Register {
var regs = []struct {
k string
v uint64
}{
{"Rip", r.Regs.Rip},
{"Rsp", r.Regs.Rsp},
{"Rax", r.Regs.Rax},
{"Rbx", r.Regs.Rbx},
{"Rcx", r.Regs.Rcx},
{"Rdx", r.Regs.Rdx},
{"Rdi", r.Regs.Rdi},
{"Rsi", r.Regs.Rsi},
{"Rbp", r.Regs.Rbp},
{"R8", r.Regs.R8},
{"R9", r.Regs.R9},
{"R10", r.Regs.R10},
{"R11", r.Regs.R11},
{"R12", r.Regs.R12},
{"R13", r.Regs.R13},
{"R14", r.Regs.R14},
{"R15", r.Regs.R15},
{"Orig_rax", r.Regs.Orig_rax},
{"Cs", r.Regs.Cs},
{"Eflags", r.Regs.Eflags},
{"Ss", r.Regs.Ss},
{"Fs_base", r.Regs.Fs_base},
{"Gs_base", r.Regs.Gs_base},
{"Ds", r.Regs.Ds},
{"Es", r.Regs.Es},
{"Fs", r.Regs.Fs},
{"Gs", r.Regs.Gs},
}
out := make([]proc.Register, 0, len(regs)+len(r.Fpregs))
for _, reg := range regs {
if reg.k == "Eflags" {
out = proc.AppendEflagReg(out, reg.k, reg.v)
} else {
out = proc.AppendQwordReg(out, reg.k, reg.v)
}
}
out = append(out, r.Fpregs...)
return out
}
// PC returns the value of RIP register.
func (r *AMD64Registers) PC() uint64 {
return r.Regs.Rip
}
// SP returns the value of RSP register.
func (r *AMD64Registers) SP() uint64 {
return r.Regs.Rsp
}
func (r *AMD64Registers) BP() uint64 {
return r.Regs.Rbp
}
// CX returns the value of RCX register.
func (r *AMD64Registers) CX() uint64 {
return r.Regs.Rcx
}
// TLS returns the address of the thread local storage memory segment.
func (r *AMD64Registers) TLS() uint64 {
return r.Regs.Fs_base
}
// GAddr returns the address of the G variable if it is known, 0 and false
// otherwise.
func (r *AMD64Registers) GAddr() (uint64, bool) {
return 0, false
}
// Get returns the value of the n-th register (in x86asm order).
func (r *AMD64Registers) Get(n int) (uint64, error) {
reg := x86asm.Reg(n)
const (
mask8 = 0x000f
mask16 = 0x00ff
mask32 = 0xffff
)
switch reg {
// 8-bit
case x86asm.AL:
return r.Regs.Rax & mask8, nil
case x86asm.CL:
return r.Regs.Rcx & mask8, nil
case x86asm.DL:
return r.Regs.Rdx & mask8, nil
case x86asm.BL:
return r.Regs.Rbx & mask8, nil
case x86asm.AH:
return (r.Regs.Rax >> 8) & mask8, nil
case x86asm.CH:
return (r.Regs.Rcx >> 8) & mask8, nil
case x86asm.DH:
return (r.Regs.Rdx >> 8) & mask8, nil
case x86asm.BH:
return (r.Regs.Rbx >> 8) & mask8, nil
case x86asm.SPB:
return r.Regs.Rsp & mask8, nil
case x86asm.BPB:
return r.Regs.Rbp & mask8, nil
case x86asm.SIB:
return r.Regs.Rsi & mask8, nil
case x86asm.DIB:
return r.Regs.Rdi & mask8, nil
case x86asm.R8B:
return r.Regs.R8 & mask8, nil
case x86asm.R9B:
return r.Regs.R9 & mask8, nil
case x86asm.R10B:
return r.Regs.R10 & mask8, nil
case x86asm.R11B:
return r.Regs.R11 & mask8, nil
case x86asm.R12B:
return r.Regs.R12 & mask8, nil
case x86asm.R13B:
return r.Regs.R13 & mask8, nil
case x86asm.R14B:
return r.Regs.R14 & mask8, nil
case x86asm.R15B:
return r.Regs.R15 & mask8, nil
// 16-bit
case x86asm.AX:
return r.Regs.Rax & mask16, nil
case x86asm.CX:
return r.Regs.Rcx & mask16, nil
case x86asm.DX:
return r.Regs.Rdx & mask16, nil
case x86asm.BX:
return r.Regs.Rbx & mask16, nil
case x86asm.SP:
return r.Regs.Rsp & mask16, nil
case x86asm.BP:
return r.Regs.Rbp & mask16, nil
case x86asm.SI:
return r.Regs.Rsi & mask16, nil
case x86asm.DI:
return r.Regs.Rdi & mask16, nil
case x86asm.R8W:
return r.Regs.R8 & mask16, nil
case x86asm.R9W:
return r.Regs.R9 & mask16, nil
case x86asm.R10W:
return r.Regs.R10 & mask16, nil
case x86asm.R11W:
return r.Regs.R11 & mask16, nil
case x86asm.R12W:
return r.Regs.R12 & mask16, nil
case x86asm.R13W:
return r.Regs.R13 & mask16, nil
case x86asm.R14W:
return r.Regs.R14 & mask16, nil
case x86asm.R15W:
return r.Regs.R15 & mask16, nil
// 32-bit
case x86asm.EAX:
return r.Regs.Rax & mask32, nil
case x86asm.ECX:
return r.Regs.Rcx & mask32, nil
case x86asm.EDX:
return r.Regs.Rdx & mask32, nil
case x86asm.EBX:
return r.Regs.Rbx & mask32, nil
case x86asm.ESP:
return r.Regs.Rsp & mask32, nil
case x86asm.EBP:
return r.Regs.Rbp & mask32, nil
case x86asm.ESI:
return r.Regs.Rsi & mask32, nil
case x86asm.EDI:
return r.Regs.Rdi & mask32, nil
case x86asm.R8L:
return r.Regs.R8 & mask32, nil
case x86asm.R9L:
return r.Regs.R9 & mask32, nil
case x86asm.R10L:
return r.Regs.R10 & mask32, nil
case x86asm.R11L:
return r.Regs.R11 & mask32, nil
case x86asm.R12L:
return r.Regs.R12 & mask32, nil
case x86asm.R13L:
return r.Regs.R13 & mask32, nil
case x86asm.R14L:
return r.Regs.R14 & mask32, nil
case x86asm.R15L:
return r.Regs.R15 & mask32, nil
// 64-bit
case x86asm.RAX:
return r.Regs.Rax, nil
case x86asm.RCX:
return r.Regs.Rcx, nil
case x86asm.RDX:
return r.Regs.Rdx, nil
case x86asm.RBX:
return r.Regs.Rbx, nil
case x86asm.RSP:
return r.Regs.Rsp, nil
case x86asm.RBP:
return r.Regs.Rbp, nil
case x86asm.RSI:
return r.Regs.Rsi, nil
case x86asm.RDI:
return r.Regs.Rdi, nil
case x86asm.R8:
return r.Regs.R8, nil
case x86asm.R9:
return r.Regs.R9, nil
case x86asm.R10:
return r.Regs.R10, nil
case x86asm.R11:
return r.Regs.R11, nil
case x86asm.R12:
return r.Regs.R12, nil
case x86asm.R13:
return r.Regs.R13, nil
case x86asm.R14:
return r.Regs.R14, nil
case x86asm.R15:
return r.Regs.R15, nil
}
return 0, proc.ErrUnknownRegister
}
// Copy returns a copy of these registers that is guarenteed not to change.
func (r *AMD64Registers) Copy() proc.Registers {
var rr AMD64Registers
rr.Regs = &AMD64PtraceRegs{}
rr.Fpregset = &AMD64Xstate{}
*(rr.Regs) = *(r.Regs)
if r.Fpregset != nil {
*(rr.Fpregset) = *(r.Fpregset)
}
if r.Fpregs != nil {
rr.Fpregs = make([]proc.Register, len(r.Fpregs))
copy(rr.Fpregs, r.Fpregs)
}
return &rr
}
// AMD64PtraceFpRegs tracks user_fpregs_struct in /usr/include/x86_64-linux-gnu/sys/user.h
type AMD64PtraceFpRegs struct {
Cwd uint16
Swd uint16
Ftw uint16
Fop uint16
Rip uint64
Rdp uint64
Mxcsr uint32
MxcrMask uint32
StSpace [32]uint32
XmmSpace [256]byte
Padding [24]uint32
}
// AMD64Xstate represents amd64 XSAVE area. See Section 13.1 (and
// following) of Intel® 64 and IA-32 Architectures Software Developer’s
// Manual, Volume 1: Basic Architecture.
type AMD64Xstate struct {
AMD64PtraceFpRegs
Xsave []byte // raw xsave area
AvxState bool // contains AVX state
YmmSpace [256]byte
}
// Decode decodes an XSAVE area to a list of name/value pairs of registers.
func (xsave *AMD64Xstate) Decode() (regs []proc.Register) {
// x87 registers
regs = proc.AppendWordReg(regs, "CW", xsave.Cwd)
regs = proc.AppendWordReg(regs, "SW", xsave.Swd)
regs = proc.AppendWordReg(regs, "TW", xsave.Ftw)
regs = proc.AppendWordReg(regs, "FOP", xsave.Fop)
regs = proc.AppendQwordReg(regs, "FIP", xsave.Rip)
regs = proc.AppendQwordReg(regs, "FDP", xsave.Rdp)
for i := 0; i < len(xsave.StSpace); i += 4 {
regs = proc.AppendX87Reg(regs, i/4, uint16(xsave.StSpace[i+2]), uint64(xsave.StSpace[i+1])<<32|uint64(xsave.StSpace[i]))
}
// SSE registers
regs = proc.AppendMxcsrReg(regs, "MXCSR", uint64(xsave.Mxcsr))
regs = proc.AppendDwordReg(regs, "MXCSR_MASK", xsave.MxcrMask)
for i := 0; i < len(xsave.XmmSpace); i += 16 {
regs = proc.AppendSSEReg(regs, fmt.Sprintf("XMM%d", i/16), xsave.XmmSpace[i:i+16])
if xsave.AvxState {
regs = proc.AppendSSEReg(regs, fmt.Sprintf("YMM%d", i/16), xsave.YmmSpace[i:i+16])
}
}
return
}
const (
_XSAVE_HEADER_START = 512
_XSAVE_HEADER_LEN = 64
_XSAVE_EXTENDED_REGION_START = 576
_XSAVE_SSE_REGION_LEN = 416
)
// LinuxX86XstateRead reads a byte array containing an XSAVE area into regset.
// If readLegacy is true regset.PtraceFpRegs will be filled with the
// contents of the legacy region of the XSAVE area.
// See Section 13.1 (and following) of Intel® 64 and IA-32 Architectures
// Software Developer’s Manual, Volume 1: Basic Architecture.
func AMD64XstateRead(xstateargs []byte, readLegacy bool, regset *AMD64Xstate) error {
if _XSAVE_HEADER_START+_XSAVE_HEADER_LEN >= len(xstateargs) {
return nil
}
if readLegacy {
rdr := bytes.NewReader(xstateargs[:_XSAVE_HEADER_START])
if err := binary.Read(rdr, binary.LittleEndian, &regset.AMD64PtraceFpRegs); err != nil {
return err
}
}
xsaveheader := xstateargs[_XSAVE_HEADER_START : _XSAVE_HEADER_START+_XSAVE_HEADER_LEN]
xstate_bv := binary.LittleEndian.Uint64(xsaveheader[0:8])
xcomp_bv := binary.LittleEndian.Uint64(xsaveheader[8:16])
if xcomp_bv&(1<<63) != 0 {
// compact format not supported
return nil
}
if xstate_bv&(1<<2) == 0 {
// AVX state not present
return nil
}
avxstate := xstateargs[_XSAVE_EXTENDED_REGION_START:]
regset.AvxState = true
copy(regset.YmmSpace[:], avxstate[:len(regset.YmmSpace)])
return nil
}
......@@ -6,7 +6,7 @@ import (
sys "golang.org/x/sys/unix"
"github.com/derekparker/delve/pkg/proc"
"github.com/derekparker/delve/pkg/proc/linutil"
)
// PtraceAttach executes the sys.PtraceAttach call.
......@@ -57,8 +57,8 @@ func PtracePeekUser(tid int, off uintptr) (uintptr, error) {
// See amd64_linux_fetch_inferior_registers in gdb/amd64-linux-nat.c.html
// and amd64_supply_xsave in gdb/amd64-tdep.c.html
// and Section 13.1 (and following) of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1: Basic Architecture
func PtraceGetRegset(tid int) (regset proc.LinuxX86Xstate, err error) {
_, _, err = syscall.Syscall6(syscall.SYS_PTRACE, sys.PTRACE_GETFPREGS, uintptr(tid), uintptr(0), uintptr(unsafe.Pointer(&regset.PtraceFpRegs)), 0, 0)
func PtraceGetRegset(tid int) (regset linutil.AMD64Xstate, err error) {
_, _, err = syscall.Syscall6(syscall.SYS_PTRACE, sys.PTRACE_GETFPREGS, uintptr(tid), uintptr(0), uintptr(unsafe.Pointer(&regset.AMD64PtraceFpRegs)), 0, 0)
if err == syscall.Errno(0) || err == syscall.ENODEV {
// ignore ENODEV, it just means this CPU doesn't have X87 registers (??)
err = nil
......@@ -78,6 +78,6 @@ func PtraceGetRegset(tid int) (regset proc.LinuxX86Xstate, err error) {
}
regset.Xsave = xstateargs[:iov.Len]
err = proc.LinuxX86XstateRead(regset.Xsave, false, &regset)
err = linutil.AMD64XstateRead(regset.Xsave, false, &regset)
return regset, err
}
......@@ -3,102 +3,21 @@ package native
import (
"fmt"
"golang.org/x/arch/x86/x86asm"
sys "golang.org/x/sys/unix"
"github.com/derekparker/delve/pkg/proc"
"github.com/derekparker/delve/pkg/proc/linutil"
)
// Regs is a wrapper for sys.PtraceRegs.
type Regs struct {
regs *sys.PtraceRegs
fpregs []proc.Register
fpregset *proc.LinuxX86Xstate
}
func (r *Regs) Slice() []proc.Register {
var regs = []struct {
k string
v uint64
}{
{"Rip", r.regs.Rip},
{"Rsp", r.regs.Rsp},
{"Rax", r.regs.Rax},
{"Rbx", r.regs.Rbx},
{"Rcx", r.regs.Rcx},
{"Rdx", r.regs.Rdx},
{"Rdi", r.regs.Rdi},
{"Rsi", r.regs.Rsi},
{"Rbp", r.regs.Rbp},
{"R8", r.regs.R8},
{"R9", r.regs.R9},
{"R10", r.regs.R10},
{"R11", r.regs.R11},
{"R12", r.regs.R12},
{"R13", r.regs.R13},
{"R14", r.regs.R14},
{"R15", r.regs.R15},
{"Orig_rax", r.regs.Orig_rax},
{"Cs", r.regs.Cs},
{"Eflags", r.regs.Eflags},
{"Ss", r.regs.Ss},
{"Fs_base", r.regs.Fs_base},
{"Gs_base", r.regs.Gs_base},
{"Ds", r.regs.Ds},
{"Es", r.regs.Es},
{"Fs", r.regs.Fs},
{"Gs", r.regs.Gs},
}
out := make([]proc.Register, 0, len(regs)+len(r.fpregs))
for _, reg := range regs {
if reg.k == "Eflags" {
out = proc.AppendEflagReg(out, reg.k, reg.v)
} else {
out = proc.AppendQwordReg(out, reg.k, reg.v)
}
}
out = append(out, r.fpregs...)
return out
}
// PC returns the value of RIP register.
func (r *Regs) PC() uint64 {
return r.regs.PC()
}
// SP returns the value of RSP register.
func (r *Regs) SP() uint64 {
return r.regs.Rsp
}
func (r *Regs) BP() uint64 {
return r.regs.Rbp
}
// CX returns the value of RCX register.
func (r *Regs) CX() uint64 {
return r.regs.Rcx
}
// TLS returns the address of the thread
// local storage memory segment.
func (r *Regs) TLS() uint64 {
return r.regs.Fs_base
}
func (r *Regs) GAddr() (uint64, bool) {
return 0, false
}
// SetPC sets RIP to the value specified by 'pc'.
func (thread *Thread) SetPC(pc uint64) error {
ir, err := registers(thread, false)
if err != nil {
return err
}
r := ir.(*Regs)
r.regs.SetPC(pc)
thread.dbp.execPtraceFunc(func() { err = sys.PtraceSetRegs(thread.ID, r.regs) })
r := ir.(*linutil.AMD64Registers)
r.Regs.Rip = pc
thread.dbp.execPtraceFunc(func() { err = sys.PtraceSetRegs(thread.ID, (*sys.PtraceRegs)(r.Regs)) })
return err
}
......@@ -109,9 +28,9 @@ func (thread *Thread) SetSP(sp uint64) (err error) {
if err != nil {
return err
}
r := ir.(*Regs)
r.regs.Rsp = sp
thread.dbp.execPtraceFunc(func() { err = sys.PtraceSetRegs(thread.ID, r.regs) })
r := ir.(*linutil.AMD64Registers)
r.Regs.Rsp = sp
thread.dbp.execPtraceFunc(func() { err = sys.PtraceSetRegs(thread.ID, (*sys.PtraceRegs)(r.Regs)) })
return
}
......@@ -121,183 +40,26 @@ func (thread *Thread) SetDX(dx uint64) (err error) {
if err != nil {
return err
}
r := ir.(*Regs)
r.regs.Rdx = dx
thread.dbp.execPtraceFunc(func() { err = sys.PtraceSetRegs(thread.ID, r.regs) })
r := ir.(*linutil.AMD64Registers)
r.Regs.Rdx = dx
thread.dbp.execPtraceFunc(func() { err = sys.PtraceSetRegs(thread.ID, (*sys.PtraceRegs)(r.Regs)) })
return
}
func (r *Regs) Get(n int) (uint64, error) {
reg := x86asm.Reg(n)
const (
mask8 = 0x000f
mask16 = 0x00ff
mask32 = 0xffff
)
switch reg {
// 8-bit
case x86asm.AL:
return r.regs.Rax & mask8, nil
case x86asm.CL:
return r.regs.Rcx & mask8, nil
case x86asm.DL:
return r.regs.Rdx & mask8, nil
case x86asm.BL:
return r.regs.Rbx & mask8, nil
case x86asm.AH:
return (r.regs.Rax >> 8) & mask8, nil
case x86asm.CH:
return (r.regs.Rcx >> 8) & mask8, nil
case x86asm.DH:
return (r.regs.Rdx >> 8) & mask8, nil
case x86asm.BH:
return (r.regs.Rbx >> 8) & mask8, nil
case x86asm.SPB:
return r.regs.Rsp & mask8, nil
case x86asm.BPB:
return r.regs.Rbp & mask8, nil
case x86asm.SIB:
return r.regs.Rsi & mask8, nil
case x86asm.DIB:
return r.regs.Rdi & mask8, nil
case x86asm.R8B:
return r.regs.R8 & mask8, nil
case x86asm.R9B:
return r.regs.R9 & mask8, nil
case x86asm.R10B:
return r.regs.R10 & mask8, nil
case x86asm.R11B:
return r.regs.R11 & mask8, nil
case x86asm.R12B:
return r.regs.R12 & mask8, nil
case x86asm.R13B:
return r.regs.R13 & mask8, nil
case x86asm.R14B:
return r.regs.R14 & mask8, nil
case x86asm.R15B:
return r.regs.R15 & mask8, nil
// 16-bit
case x86asm.AX:
return r.regs.Rax & mask16, nil
case x86asm.CX:
return r.regs.Rcx & mask16, nil
case x86asm.DX:
return r.regs.Rdx & mask16, nil
case x86asm.BX:
return r.regs.Rbx & mask16, nil
case x86asm.SP:
return r.regs.Rsp & mask16, nil
case x86asm.BP:
return r.regs.Rbp & mask16, nil
case x86asm.SI:
return r.regs.Rsi & mask16, nil
case x86asm.DI:
return r.regs.Rdi & mask16, nil
case x86asm.R8W:
return r.regs.R8 & mask16, nil
case x86asm.R9W:
return r.regs.R9 & mask16, nil
case x86asm.R10W:
return r.regs.R10 & mask16, nil
case x86asm.R11W:
return r.regs.R11 & mask16, nil
case x86asm.R12W:
return r.regs.R12 & mask16, nil
case x86asm.R13W:
return r.regs.R13 & mask16, nil
case x86asm.R14W:
return r.regs.R14 & mask16, nil
case x86asm.R15W:
return r.regs.R15 & mask16, nil
// 32-bit
case x86asm.EAX:
return r.regs.Rax & mask32, nil
case x86asm.ECX:
return r.regs.Rcx & mask32, nil
case x86asm.EDX:
return r.regs.Rdx & mask32, nil
case x86asm.EBX:
return r.regs.Rbx & mask32, nil
case x86asm.ESP:
return r.regs.Rsp & mask32, nil
case x86asm.EBP:
return r.regs.Rbp & mask32, nil
case x86asm.ESI:
return r.regs.Rsi & mask32, nil
case x86asm.EDI:
return r.regs.Rdi & mask32, nil
case x86asm.R8L:
return r.regs.R8 & mask32, nil
case x86asm.R9L:
return r.regs.R9 & mask32, nil
case x86asm.R10L:
return r.regs.R10 & mask32, nil
case x86asm.R11L:
return r.regs.R11 & mask32, nil
case x86asm.R12L:
return r.regs.R12 & mask32, nil
case x86asm.R13L:
return r.regs.R13 & mask32, nil
case x86asm.R14L:
return r.regs.R14 & mask32, nil
case x86asm.R15L:
return r.regs.R15 & mask32, nil
// 64-bit
case x86asm.RAX:
return r.regs.Rax, nil
case x86asm.RCX:
return r.regs.Rcx, nil
case x86asm.RDX:
return r.regs.Rdx, nil
case x86asm.RBX:
return r.regs.Rbx, nil
case x86asm.RSP:
return r.regs.Rsp, nil
case x86asm.RBP:
return r.regs.Rbp, nil
case x86asm.RSI:
return r.regs.Rsi, nil
case x86asm.RDI:
return r.regs.Rdi, nil
case x86asm.R8:
return r.regs.R8, nil
case x86asm.R9:
return r.regs.R9, nil
case x86asm.R10:
return r.regs.R10, nil
case x86asm.R11:
return r.regs.R11, nil
case x86asm.R12:
return r.regs.R12, nil
case x86asm.R13:
return r.regs.R13, nil
case x86asm.R14:
return r.regs.R14, nil
case x86asm.R15:
return r.regs.R15, nil
}
return 0, proc.ErrUnknownRegister
}
func registers(thread *Thread, floatingPoint bool) (proc.Registers, error) {
var (
regs sys.PtraceRegs
regs linutil.AMD64PtraceRegs
err error
)
thread.dbp.execPtraceFunc(func() { err = sys.PtraceGetRegs(thread.ID, &regs) })
thread.dbp.execPtraceFunc(func() { err = sys.PtraceGetRegs(thread.ID, (*sys.PtraceRegs)(&regs)) })
if err != nil {
return nil, err
}
r := &Regs{&regs, nil, nil}
r := &linutil.AMD64Registers{&regs, nil, nil}
if floatingPoint {
var fpregset proc.LinuxX86Xstate
r.fpregs, fpregset, err = thread.fpRegisters()
r.fpregset = &fpregset
var fpregset linutil.AMD64Xstate
r.Fpregs, fpregset, err = thread.fpRegisters()
r.Fpregset = &fpregset
if err != nil {
return nil, err
}
......@@ -315,7 +77,7 @@ const (
_XSAVE_SSE_REGION_LEN = 416
)
func (thread *Thread) fpRegisters() (regs []proc.Register, fpregs proc.LinuxX86Xstate, err error) {
func (thread *Thread) fpRegisters() (regs []proc.Register, fpregs linutil.AMD64Xstate, err error) {
thread.dbp.execPtraceFunc(func() { fpregs, err = PtraceGetRegset(thread.ID) })
regs = fpregs.Decode()
if err != nil {
......@@ -323,20 +85,3 @@ func (thread *Thread) fpRegisters() (regs []proc.Register, fpregs proc.LinuxX86X
}
return
}
// Copy returns a copy of these registers that is
// guarenteed not to change.
func (r *Regs) Copy() proc.Registers {
var rr Regs
rr.regs = &sys.PtraceRegs{}
rr.fpregset = &proc.LinuxX86Xstate{}
*(rr.regs) = *(r.regs)
if r.fpregset != nil {
*(rr.fpregset) = *(r.fpregset)
}
if r.fpregs != nil {
rr.fpregs = make([]proc.Register, len(r.fpregs))
copy(rr.fpregs, r.fpregs)
}
return &rr
}
......@@ -8,6 +8,7 @@ import (
sys "golang.org/x/sys/unix"
"github.com/derekparker/delve/pkg/proc"
"github.com/derekparker/delve/pkg/proc/linutil"
)
type WaitStatus sys.WaitStatus
......@@ -83,21 +84,21 @@ func (t *Thread) Blocked() bool {
}
func (t *Thread) restoreRegisters(savedRegs proc.Registers) error {
sr := savedRegs.(*Regs)
sr := savedRegs.(*linutil.AMD64Registers)
var restoreRegistersErr error
t.dbp.execPtraceFunc(func() {
restoreRegistersErr = sys.PtraceSetRegs(t.ID, sr.regs)
restoreRegistersErr = sys.PtraceSetRegs(t.ID, (*sys.PtraceRegs)(sr.Regs))
if restoreRegistersErr != nil {
return
}
if sr.fpregset.Xsave != nil {
iov := sys.Iovec{Base: &sr.fpregset.Xsave[0], Len: uint64(len(sr.fpregset.Xsave))}
if sr.Fpregset.Xsave != nil {
iov := sys.Iovec{Base: &sr.Fpregset.Xsave[0], Len: uint64(len(sr.Fpregset.Xsave))}
_, _, restoreRegistersErr = syscall.Syscall6(syscall.SYS_PTRACE, sys.PTRACE_SETREGSET, uintptr(t.ID), _NT_X86_XSTATE, uintptr(unsafe.Pointer(&iov)), 0, 0)
return
}
_, _, restoreRegistersErr = syscall.Syscall6(syscall.SYS_PTRACE, sys.PTRACE_SETFPREGS, uintptr(t.ID), uintptr(0), uintptr(unsafe.Pointer(&sr.fpregset.PtraceFpRegs)), 0, 0)
_, _, restoreRegistersErr = syscall.Syscall6(syscall.SYS_PTRACE, sys.PTRACE_SETFPREGS, uintptr(t.ID), uintptr(0), uintptr(unsafe.Pointer(&sr.Fpregset.AMD64PtraceFpRegs)), 0, 0)
return
})
if restoreRegistersErr == syscall.Errno(0) {
......
......@@ -250,99 +250,3 @@ func (descr flagRegisterDescr) Describe(reg uint64, bitsize int) string {
}
return fmt.Sprintf("%#0*x\t[%s]", bitsize/4, reg, strings.Join(r, " "))
}
// PtraceFpRegs tracks user_fpregs_struct in /usr/include/x86_64-linux-gnu/sys/user.h
type PtraceFpRegs struct {
Cwd uint16
Swd uint16
Ftw uint16
Fop uint16
Rip uint64
Rdp uint64
Mxcsr uint32
MxcrMask uint32
StSpace [32]uint32
XmmSpace [256]byte
Padding [24]uint32
}
// LinuxX86Xstate represents amd64 XSAVE area. See Section 13.1 (and
// following) of Intel® 64 and IA-32 Architectures Software Developer’s
// Manual, Volume 1: Basic Architecture.
type LinuxX86Xstate struct {
PtraceFpRegs
Xsave []byte // raw xsave area
AvxState bool // contains AVX state
YmmSpace [256]byte
}
// Decode decodes an XSAVE area to a list of name/value pairs of registers.
func (xsave *LinuxX86Xstate) Decode() (regs []Register) {
// x87 registers
regs = AppendWordReg(regs, "CW", xsave.Cwd)
regs = AppendWordReg(regs, "SW", xsave.Swd)
regs = AppendWordReg(regs, "TW", xsave.Ftw)
regs = AppendWordReg(regs, "FOP", xsave.Fop)
regs = AppendQwordReg(regs, "FIP", xsave.Rip)
regs = AppendQwordReg(regs, "FDP", xsave.Rdp)
for i := 0; i < len(xsave.StSpace); i += 4 {
regs = AppendX87Reg(regs, i/4, uint16(xsave.StSpace[i+2]), uint64(xsave.StSpace[i+1])<<32|uint64(xsave.StSpace[i]))
}
// SSE registers
regs = AppendMxcsrReg(regs, "MXCSR", uint64(xsave.Mxcsr))
regs = AppendDwordReg(regs, "MXCSR_MASK", xsave.MxcrMask)
for i := 0; i < len(xsave.XmmSpace); i += 16 {
regs = AppendSSEReg(regs, fmt.Sprintf("XMM%d", i/16), xsave.XmmSpace[i:i+16])
if xsave.AvxState {
regs = AppendSSEReg(regs, fmt.Sprintf("YMM%d", i/16), xsave.YmmSpace[i:i+16])
}
}
return
}
const (
_XSAVE_HEADER_START = 512
_XSAVE_HEADER_LEN = 64
_XSAVE_EXTENDED_REGION_START = 576
_XSAVE_SSE_REGION_LEN = 416
)
// LinuxX86XstateRead reads a byte array containing an XSAVE area into regset.
// If readLegacy is true regset.PtraceFpRegs will be filled with the
// contents of the legacy region of the XSAVE area.
// See Section 13.1 (and following) of Intel® 64 and IA-32 Architectures
// Software Developer’s Manual, Volume 1: Basic Architecture.
func LinuxX86XstateRead(xstateargs []byte, readLegacy bool, regset *LinuxX86Xstate) error {
if _XSAVE_HEADER_START+_XSAVE_HEADER_LEN >= len(xstateargs) {
return nil
}
if readLegacy {
rdr := bytes.NewReader(xstateargs[:_XSAVE_HEADER_START])
if err := binary.Read(rdr, binary.LittleEndian, &regset.PtraceFpRegs); err != nil {
return err
}
}
xsaveheader := xstateargs[_XSAVE_HEADER_START : _XSAVE_HEADER_START+_XSAVE_HEADER_LEN]
xstate_bv := binary.LittleEndian.Uint64(xsaveheader[0:8])
xcomp_bv := binary.LittleEndian.Uint64(xsaveheader[8:16])
if xcomp_bv&(1<<63) != 0 {
// compact format not supported
return nil
}
if xstate_bv&(1<<2) == 0 {
// AVX state not present
return nil
}
avxstate := xstateargs[_XSAVE_EXTENDED_REGION_START:]
regset.AvxState = true
copy(regset.YmmSpace[:], avxstate[:len(regset.YmmSpace)])
return nil
}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册