未验证 提交 7cd12c34 编写于 作者: A Alessandro Arzilli 提交者: GitHub

proc,dwarf: cache debug.Entry objects (#1931)

Instead of rescanning debug_info every time we want to read a function
(either to find inlined calls or its variables) cache the tree of
dwarf.Entry that we would generate and use that.

Benchmark before:

BenchmarkConditionalBreakpoints-4   	       1	5164689165 ns/op

Benchmark after:

BenchmarkConditionalBreakpoints-4   	       1	4817425836 ns/op

Updates #1549
上级 3c683ae3
......@@ -6,6 +6,8 @@ require (
github.com/cosiner/argv v0.0.0-20170225145430-13bacc38a0a5
github.com/cpuguy83/go-md2man v1.0.10 // indirect
github.com/google/go-dap v0.2.0
github.com/cpuguy83/go-md2man v1.0.8 // indirect
github.com/hashicorp/golang-lru v0.5.4
github.com/inconshreveable/mousetrap v1.0.0 // indirect
github.com/mattn/go-colorable v0.0.0-20170327083344-ded68f7a9561
github.com/mattn/go-isatty v0.0.3
......
package godwarf
import (
"debug/dwarf"
"fmt"
"sort"
)
// Entry represents a debug_info entry.
// When calling Val, if the entry does not have the specified attribute, the
// entry specified by DW_AT_abstract_origin will be searched recursively.
type Entry interface {
Val(dwarf.Attr) interface{}
}
type compositeEntry []*dwarf.Entry
func (ce compositeEntry) Val(attr dwarf.Attr) interface{} {
for _, e := range ce {
if r := e.Val(attr); r != nil {
return r
}
}
return nil
}
// LoadAbstractOrigin loads the entry corresponding to the
// DW_AT_abstract_origin of entry and returns a combination of entry and its
// abstract origin.
func LoadAbstractOrigin(entry *dwarf.Entry, aordr *dwarf.Reader) (Entry, dwarf.Offset) {
ao, ok := entry.Val(dwarf.AttrAbstractOrigin).(dwarf.Offset)
if !ok {
return entry, entry.Offset
}
r := []*dwarf.Entry{entry}
for {
aordr.Seek(ao)
e, _ := aordr.Next()
if e == nil {
break
}
r = append(r, e)
ao, ok = e.Val(dwarf.AttrAbstractOrigin).(dwarf.Offset)
if !ok {
break
}
}
return compositeEntry(r), entry.Offset
}
// Tree represents a tree of dwarf objects.
type Tree struct {
Entry
typ Type
Tag dwarf.Tag
Offset dwarf.Offset
Ranges [][2]uint64
Children []*Tree
}
// LoadTree returns the tree of DIE rooted at offset 'off'.
// Abstract origins are automatically loaded, if present.
// DIE ranges are bubbled up automatically, if the child of a DIE covers a
// range of addresses that is not covered by its parent LoadTree will fix
// the parent entry.
func LoadTree(off dwarf.Offset, dw *dwarf.Data, staticBase uint64) (*Tree, error) {
rdr := dw.Reader()
rdr.Seek(off)
e, err := rdr.Next()
if err != nil {
return nil, err
}
r := EntryToTree(e)
r.Children, err = loadTreeChildren(e, rdr)
if err != nil {
return nil, err
}
err = r.resolveRanges(dw, staticBase)
if err != nil {
return nil, err
}
r.resolveAbstractEntries(rdr)
return r, nil
}
// EntryToTree converts a single entry, without children to a *Tree object
func EntryToTree(entry *dwarf.Entry) *Tree {
return &Tree{Entry: entry, Offset: entry.Offset, Tag: entry.Tag}
}
func loadTreeChildren(e *dwarf.Entry, rdr *dwarf.Reader) ([]*Tree, error) {
if !e.Children {
return nil, nil
}
children := []*Tree{}
for {
e, err := rdr.Next()
if err != nil {
return nil, err
}
if e.Tag == 0 {
break
}
child := EntryToTree(e)
child.Children, err = loadTreeChildren(e, rdr)
if err != nil {
return nil, err
}
children = append(children, child)
}
return children, nil
}
func (n *Tree) resolveRanges(dw *dwarf.Data, staticBase uint64) error {
var err error
n.Ranges, err = dw.Ranges(n.Entry.(*dwarf.Entry))
if err != nil {
return err
}
for i := range n.Ranges {
n.Ranges[i][0] += staticBase
n.Ranges[i][1] += staticBase
}
n.Ranges = normalizeRanges(n.Ranges)
for _, child := range n.Children {
err := child.resolveRanges(dw, staticBase)
if err != nil {
return err
}
n.Ranges = fuseRanges(n.Ranges, child.Ranges)
}
return nil
}
// normalizeRanges sorts rngs by starting point and fuses overlapping entries.
func normalizeRanges(rngs [][2]uint64) [][2]uint64 {
const (
start = 0
end = 1
)
if len(rngs) == 0 {
return rngs
}
sort.Slice(rngs, func(i, j int) bool {
return rngs[i][start] <= rngs[j][start]
})
// eliminate invalid entries
out := rngs[:0]
for i := range rngs {
if rngs[i][start] < rngs[i][end] {
out = append(out, rngs[i])
}
}
rngs = out
// fuse overlapping entries
out = rngs[:1]
for i := 1; i < len(rngs); i++ {
cur := rngs[i]
if cur[start] <= out[len(out)-1][end] {
out[len(out)-1][end] = max(cur[end], out[len(out)-1][end])
} else {
out = append(out, cur)
}
}
return out
}
func max(a, b uint64) uint64 {
if a > b {
return a
}
return b
}
// fuseRanges fuses rngs2 into rngs1, it's the equivalent of
// normalizeRanges(append(rngs1, rngs2))
// but more efficent.
func fuseRanges(rngs1, rngs2 [][2]uint64) [][2]uint64 {
if rangesContains(rngs1, rngs2) {
return rngs1
}
return normalizeRanges(append(rngs1, rngs2...))
}
// rangesContains checks that rngs1 is a superset of rngs2.
func rangesContains(rngs1, rngs2 [][2]uint64) bool {
i, j := 0, 0
for {
if i >= len(rngs1) {
return false
}
if j >= len(rngs2) {
return true
}
if rangeContains(rngs1[i], rngs2[j]) {
j++
} else {
i++
}
}
}
// rangeContains checks that a contains b.
func rangeContains(a, b [2]uint64) bool {
return a[0] <= b[0] && a[1] >= b[1]
}
func (n *Tree) resolveAbstractEntries(rdr *dwarf.Reader) {
n.Entry, n.Offset = LoadAbstractOrigin(n.Entry.(*dwarf.Entry), rdr)
for _, child := range n.Children {
child.resolveAbstractEntries(rdr)
}
}
// ContainsPC returns true if the ranges of this DIE contains PC.
func (n *Tree) ContainsPC(pc uint64) bool {
for _, rng := range n.Ranges {
if rng[0] > pc {
return false
}
if rng[0] <= pc && pc < rng[1] {
return true
}
}
return false
}
func (n *Tree) Type(dw *dwarf.Data, index int, typeCache map[dwarf.Offset]Type) (Type, error) {
if n.typ == nil {
offset, ok := n.Val(dwarf.AttrType).(dwarf.Offset)
if !ok {
return nil, fmt.Errorf("malformed variable DIE (offset)")
}
var err error
n.typ, err = ReadType(dw, index, offset, typeCache)
if err != nil {
return nil, err
}
}
return n.typ, nil
}
package godwarf
import (
"testing"
)
func makeRanges(v ...uint64) [][2]uint64 {
r := make([][2]uint64, 0, len(v)/2)
for i := 0; i < len(v); i += 2 {
r = append(r, [2]uint64{v[i], v[i+1]})
}
return r
}
func assertRanges(t *testing.T, out, tgt [][2]uint64) {
if len(out) != len(tgt) {
t.Errorf("\nexpected:\t%v\ngot:\t\t%v", tgt, out)
}
for i := range out {
if out[i] != tgt[i] {
t.Errorf("\nexpected:\t%v\ngot:\t\t%v", tgt, out)
break
}
}
}
func TestNormalizeRanges(t *testing.T) {
mr := makeRanges
//assertRanges(t, normalizeRanges(mr(105, 103, 90, 95, 25, 20, 20, 23)), mr(20, 23, 90, 95))
assertRanges(t, normalizeRanges(mr(10, 12, 12, 15)), mr(10, 15))
assertRanges(t, normalizeRanges(mr(12, 15, 10, 12)), mr(10, 15))
assertRanges(t, normalizeRanges(mr(4910012, 4910013, 4910013, 4910098, 4910124, 4910127)), mr(4910012, 4910098, 4910124, 4910127))
}
func TestRangeContains(t *testing.T) {
mr := func(start, end uint64) [2]uint64 {
return [2]uint64{start, end}
}
tcs := []struct {
a, b [2]uint64
tgt bool
}{
{mr(1, 10), mr(1, 11), false},
{mr(1, 10), mr(1, 1), true},
{mr(1, 10), mr(10, 11), false},
{mr(1, 10), mr(1, 10), true},
{mr(1, 10), mr(2, 5), true},
}
for _, tc := range tcs {
if rangeContains(tc.a, tc.b) != tc.tgt {
if tc.tgt {
t.Errorf("range %v does not contan %v (but should)", tc.a, tc.b)
} else {
t.Errorf("range %v does contain %v (but shouldn't)", tc.a, tc.b)
}
}
}
}
func TestRangesContains(t *testing.T) {
mr := makeRanges
tcs := []struct {
rngs1, rngs2 [][2]uint64
tgt bool
}{
{mr(1, 10), mr(1, 11), false},
{mr(1, 10), mr(1, 1), true},
{mr(1, 10), mr(10, 11), false},
{mr(1, 10), mr(1, 10), true},
{mr(1, 10), mr(2, 5), true},
{mr(1, 10, 20, 30), mr(1, 11), false},
{mr(1, 10, 20, 30), mr(1, 1, 20, 22), true},
{mr(1, 10, 20, 30), mr(30, 31), false},
{mr(1, 10, 20, 30), mr(15, 17), false},
{mr(1, 10, 20, 30), mr(1, 5, 6, 9, 21, 24), true},
{mr(1, 10, 20, 30), mr(0, 1), false},
}
for _, tc := range tcs {
if rangesContains(tc.rngs1, tc.rngs2) != tc.tgt {
if tc.tgt {
t.Errorf("ranges %v does not contan %v (but should)", tc.rngs1, tc.rngs2)
} else {
t.Errorf("ranges %v does contain %v (but shouldn't)", tc.rngs1, tc.rngs2)
}
}
}
}
func TestContainsPC(t *testing.T) {
mr := makeRanges
tcs := []struct {
rngs [][2]uint64
pc uint64
tgt bool
}{
{mr(1, 10), 1, true},
{mr(1, 10), 5, true},
{mr(1, 10), 10, false},
{mr(1, 10, 20, 30), 15, false},
{mr(1, 10, 20, 30), 20, true},
{mr(1, 10, 20, 30), 30, false},
{mr(1, 10, 20, 30), 31, false},
}
for _, tc := range tcs {
n := &Tree{Ranges: tc.rngs}
if n.ContainsPC(tc.pc) != tc.tgt {
if tc.tgt {
t.Errorf("ranges %v does not contain %d (but should)", tc.rngs, tc.pc)
} else {
t.Errorf("ranges %v does contain %d (but shouldn't)", tc.rngs, tc.pc)
}
}
}
}
......@@ -5,6 +5,7 @@ import (
"errors"
"fmt"
"github.com/go-delve/delve/pkg/dwarf/godwarf"
"github.com/go-delve/delve/pkg/dwarf/op"
)
......@@ -32,37 +33,6 @@ func (reader *Reader) SeekToEntry(entry *dwarf.Entry) error {
return err
}
// SeekToFunctionEntry moves the reader to the function that includes the
// specified program counter.
func (reader *Reader) SeekToFunction(pc RelAddr) (*dwarf.Entry, error) {
reader.Seek(0)
for entry, err := reader.Next(); entry != nil; entry, err = reader.Next() {
if err != nil {
return nil, err
}
if entry.Tag != dwarf.TagSubprogram {
continue
}
lowpc, ok := entry.Val(dwarf.AttrLowpc).(uint64)
if !ok {
continue
}
highpc, ok := entry.Val(dwarf.AttrHighpc).(uint64)
if !ok {
continue
}
if lowpc <= uint64(pc) && highpc > uint64(pc) {
return entry, nil
}
}
return nil, fmt.Errorf("unable to find function context")
}
// Returns the address for the named entry.
func (reader *Reader) AddrFor(name string, staticBase uint64, ptrSize int) (uint64, error) {
entry, err := reader.FindEntryNamed(name, false)
......@@ -320,79 +290,20 @@ func (reader *Reader) NextCompileUnit() (*dwarf.Entry, error) {
return nil, nil
}
// Entry represents a debug_info entry.
// When calling Val, if the entry does not have the specified attribute, the
// entry specified by DW_AT_abstract_origin will be searched recursively.
type Entry interface {
Val(dwarf.Attr) interface{}
}
type compositeEntry []*dwarf.Entry
func (ce compositeEntry) Val(attr dwarf.Attr) interface{} {
for _, e := range ce {
if r := e.Val(attr); r != nil {
return r
}
}
return nil
}
// LoadAbstractOrigin loads the entry corresponding to the
// DW_AT_abstract_origin of entry and returns a combination of entry and its
// abstract origin.
func LoadAbstractOrigin(entry *dwarf.Entry, aordr *dwarf.Reader) (Entry, dwarf.Offset) {
ao, ok := entry.Val(dwarf.AttrAbstractOrigin).(dwarf.Offset)
if !ok {
return entry, entry.Offset
}
r := []*dwarf.Entry{entry}
for {
aordr.Seek(ao)
e, _ := aordr.Next()
if e == nil {
break
}
r = append(r, e)
ao, ok = e.Val(dwarf.AttrAbstractOrigin).(dwarf.Offset)
if !ok {
break
}
}
return compositeEntry(r), entry.Offset
}
// InlineStackReader provides a way to read the stack of inlined calls at a
// specified PC address.
type InlineStackReader struct {
dwarf *dwarf.Data
reader *dwarf.Reader
pc uint64
entry *dwarf.Entry
err error
// stack contains the list of DIEs that will be returned by Next.
stack []*dwarf.Entry
}
// InlineStack returns an InlineStackReader for the specified function and
// PC address.
// InlineStack returns the stack of inlined calls for the specified function
// and PC address.
// If pc is 0 then all inlined calls will be returned.
func InlineStack(dw *dwarf.Data, fnoff dwarf.Offset, pc RelAddr) *InlineStackReader {
reader := dw.Reader()
reader.Seek(fnoff)
r := &InlineStackReader{dwarf: dw, reader: reader, pc: uint64(pc)}
r.precalcStack(nil)
return r
func InlineStack(root *godwarf.Tree, pc uint64) []*godwarf.Tree {
v := []*godwarf.Tree{}
for _, child := range root.Children {
v = inlineStackInternal(v, child, pc)
}
return v
}
// precalcStack precalculates the inlined call stack for irdr.pc.
// If irdr.pc == 0 then all inlined calls will be saved in irdr.stack.
// Otherwise an inlined call will be saved in irdr.stack if its range, or
// inlineStackInternal precalculates the inlined call stack for pc
// If pc == 0 then all inlined calls will be returned
// Otherwise an inlined call will be returned if its range, or
// the range of one of its child entries contains irdr.pc.
// The recursive calculation of range inclusion is necessary because
// sometimes when doing midstack inlining the Go compiler emits the toplevel
......@@ -403,77 +314,17 @@ func InlineStack(dw *dwarf.Data, fnoff dwarf.Offset, pc RelAddr) *InlineStackRea
// ranges that do not cover the ranges of the inlined call to C.
// This is probably a violation of the DWARF standard (it's unclear) but we
// might as well support it as best as possible anyway.
func (irdr *InlineStackReader) precalcStack(rentry *dwarf.Entry) bool {
var contains bool
childLoop:
for {
if irdr.err != nil {
return contains
}
e2, err := irdr.reader.Next()
if e2 == nil || err != nil {
break
}
switch e2.Tag {
case 0:
break childLoop
case dwarf.TagLexDwarfBlock, dwarf.TagSubprogram, dwarf.TagInlinedSubroutine:
if irdr.precalcStack(e2) {
contains = true
func inlineStackInternal(stack []*godwarf.Tree, n *godwarf.Tree, pc uint64) []*godwarf.Tree {
switch n.Tag {
case dwarf.TagSubprogram, dwarf.TagInlinedSubroutine, dwarf.TagLexDwarfBlock:
if pc == 0 || n.ContainsPC(pc) {
for _, child := range n.Children {
stack = inlineStackInternal(stack, child, pc)
}
default:
irdr.reader.SkipChildren()
}
if rentry == nil {
break
}
}
if rentry != nil && rentry.Tag == dwarf.TagInlinedSubroutine {
if !contains {
if irdr.pc != 0 {
contains, irdr.err = entryRangesContains(irdr.dwarf, rentry, irdr.pc)
} else {
contains = true
if n.Tag == dwarf.TagInlinedSubroutine {
stack = append(stack, n)
}
}
if contains {
irdr.stack = append(irdr.stack, rentry)
}
}
return contains
}
// Next reads next inlined call in the stack, returns false if there aren't any.
// Next reads the inlined stack of calls backwards, starting with the
// deepest inlined call and moving back out, like a normal stacktrace works.
func (irdr *InlineStackReader) Next() bool {
if irdr.err != nil {
return false
}
if len(irdr.stack) == 0 {
return false
}
irdr.entry = irdr.stack[0]
irdr.stack = irdr.stack[1:]
return true
}
// Entry returns the DIE for the current inlined call.
func (irdr *InlineStackReader) Entry() *dwarf.Entry {
return irdr.entry
}
// Err returns an error, if any was encountered.
func (irdr *InlineStackReader) Err() error {
return irdr.err
}
// SkipChildren skips all children of the current inlined call.
func (irdr *InlineStackReader) SkipChildren() {
irdr.reader.SkipChildren()
return stack
}
package reader
import (
"errors"
"debug/dwarf"
)
// RelAddr is an address relative to the static base. For normal executables
// this is just a normal memory address, for PIE it's a relative address.
type RelAddr uint64
func ToRelAddr(addr uint64, staticBase uint64) RelAddr {
return RelAddr(addr - staticBase)
}
// VariableReader provides a way of reading the local variables and formal
// parameters of a function that are visible at the specified PC address.
type VariableReader struct {
dwarf *dwarf.Data
reader *dwarf.Reader
entry *dwarf.Entry
depth int
pc uint64
line int
err error
"github.com/go-delve/delve/pkg/dwarf/godwarf"
)
onlyVisible bool
skipInlinedSubroutines bool
type Variable struct {
*godwarf.Tree
Depth int
}
// Variables returns a VariableReader for the function or lexical block at off.
// If onlyVisible is true only variables visible at pc will be returned by
// the VariableReader.
func Variables(dwarf *dwarf.Data, off dwarf.Offset, pc RelAddr, line int, onlyVisible, skipInlinedSubroutines bool) *VariableReader {
reader := dwarf.Reader()
reader.Seek(off)
return &VariableReader{dwarf: dwarf, reader: reader, entry: nil, depth: 0, onlyVisible: onlyVisible, skipInlinedSubroutines: skipInlinedSubroutines, pc: uint64(pc), line: line, err: nil}
// Variables returns a list of variables contained inside 'root'.
// If onlyVisible is true only variables visible at pc will be returned.
// If skipInlinedSubroutines is true inlined subroutines will be skipped
func Variables(root *godwarf.Tree, pc uint64, line int, onlyVisible, skipInlinedSubroutines bool) []Variable {
return variablesInternal(nil, root, 0, pc, line, onlyVisible, skipInlinedSubroutines)
}
// Next reads the next variable entry, returns false if there aren't any.
func (vrdr *VariableReader) Next() bool {
if vrdr.err != nil {
return false
}
for {
vrdr.entry, vrdr.err = vrdr.reader.Next()
if vrdr.entry == nil || vrdr.err != nil {
return false
func variablesInternal(v []Variable, root *godwarf.Tree, depth int, pc uint64, line int, onlyVisible, skipInlinedSubroutines bool) []Variable {
switch root.Tag {
case dwarf.TagInlinedSubroutine:
if skipInlinedSubroutines {
return v
}
switch vrdr.entry.Tag {
case 0:
vrdr.depth--
if vrdr.depth == 0 {
return false
}
case dwarf.TagInlinedSubroutine:
if vrdr.skipInlinedSubroutines {
vrdr.reader.SkipChildren()
continue
}
fallthrough
case dwarf.TagLexDwarfBlock, dwarf.TagSubprogram:
recur := true
if vrdr.onlyVisible {
recur, vrdr.err = entryRangesContains(vrdr.dwarf, vrdr.entry, vrdr.pc)
if vrdr.err != nil {
return false
}
}
if recur && vrdr.entry.Children {
vrdr.depth++
} else {
if vrdr.depth == 0 {
return false
}
vrdr.reader.SkipChildren()
}
default:
if vrdr.depth == 0 {
vrdr.err = errors.New("offset was not lexical block or subprogram")
return false
}
if declLine, ok := vrdr.entry.Val(dwarf.AttrDeclLine).(int64); !ok || vrdr.line >= int(declLine) {
return true
fallthrough
case dwarf.TagLexDwarfBlock, dwarf.TagSubprogram:
if !onlyVisible || root.ContainsPC(pc) {
for _, child := range root.Children {
v = variablesInternal(v, child, depth+1, pc, line, onlyVisible, skipInlinedSubroutines)
}
}
}
}
func entryRangesContains(dwarf *dwarf.Data, entry *dwarf.Entry, pc uint64) (bool, error) {
rngs, err := dwarf.Ranges(entry)
if err != nil {
return false, err
}
for _, rng := range rngs {
if pc >= rng[0] && pc < rng[1] {
return true, nil
return v
default:
if declLine, ok := root.Val(dwarf.AttrDeclLine).(int64); !ok || line >= int(declLine) {
return append(v, Variable{root, depth})
}
return v
}
return false, nil
}
// Entry returns the current variable entry.
func (vrdr *VariableReader) Entry() *dwarf.Entry {
return vrdr.entry
}
// Depth returns the depth of the current scope
func (vrdr *VariableReader) Depth() int {
return vrdr.depth
}
// Err returns the error if there was one.
func (vrdr *VariableReader) Err() error {
return vrdr.err
}
......@@ -30,6 +30,7 @@ import (
"github.com/go-delve/delve/pkg/dwarf/util"
"github.com/go-delve/delve/pkg/goversion"
"github.com/go-delve/delve/pkg/logflags"
"github.com/hashicorp/golang-lru/simplelru"
"github.com/sirupsen/logrus"
)
......@@ -166,6 +167,8 @@ var supportedDarwinArch = map[macho.Cpu]bool{
const dwarfGoLanguage = 22 // DW_LANG_Go (from DWARF v5, section 7.12, page 231)
const dwarfTreeCacheSize = 512 // size of the dwarfTree cache of each image
type compileUnit struct {
name string // univocal name for non-go compile units
lowPC uint64
......@@ -489,18 +492,16 @@ func (bi *BinaryInfo) PCToFunc(pc uint64) *Function {
// If the PC address belongs to an inlined call it will return the inlined function.
func (bi *BinaryInfo) PCToInlineFunc(pc uint64) *Function {
fn := bi.PCToFunc(pc)
irdr := reader.InlineStack(fn.cu.image.dwarf, fn.offset, reader.ToRelAddr(pc, fn.cu.image.StaticBase))
var inlineFnEntry *dwarf.Entry
if irdr.Next() {
inlineFnEntry = irdr.Entry()
dwarfTree, err := fn.cu.image.getDwarfTree(fn.offset)
if err != nil {
return fn
}
if inlineFnEntry == nil {
entries := reader.InlineStack(dwarfTree, pc)
if len(entries) == 0 {
return fn
}
e, _ := reader.LoadAbstractOrigin(inlineFnEntry, fn.cu.image.dwarfReader)
fnname, okname := e.Val(dwarf.AttrName).(string)
fnname, okname := entries[0].Val(dwarf.AttrName).(string)
if !okname {
return fn
}
......@@ -531,6 +532,8 @@ type Image struct {
typeCache map[dwarf.Offset]godwarf.Type
dwarfTreeCache *simplelru.LRU
// runtimeTypeToDIE maps between the offset of a runtime._type in
// runtime.moduledata.types and the offset of the DIE in debug_info. This
// map is filled by using the extended attribute godwarf.AttrGoRuntimeType
......@@ -566,6 +569,8 @@ func (bi *BinaryInfo) AddImage(path string, addr uint64) error {
// Actually add the image.
image := &Image{Path: path, addr: addr, typeCache: make(map[dwarf.Offset]godwarf.Type)}
image.dwarfTreeCache, _ = simplelru.NewLRU(dwarfTreeCacheSize, nil)
// add Image regardless of error so that we don't attempt to re-add it every time we stop
image.index = len(bi.Images)
bi.Images = append(bi.Images, image)
......@@ -651,6 +656,18 @@ func (image *Image) LoadError() error {
return image.loadErr
}
func (image *Image) getDwarfTree(off dwarf.Offset) (*godwarf.Tree, error) {
if r, ok := image.dwarfTreeCache.Get(off); ok {
return r.(*godwarf.Tree), nil
}
r, err := godwarf.LoadTree(off, image.dwarf, image.StaticBase)
if err != nil {
return nil, err
}
image.dwarfTreeCache.Add(off, r)
return r, nil
}
type nilCloser struct{}
func (c *nilCloser) Close() error { return nil }
......@@ -663,6 +680,7 @@ func (bi *BinaryInfo) LoadImageFromData(dwdata *dwarf.Data, debugFrameBytes, deb
image.sepDebugCloser = (*nilCloser)(nil)
image.dwarf = dwdata
image.typeCache = make(map[dwarf.Offset]godwarf.Type)
image.dwarfTreeCache, _ = simplelru.NewLRU(dwarfTreeCacheSize, nil)
if debugFrameBytes != nil {
bi.frameEntries = frame.Parse(debugFrameBytes, frame.DwarfEndian(debugFrameBytes), 0, bi.Arch.PtrSize())
......@@ -675,7 +693,7 @@ func (bi *BinaryInfo) LoadImageFromData(dwdata *dwarf.Data, debugFrameBytes, deb
bi.Images = append(bi.Images, image)
}
func (bi *BinaryInfo) locationExpr(entry reader.Entry, attr dwarf.Attr, pc uint64) ([]byte, string, error) {
func (bi *BinaryInfo) locationExpr(entry godwarf.Entry, attr dwarf.Attr, pc uint64) ([]byte, string, error) {
a := entry.Val(attr)
if a == nil {
return nil, "", fmt.Errorf("no location attribute %s", attr)
......@@ -743,7 +761,7 @@ func (bi *BinaryInfo) LocationCovers(entry *dwarf.Entry, attr dwarf.Attr) ([][2]
// This will either be an int64 address or a slice of Pieces for locations
// that don't correspond to a single memory address (registers, composite
// locations).
func (bi *BinaryInfo) Location(entry reader.Entry, attr dwarf.Attr, pc uint64, regs op.DwarfRegisters) (int64, []op.Piece, string, error) {
func (bi *BinaryInfo) Location(entry godwarf.Entry, attr dwarf.Attr, pc uint64, regs op.DwarfRegisters) (int64, []op.Piece, string, error) {
instr, descr, err := bi.locationExpr(entry, attr, pc)
if err != nil {
return 0, nil, "", err
......
......@@ -104,12 +104,16 @@ func (scope *EvalScope) Locals() ([]*Variable, error) {
trustArgOrder := scope.BinInfo.Producer() != "" && goversion.ProducerAfterOrEqual(scope.BinInfo.Producer(), 1, 12)
var vars []*Variable
var depths []int
varReader := reader.Variables(scope.image().dwarf, scope.Fn.offset, reader.ToRelAddr(scope.PC, scope.image().StaticBase), scope.Line, true, false)
for varReader.Next() {
entry := varReader.Entry()
val, err := extractVarInfoFromEntry(scope.BinInfo, scope.image(), scope.Regs, scope.Mem, entry)
dwarfTree, err := scope.image().getDwarfTree(scope.Fn.offset)
if err != nil {
return nil, err
}
varEntries := reader.Variables(dwarfTree, scope.PC, scope.Line, true, false)
vars := make([]*Variable, 0, len(varEntries))
depths := make([]int, 0, len(varEntries))
for _, entry := range varEntries {
val, err := extractVarInfoFromEntry(scope.BinInfo, scope.image(), scope.Regs, scope.Mem, entry.Tree)
if err != nil {
// skip variables that we can't parse yet
continue
......@@ -123,7 +127,7 @@ func (scope *EvalScope) Locals() ([]*Variable, error) {
val = newVariable(val.Name, addr, val.DwarfType, scope.BinInfo, scope.Mem)
}
vars = append(vars, val)
depth := varReader.Depth()
depth := entry.Depth
if entry.Tag == dwarf.TagFormalParameter {
if depth <= 1 {
depth = 0
......@@ -138,10 +142,6 @@ func (scope *EvalScope) Locals() ([]*Variable, error) {
depths = append(depths, depth)
}
if err := varReader.Err(); err != nil {
return nil, err
}
if len(vars) <= 0 {
return vars, nil
}
......@@ -367,7 +367,7 @@ func (scope *EvalScope) PackageVariables(cfg LoadConfig) ([]*Variable, error) {
}
// Ignore errors trying to extract values
val, err := extractVarInfoFromEntry(scope.BinInfo, image, regsReplaceStaticBase(scope.Regs, image), scope.Mem, entry)
val, err := extractVarInfoFromEntry(scope.BinInfo, image, regsReplaceStaticBase(scope.Regs, image), scope.Mem, godwarf.EntryToTree(entry))
if err != nil {
continue
}
......@@ -402,7 +402,7 @@ func (scope *EvalScope) findGlobalInternal(name string) (*Variable, error) {
if err != nil {
return nil, err
}
return extractVarInfoFromEntry(scope.BinInfo, pkgvar.cu.image, regsReplaceStaticBase(scope.Regs, pkgvar.cu.image), scope.Mem, entry)
return extractVarInfoFromEntry(scope.BinInfo, pkgvar.cu.image, regsReplaceStaticBase(scope.Regs, pkgvar.cu.image), scope.Mem, godwarf.EntryToTree(entry))
}
}
for _, fn := range scope.BinInfo.Functions {
......
......@@ -520,17 +520,22 @@ func funcCallCopyOneArg(scope *EvalScope, fncall *functionCallState, actualArg *
func funcCallArgs(fn *Function, bi *BinaryInfo, includeRet bool) (argFrameSize int64, formalArgs []funcCallArg, err error) {
const CFA = 0x1000
vrdr := reader.Variables(fn.cu.image.dwarf, fn.offset, reader.ToRelAddr(fn.Entry, fn.cu.image.StaticBase), int(^uint(0)>>1), false, true)
dwarfTree, err := fn.cu.image.getDwarfTree(fn.offset)
if err != nil {
return 0, nil, fmt.Errorf("DWARF read error: %v", err)
}
varEntries := reader.Variables(dwarfTree, fn.Entry, int(^uint(0)>>1), false, true)
trustArgOrder := bi.Producer() != "" && goversion.ProducerAfterOrEqual(bi.Producer(), 1, 12)
// typechecks arguments, calculates argument frame size
for vrdr.Next() {
e := vrdr.Entry()
if e.Tag != dwarf.TagFormalParameter {
for _, entry := range varEntries {
if entry.Tag != dwarf.TagFormalParameter {
continue
}
entry, argname, typ, err := readVarEntry(e, fn.cu.image)
argname, typ, err := readVarEntry(entry.Tree, fn.cu.image)
if err != nil {
return 0, nil, err
}
......@@ -574,9 +579,6 @@ func funcCallArgs(fn *Function, bi *BinaryInfo, includeRet bool) (argFrameSize i
formalArgs = append(formalArgs, funcCallArg{name: argname, typ: typ, off: off, isret: isret})
}
}
if err := vrdr.Err(); err != nil {
return 0, nil, fmt.Errorf("DWARF read error: %v", err)
}
sort.Slice(formalArgs, func(i, j int) bool {
return formalArgs[i].off < formalArgs[j].off
......
......@@ -287,13 +287,11 @@ func (it *stackIterator) Err() error {
// frameBase calculates the frame base pseudo-register for DWARF for fn and
// the current frame.
func (it *stackIterator) frameBase(fn *Function) int64 {
rdr := fn.cu.image.dwarfReader
rdr.Seek(fn.offset)
e, err := rdr.Next()
dwarfTree, err := fn.cu.image.getDwarfTree(fn.offset)
if err != nil {
return 0
}
fb, _, _, _ := it.bi.Location(e, dwarf.AttrFrameBase, it.pc, it.regs)
fb, _, _, _ := it.bi.Location(dwarfTree.Entry, dwarf.AttrFrameBase, it.pc, it.regs)
return fb
}
......@@ -366,12 +364,12 @@ func (it *stackIterator) appendInlineCalls(frames []Stackframe, frame Stackframe
callpc--
}
image := frame.Call.Fn.cu.image
irdr := reader.InlineStack(image.dwarf, frame.Call.Fn.offset, reader.ToRelAddr(callpc, image.StaticBase))
for irdr.Next() {
entry, offset := reader.LoadAbstractOrigin(irdr.Entry(), image.dwarfReader)
dwarfTree, err := frame.Call.Fn.cu.image.getDwarfTree(frame.Call.Fn.offset)
if err != nil {
return append(frames, frame)
}
for _, entry := range reader.InlineStack(dwarfTree, callpc) {
fnname, okname := entry.Val(dwarf.AttrName).(string)
fileidx, okfileidx := entry.Val(dwarf.AttrCallFile).(int64)
line, okline := entry.Val(dwarf.AttrCallLine).(int64)
......@@ -383,7 +381,7 @@ func (it *stackIterator) appendInlineCalls(frames []Stackframe, frame Stackframe
break
}
inlfn := &Function{Name: fnname, Entry: frame.Call.Fn.Entry, End: frame.Call.Fn.End, offset: offset, cu: frame.Call.Fn.cu}
inlfn := &Function{Name: fnname, Entry: frame.Call.Fn.Entry, End: frame.Call.Fn.End, offset: entry.Offset, cu: frame.Call.Fn.cu}
frames = append(frames, Stackframe{
Current: frame.Current,
Call: Location{
......
......@@ -398,30 +398,25 @@ func FindDeferReturnCalls(text []AsmInstruction) []uint64 {
// If includeCurrentFn is true it will also remove all instructions
// belonging to the current function.
func removeInlinedCalls(dbp Process, pcs []uint64, topframe Stackframe) ([]uint64, error) {
image := topframe.Call.Fn.cu.image
dwarf := image.dwarf
irdr := reader.InlineStack(dwarf, topframe.Call.Fn.offset, 0)
for irdr.Next() {
e := irdr.Entry()
dwarfTree, err := topframe.Call.Fn.cu.image.getDwarfTree(topframe.Call.Fn.offset)
if err != nil {
return pcs, err
}
for _, e := range reader.InlineStack(dwarfTree, 0) {
if e.Offset == topframe.Call.Fn.offset {
continue
}
ranges, err := dwarf.Ranges(e)
if err != nil {
return pcs, err
}
for _, rng := range ranges {
pcs = removePCsBetween(pcs, rng[0], rng[1], image.StaticBase)
for _, rng := range e.Ranges {
pcs = removePCsBetween(pcs, rng[0], rng[1])
}
irdr.SkipChildren()
}
return pcs, irdr.Err()
return pcs, nil
}
func removePCsBetween(pcs []uint64, start, end, staticBase uint64) []uint64 {
func removePCsBetween(pcs []uint64, start, end uint64) []uint64 {
out := pcs[:0]
for _, pc := range pcs {
if pc < start+staticBase || pc >= end+staticBase {
if pc < start || pc >= end {
out = append(out, pc)
}
}
......
......@@ -16,7 +16,6 @@ import (
"github.com/go-delve/delve/pkg/dwarf/godwarf"
"github.com/go-delve/delve/pkg/dwarf/op"
"github.com/go-delve/delve/pkg/dwarf/reader"
"github.com/go-delve/delve/pkg/goversion"
)
......@@ -841,39 +840,28 @@ func (v *Variable) structMember(memberName string) (*Variable, error) {
}
}
func readVarEntry(varEntry *dwarf.Entry, image *Image) (entry reader.Entry, name string, typ godwarf.Type, err error) {
entry, _ = reader.LoadAbstractOrigin(varEntry, image.dwarfReader)
func readVarEntry(entry *godwarf.Tree, image *Image) (name string, typ godwarf.Type, err error) {
name, ok := entry.Val(dwarf.AttrName).(string)
if !ok {
return nil, "", nil, fmt.Errorf("malformed variable DIE (name)")
}
offset, ok := entry.Val(dwarf.AttrType).(dwarf.Offset)
if !ok {
return nil, "", nil, fmt.Errorf("malformed variable DIE (offset)")
return "", nil, fmt.Errorf("malformed variable DIE (name)")
}
typ, err = image.Type(offset)
typ, err = entry.Type(image.dwarf, image.index, image.typeCache)
if err != nil {
return nil, "", nil, err
return "", nil, err
}
return entry, name, typ, nil
return name, typ, nil
}
// Extracts the name and type of a variable from a dwarf entry
// then executes the instructions given in the DW_AT_location attribute to grab the variable's address
func extractVarInfoFromEntry(bi *BinaryInfo, image *Image, regs op.DwarfRegisters, mem MemoryReadWriter, varEntry *dwarf.Entry) (*Variable, error) {
if varEntry == nil {
return nil, fmt.Errorf("invalid entry")
}
if varEntry.Tag != dwarf.TagFormalParameter && varEntry.Tag != dwarf.TagVariable {
return nil, fmt.Errorf("invalid entry tag, only supports FormalParameter and Variable, got %s", varEntry.Tag.String())
func extractVarInfoFromEntry(bi *BinaryInfo, image *Image, regs op.DwarfRegisters, mem MemoryReadWriter, entry *godwarf.Tree) (*Variable, error) {
if entry.Tag != dwarf.TagFormalParameter && entry.Tag != dwarf.TagVariable {
return nil, fmt.Errorf("invalid entry tag, only supports FormalParameter and Variable, got %s", entry.Tag.String())
}
entry, n, t, err := readVarEntry(varEntry, image)
n, t, err := readVarEntry(entry, image)
if err != nil {
return nil, err
}
......
Mozilla Public License, version 2.0
1. Definitions
1.1. "Contributor"
means each individual or legal entity that creates, contributes to the
creation of, or owns Covered Software.
1.2. "Contributor Version"
means the combination of the Contributions of others (if any) used by a
Contributor and that particular Contributor's Contribution.
1.3. "Contribution"
means Covered Software of a particular Contributor.
1.4. "Covered Software"
means Source Code Form to which the initial Contributor has attached the
notice in Exhibit A, the Executable Form of such Source Code Form, and
Modifications of such Source Code Form, in each case including portions
thereof.
1.5. "Incompatible With Secondary Licenses"
means
a. that the initial Contributor has attached the notice described in
Exhibit B to the Covered Software; or
b. that the Covered Software was made available under the terms of
version 1.1 or earlier of the License, but not also under the terms of
a Secondary License.
1.6. "Executable Form"
means any form of the work other than Source Code Form.
1.7. "Larger Work"
means a work that combines Covered Software with other material, in a
separate file or files, that is not Covered Software.
1.8. "License"
means this document.
1.9. "Licensable"
means having the right to grant, to the maximum extent possible, whether
at the time of the initial grant or subsequently, any and all of the
rights conveyed by this License.
1.10. "Modifications"
means any of the following:
a. any file in Source Code Form that results from an addition to,
deletion from, or modification of the contents of Covered Software; or
b. any new file in Source Code Form that contains any Covered Software.
1.11. "Patent Claims" of a Contributor
means any patent claim(s), including without limitation, method,
process, and apparatus claims, in any patent Licensable by such
Contributor that would be infringed, but for the grant of the License,
by the making, using, selling, offering for sale, having made, import,
or transfer of either its Contributions or its Contributor Version.
1.12. "Secondary License"
means either the GNU General Public License, Version 2.0, the GNU Lesser
General Public License, Version 2.1, the GNU Affero General Public
License, Version 3.0, or any later versions of those licenses.
1.13. "Source Code Form"
means the form of the work preferred for making modifications.
1.14. "You" (or "Your")
means an individual or a legal entity exercising rights under this
License. For legal entities, "You" includes any entity that controls, is
controlled by, or is under common control with You. For purposes of this
definition, "control" means (a) the power, direct or indirect, to cause
the direction or management of such entity, whether by contract or
otherwise, or (b) ownership of more than fifty percent (50%) of the
outstanding shares or beneficial ownership of such entity.
2. License Grants and Conditions
2.1. Grants
Each Contributor hereby grants You a world-wide, royalty-free,
non-exclusive license:
a. under intellectual property rights (other than patent or trademark)
Licensable by such Contributor to use, reproduce, make available,
modify, display, perform, distribute, and otherwise exploit its
Contributions, either on an unmodified basis, with Modifications, or
as part of a Larger Work; and
b. under Patent Claims of such Contributor to make, use, sell, offer for
sale, have made, import, and otherwise transfer either its
Contributions or its Contributor Version.
2.2. Effective Date
The licenses granted in Section 2.1 with respect to any Contribution
become effective for each Contribution on the date the Contributor first
distributes such Contribution.
2.3. Limitations on Grant Scope
The licenses granted in this Section 2 are the only rights granted under
this License. No additional rights or licenses will be implied from the
distribution or licensing of Covered Software under this License.
Notwithstanding Section 2.1(b) above, no patent license is granted by a
Contributor:
a. for any code that a Contributor has removed from Covered Software; or
b. for infringements caused by: (i) Your and any other third party's
modifications of Covered Software, or (ii) the combination of its
Contributions with other software (except as part of its Contributor
Version); or
c. under Patent Claims infringed by Covered Software in the absence of
its Contributions.
This License does not grant any rights in the trademarks, service marks,
or logos of any Contributor (except as may be necessary to comply with
the notice requirements in Section 3.4).
2.4. Subsequent Licenses
No Contributor makes additional grants as a result of Your choice to
distribute the Covered Software under a subsequent version of this
License (see Section 10.2) or under the terms of a Secondary License (if
permitted under the terms of Section 3.3).
2.5. Representation
Each Contributor represents that the Contributor believes its
Contributions are its original creation(s) or it has sufficient rights to
grant the rights to its Contributions conveyed by this License.
2.6. Fair Use
This License is not intended to limit any rights You have under
applicable copyright doctrines of fair use, fair dealing, or other
equivalents.
2.7. Conditions
Sections 3.1, 3.2, 3.3, and 3.4 are conditions of the licenses granted in
Section 2.1.
3. Responsibilities
3.1. Distribution of Source Form
All distribution of Covered Software in Source Code Form, including any
Modifications that You create or to which You contribute, must be under
the terms of this License. You must inform recipients that the Source
Code Form of the Covered Software is governed by the terms of this
License, and how they can obtain a copy of this License. You may not
attempt to alter or restrict the recipients' rights in the Source Code
Form.
3.2. Distribution of Executable Form
If You distribute Covered Software in Executable Form then:
a. such Covered Software must also be made available in Source Code Form,
as described in Section 3.1, and You must inform recipients of the
Executable Form how they can obtain a copy of such Source Code Form by
reasonable means in a timely manner, at a charge no more than the cost
of distribution to the recipient; and
b. You may distribute such Executable Form under the terms of this
License, or sublicense it under different terms, provided that the
license for the Executable Form does not attempt to limit or alter the
recipients' rights in the Source Code Form under this License.
3.3. Distribution of a Larger Work
You may create and distribute a Larger Work under terms of Your choice,
provided that You also comply with the requirements of this License for
the Covered Software. If the Larger Work is a combination of Covered
Software with a work governed by one or more Secondary Licenses, and the
Covered Software is not Incompatible With Secondary Licenses, this
License permits You to additionally distribute such Covered Software
under the terms of such Secondary License(s), so that the recipient of
the Larger Work may, at their option, further distribute the Covered
Software under the terms of either this License or such Secondary
License(s).
3.4. Notices
You may not remove or alter the substance of any license notices
(including copyright notices, patent notices, disclaimers of warranty, or
limitations of liability) contained within the Source Code Form of the
Covered Software, except that You may alter any license notices to the
extent required to remedy known factual inaccuracies.
3.5. Application of Additional Terms
You may choose to offer, and to charge a fee for, warranty, support,
indemnity or liability obligations to one or more recipients of Covered
Software. However, You may do so only on Your own behalf, and not on
behalf of any Contributor. You must make it absolutely clear that any
such warranty, support, indemnity, or liability obligation is offered by
You alone, and You hereby agree to indemnify every Contributor for any
liability incurred by such Contributor as a result of warranty, support,
indemnity or liability terms You offer. You may include additional
disclaimers of warranty and limitations of liability specific to any
jurisdiction.
4. Inability to Comply Due to Statute or Regulation
If it is impossible for You to comply with any of the terms of this License
with respect to some or all of the Covered Software due to statute,
judicial order, or regulation then You must: (a) comply with the terms of
this License to the maximum extent possible; and (b) describe the
limitations and the code they affect. Such description must be placed in a
text file included with all distributions of the Covered Software under
this License. Except to the extent prohibited by statute or regulation,
such description must be sufficiently detailed for a recipient of ordinary
skill to be able to understand it.
5. Termination
5.1. The rights granted under this License will terminate automatically if You
fail to comply with any of its terms. However, if You become compliant,
then the rights granted under this License from a particular Contributor
are reinstated (a) provisionally, unless and until such Contributor
explicitly and finally terminates Your grants, and (b) on an ongoing
basis, if such Contributor fails to notify You of the non-compliance by
some reasonable means prior to 60 days after You have come back into
compliance. Moreover, Your grants from a particular Contributor are
reinstated on an ongoing basis if such Contributor notifies You of the
non-compliance by some reasonable means, this is the first time You have
received notice of non-compliance with this License from such
Contributor, and You become compliant prior to 30 days after Your receipt
of the notice.
5.2. If You initiate litigation against any entity by asserting a patent
infringement claim (excluding declaratory judgment actions,
counter-claims, and cross-claims) alleging that a Contributor Version
directly or indirectly infringes any patent, then the rights granted to
You by any and all Contributors for the Covered Software under Section
2.1 of this License shall terminate.
5.3. In the event of termination under Sections 5.1 or 5.2 above, all end user
license agreements (excluding distributors and resellers) which have been
validly granted by You or Your distributors under this License prior to
termination shall survive termination.
6. Disclaimer of Warranty
Covered Software is provided under this License on an "as is" basis,
without warranty of any kind, either expressed, implied, or statutory,
including, without limitation, warranties that the Covered Software is free
of defects, merchantable, fit for a particular purpose or non-infringing.
The entire risk as to the quality and performance of the Covered Software
is with You. Should any Covered Software prove defective in any respect,
You (not any Contributor) assume the cost of any necessary servicing,
repair, or correction. This disclaimer of warranty constitutes an essential
part of this License. No use of any Covered Software is authorized under
this License except under this disclaimer.
7. Limitation of Liability
Under no circumstances and under no legal theory, whether tort (including
negligence), contract, or otherwise, shall any Contributor, or anyone who
distributes Covered Software as permitted above, be liable to You for any
direct, indirect, special, incidental, or consequential damages of any
character including, without limitation, damages for lost profits, loss of
goodwill, work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses, even if such party shall have been
informed of the possibility of such damages. This limitation of liability
shall not apply to liability for death or personal injury resulting from
such party's negligence to the extent applicable law prohibits such
limitation. Some jurisdictions do not allow the exclusion or limitation of
incidental or consequential damages, so this exclusion and limitation may
not apply to You.
8. Litigation
Any litigation relating to this License may be brought only in the courts
of a jurisdiction where the defendant maintains its principal place of
business and such litigation shall be governed by laws of that
jurisdiction, without reference to its conflict-of-law provisions. Nothing
in this Section shall prevent a party's ability to bring cross-claims or
counter-claims.
9. Miscellaneous
This License represents the complete agreement concerning the subject
matter hereof. If any provision of this License is held to be
unenforceable, such provision shall be reformed only to the extent
necessary to make it enforceable. Any law or regulation which provides that
the language of a contract shall be construed against the drafter shall not
be used to construe this License against a Contributor.
10. Versions of the License
10.1. New Versions
Mozilla Foundation is the license steward. Except as provided in Section
10.3, no one other than the license steward has the right to modify or
publish new versions of this License. Each version will be given a
distinguishing version number.
10.2. Effect of New Versions
You may distribute the Covered Software under the terms of the version
of the License under which You originally received the Covered Software,
or under the terms of any subsequent version published by the license
steward.
10.3. Modified Versions
If you create software not governed by this License, and you want to
create a new license for such software, you may create and use a
modified version of this License if you rename the license and remove
any references to the name of the license steward (except to note that
such modified license differs from this License).
10.4. Distributing Source Code Form that is Incompatible With Secondary
Licenses If You choose to distribute Source Code Form that is
Incompatible With Secondary Licenses under the terms of this version of
the License, the notice described in Exhibit B of this License must be
attached.
Exhibit A - Source Code Form License Notice
This Source Code Form is subject to the
terms of the Mozilla Public License, v.
2.0. If a copy of the MPL was not
distributed with this file, You can
obtain one at
http://mozilla.org/MPL/2.0/.
If it is not possible or desirable to put the notice in a particular file,
then You may include the notice in a location (such as a LICENSE file in a
relevant directory) where a recipient would be likely to look for such a
notice.
You may add additional accurate notices of copyright ownership.
Exhibit B - "Incompatible With Secondary Licenses" Notice
This Source Code Form is "Incompatible
With Secondary Licenses", as defined by
the Mozilla Public License, v. 2.0.
package simplelru
import (
"container/list"
"errors"
)
// EvictCallback is used to get a callback when a cache entry is evicted
type EvictCallback func(key interface{}, value interface{})
// LRU implements a non-thread safe fixed size LRU cache
type LRU struct {
size int
evictList *list.List
items map[interface{}]*list.Element
onEvict EvictCallback
}
// entry is used to hold a value in the evictList
type entry struct {
key interface{}
value interface{}
}
// NewLRU constructs an LRU of the given size
func NewLRU(size int, onEvict EvictCallback) (*LRU, error) {
if size <= 0 {
return nil, errors.New("Must provide a positive size")
}
c := &LRU{
size: size,
evictList: list.New(),
items: make(map[interface{}]*list.Element),
onEvict: onEvict,
}
return c, nil
}
// Purge is used to completely clear the cache.
func (c *LRU) Purge() {
for k, v := range c.items {
if c.onEvict != nil {
c.onEvict(k, v.Value.(*entry).value)
}
delete(c.items, k)
}
c.evictList.Init()
}
// Add adds a value to the cache. Returns true if an eviction occurred.
func (c *LRU) Add(key, value interface{}) (evicted bool) {
// Check for existing item
if ent, ok := c.items[key]; ok {
c.evictList.MoveToFront(ent)
ent.Value.(*entry).value = value
return false
}
// Add new item
ent := &entry{key, value}
entry := c.evictList.PushFront(ent)
c.items[key] = entry
evict := c.evictList.Len() > c.size
// Verify size not exceeded
if evict {
c.removeOldest()
}
return evict
}
// Get looks up a key's value from the cache.
func (c *LRU) Get(key interface{}) (value interface{}, ok bool) {
if ent, ok := c.items[key]; ok {
c.evictList.MoveToFront(ent)
if ent.Value.(*entry) == nil {
return nil, false
}
return ent.Value.(*entry).value, true
}
return
}
// Contains checks if a key is in the cache, without updating the recent-ness
// or deleting it for being stale.
func (c *LRU) Contains(key interface{}) (ok bool) {
_, ok = c.items[key]
return ok
}
// Peek returns the key value (or undefined if not found) without updating
// the "recently used"-ness of the key.
func (c *LRU) Peek(key interface{}) (value interface{}, ok bool) {
var ent *list.Element
if ent, ok = c.items[key]; ok {
return ent.Value.(*entry).value, true
}
return nil, ok
}
// Remove removes the provided key from the cache, returning if the
// key was contained.
func (c *LRU) Remove(key interface{}) (present bool) {
if ent, ok := c.items[key]; ok {
c.removeElement(ent)
return true
}
return false
}
// RemoveOldest removes the oldest item from the cache.
func (c *LRU) RemoveOldest() (key interface{}, value interface{}, ok bool) {
ent := c.evictList.Back()
if ent != nil {
c.removeElement(ent)
kv := ent.Value.(*entry)
return kv.key, kv.value, true
}
return nil, nil, false
}
// GetOldest returns the oldest entry
func (c *LRU) GetOldest() (key interface{}, value interface{}, ok bool) {
ent := c.evictList.Back()
if ent != nil {
kv := ent.Value.(*entry)
return kv.key, kv.value, true
}
return nil, nil, false
}
// Keys returns a slice of the keys in the cache, from oldest to newest.
func (c *LRU) Keys() []interface{} {
keys := make([]interface{}, len(c.items))
i := 0
for ent := c.evictList.Back(); ent != nil; ent = ent.Prev() {
keys[i] = ent.Value.(*entry).key
i++
}
return keys
}
// Len returns the number of items in the cache.
func (c *LRU) Len() int {
return c.evictList.Len()
}
// Resize changes the cache size.
func (c *LRU) Resize(size int) (evicted int) {
diff := c.Len() - size
if diff < 0 {
diff = 0
}
for i := 0; i < diff; i++ {
c.removeOldest()
}
c.size = size
return diff
}
// removeOldest removes the oldest item from the cache.
func (c *LRU) removeOldest() {
ent := c.evictList.Back()
if ent != nil {
c.removeElement(ent)
}
}
// removeElement is used to remove a given list element from the cache
func (c *LRU) removeElement(e *list.Element) {
c.evictList.Remove(e)
kv := e.Value.(*entry)
delete(c.items, kv.key)
if c.onEvict != nil {
c.onEvict(kv.key, kv.value)
}
}
package simplelru
// LRUCache is the interface for simple LRU cache.
type LRUCache interface {
// Adds a value to the cache, returns true if an eviction occurred and
// updates the "recently used"-ness of the key.
Add(key, value interface{}) bool
// Returns key's value from the cache and
// updates the "recently used"-ness of the key. #value, isFound
Get(key interface{}) (value interface{}, ok bool)
// Checks if a key exists in cache without updating the recent-ness.
Contains(key interface{}) (ok bool)
// Returns key's value without updating the "recently used"-ness of the key.
Peek(key interface{}) (value interface{}, ok bool)
// Removes a key from the cache.
Remove(key interface{}) bool
// Removes the oldest entry from cache.
RemoveOldest() (interface{}, interface{}, bool)
// Returns the oldest entry from the cache. #key, value, isFound
GetOldest() (interface{}, interface{}, bool)
// Returns a slice of the keys in the cache, from oldest to newest.
Keys() []interface{}
// Returns the number of items in the cache.
Len() int
// Clears all cache entries.
Purge()
// Resizes cache, returning number evicted
Resize(int) int
}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册