Skip to content

  • 体验新版
    • 正在加载...
  • 登录
  • PaddlePaddle
  • models
  • 合并请求
  • !1142

M
models
  • 项目概览

PaddlePaddle / models
大约 2 年 前同步成功

通知 232
Star 6828
Fork 2962
  • 代码
    • 文件
    • 提交
    • 分支
    • Tags
    • 贡献者
    • 分支图
    • Diff
  • Issue 602
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 255
  • Wiki 0
    • Wiki
  • 分析
    • 仓库
    • DevOps
  • 项目成员
  • Pages
M
models
  • 项目概览
    • 项目概览
    • 详情
    • 发布
  • 仓库
    • 仓库
    • 文件
    • 提交
    • 分支
    • 标签
    • 贡献者
    • 分支图
    • 比较
  • Issue 602
    • Issue 602
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 255
    • 合并请求 255
  • Pages
  • 分析
    • 分析
    • 仓库分析
    • DevOps
  • Wiki 0
    • Wiki
  • 成员
    • 成员
  • 收起侧边栏
  • 动态
  • 分支图
  • 创建新Issue
  • 提交
  • Issue看板

Port text_classification model and object_detection to Python3 !1142

  • Report abuse
!1142 已合并 8月 13, 2018 由 saxon_zh@saxon_zh 创建
#<User:0x00007f7e9b956fe8>
  • 概览 2
  • 提交 2
  • 变更 7

Created by: velconia

object_detection 在本地进行过自测, 测试环境如下:

GPU: 4 * P40

数据集: pascalvoc

train.py 正常执行
infer.py 正常执行

收敛情况如下:

train on pascalvoc with 16551 images       
test on pascalvoc with 4952 images
Pass 0, batch 0, loss 35.34485626220703, time 4.745636940002441
Pass 0, batch 20, loss 11.94227123260498, time 5.786929130554199
Pass 0, batch 40, loss 8.538806915283203, time 5.208272933959961
Pass 0, batch 60, loss 7.659024238586426, time 5.300149440765381
Pass 0, batch 80, loss 7.16782283782959, time 4.942589044570923
Pass 0, batch 100, loss 6.835295677185059, time 6.101689338684082
Pass 0, batch 120, loss 6.667757034301758, time 5.5905067920684814
Pass 0, batch 140, loss 6.7157301902771, time 6.157291650772095 
Pass 0, batch 160, loss 6.226722717285156, time 4.640245199203491
Pass 0, batch 180, loss 6.123575210571289, time 5.627285480499268 
Pass 0, batch 200, loss 6.122291088104248, time 5.931992769241333
Pass 0, batch 220, loss 8.052138328552246, time 5.563196182250977
There are too few data to train on all devices.                  
Batch 0, map [0.41446137]                                      
Batch 20, map [0.25457525]                                      
Batch 40, map [0.24238662]                                       
Batch 60, map [0.24026608]
save models to model/best_model
Pass 0, test map [0.23838544]
save models to model/0               
Pass 1, batch 0, loss 5.957313537597656, time 5.037740230560303
Pass 1, batch 20, loss 5.859901428222656, time 5.262516498565674
Pass 1, batch 40, loss 5.776670455932617, time 5.448286533355713
Pass 1, batch 60, loss 6.2576398849487305, time 5.78664231300354
Pass 1, batch 80, loss 5.526543617248535, time 4.933773994445801
Pass 1, batch 100, loss 5.5869669914245605, time 5.409125089645386
Pass 1, batch 120, loss 5.736286163330078, time 6.599635124206543
Pass 1, batch 140, loss 6.025790214538574, time 6.25817084312439
Pass 1, batch 160, loss 5.804162979125977, time 5.377420902252197
Pass 1, batch 180, loss 5.4708251953125, time 5.602002382278442
Pass 1, batch 200, loss 5.320291519165039, time 6.41616678237915
Pass 1, batch 220, loss 5.235589027404785, time 6.089456796646118
Batch 0, map [0.5214782]
Batch 20, map [0.3836475]
Batch 40, map [0.38109452]
Batch 60, map [0.3807569]
save models to model/best_model

本地自测text_classification (bow model) 模型收敛情况如下:

pass_id: 0, avg_acc: 0.849280, avg_cost: 0.352914                                                                                                                                  
pass_id: 1, avg_acc: 0.915440, avg_cost: 0.216342                                                                                                                                  
pass_id: 2, avg_acc: 0.929680, avg_cost: 0.182771                                                                                                                                  
pass_id: 3, avg_acc: 0.939960, avg_cost: 0.162024                                                                                                                                  
pass_id: 4, avg_acc: 0.947080, avg_cost: 0.147124                                                                                                                                  
pass_id: 5, avg_acc: 0.952160, avg_cost: 0.134662                                                                                                                                  
pass_id: 6, avg_acc: 0.957040, avg_cost: 0.125078                                                                                                                                  
pass_id: 7, avg_acc: 0.960200, avg_cost: 0.116064                                                                                                                                  
pass_id: 8, avg_acc: 0.964720, avg_cost: 0.108208 
pass_id: 9, avg_acc: 0.967400, avg_cost: 0.100924  
pass_id: 10, avg_acc: 0.971320, avg_cost: 0.093750                                       
pass_id: 11, avg_acc: 0.973200, avg_cost: 0.088134                                                        
pass_id: 12, avg_acc: 0.975640, avg_cost: 0.082715                                                                                                                        
pass_id: 13, avg_acc: 0.978040, avg_cost: 0.077402
pass_id: 14, avg_acc: 0.980800, avg_cost: 0.071769                                                                                                                                 
pass_id: 15, avg_acc: 0.983120, avg_cost: 0.067344                  
pass_id: 16, avg_acc: 0.984760, avg_cost: 0.062103                                                             
pass_id: 17, avg_acc: 0.985800, avg_cost: 0.058509                                                                                                                                 
pass_id: 18, avg_acc: 0.987400, avg_cost: 0.054533                                                                                                                                 
pass_id: 19, avg_acc: 0.989080, avg_cost: 0.050789                                                                                                                                 
pass_id: 20, avg_acc: 0.990000, avg_cost: 0.047416                                                                                                                        
pass_id: 21, avg_acc: 0.991240, avg_cost: 0.043980                                                                                                                                 
pass_id: 22, avg_acc: 0.992080, avg_cost: 0.040619                                                                                                                                 
pass_id: 23, avg_acc: 0.992800, avg_cost: 0.037422                                                                                                                                 
pass_id: 24, avg_acc: 0.994400, avg_cost: 0.034529
pass_id: 25, avg_acc: 0.994880, avg_cost: 0.032154 
pass_id: 26, avg_acc: 0.995280, avg_cost: 0.029704                                       
pass_id: 27, avg_acc: 0.996200, avg_cost: 0.027236                                                        
pass_id: 28, avg_acc: 0.996520, avg_cost: 0.025075                                                                                                                        
pass_id: 29, avg_acc: 0.997160, avg_cost: 0.023125

infer结果如下:

model_path: bow_model/epoch0, avg_acc: 0.881120                                                                                                                                    
model_path: bow_model/epoch1, avg_acc: 0.881800                                                                                                                                    
model_path: bow_model/epoch2, avg_acc: 0.881600                                                                                                                                    
model_path: bow_model/epoch3, avg_acc: 0.879440                                                                                                                                    
model_path: bow_model/epoch4, avg_acc: 0.875120                                                                                                                                    
model_path: bow_model/epoch5, avg_acc: 0.860640                                                                                                                                    
model_path: bow_model/epoch6, avg_acc: 0.865920                                                                                                                                    
model_path: bow_model/epoch7, avg_acc: 0.866840                                                                                                                                    
model_path: bow_model/epoch8, avg_acc: 0.860680   
model_path: bow_model/epoch9, avg_acc: 0.863480    
model_path: bow_model/epoch10, avg_acc: 0.862000                                         
model_path: bow_model/epoch11, avg_acc: 0.860040                                                          
model_path: bow_model/epoch12, avg_acc: 0.858200                                                                                                                          
model_path: bow_model/epoch13, avg_acc: 0.855640  
model_path: bow_model/epoch14, avg_acc: 0.855840                                                                                                                                   
model_path: bow_model/epoch15, avg_acc: 0.854440                    
model_path: bow_model/epoch16, avg_acc: 0.851560                                                               
model_path: bow_model/epoch17, avg_acc: 0.852720                                                                                                                                   
model_path: bow_model/epoch18, avg_acc: 0.851280                                                                                                                                   
model_path: bow_model/epoch19, avg_acc: 0.851440                                                                                                                                   
model_path: bow_model/epoch20, avg_acc: 0.850840                                                                                                                          
model_path: bow_model/epoch21, avg_acc: 0.849720                                                                                                                                   
model_path: bow_model/epoch22, avg_acc: 0.848520                                                                                                                                   
model_path: bow_model/epoch23, avg_acc: 0.848520                                                                                                                                   
model_path: bow_model/epoch24, avg_acc: 0.847600  
model_path: bow_model/epoch25, avg_acc: 0.846000   
model_path: bow_model/epoch26, avg_acc: 0.843120                                         
model_path: bow_model/epoch27, avg_acc: 0.845720                                                          
model_path: bow_model/epoch28, avg_acc: 0.844760                                                                                                                          
model_path: bow_model/epoch29, avg_acc: 0.845520 
指派人
分配到
审核者
Request review from
无
里程碑
无
分配里程碑
工时统计
标识: paddlepaddle/models!1142
Source branch: github/fork/velconia/port_py3_text_classification
渝ICP备2023009037号

京公网安备11010502055752号

网络110报警服务 Powered by GitLab CE v13.7
开源知识
Git 入门 Pro Git 电子书 在线学 Git
Markdown 基础入门 IT 技术知识开源图谱
帮助
使用手册 反馈建议 博客
《GitCode 隐私声明》 《GitCode 服务条款》 关于GitCode
Powered by GitLab CE v13.7