Skip to content

  • 体验新版
    • 正在加载...
  • 登录
  • PaddlePaddle
  • models
  • Issue
  • #4524

M
models
  • 项目概览

PaddlePaddle / models
大约 2 年 前同步成功

通知 232
Star 6828
Fork 2962
  • 代码
    • 文件
    • 提交
    • 分支
    • Tags
    • 贡献者
    • 分支图
    • Diff
  • Issue 602
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 255
  • Wiki 0
    • Wiki
  • 分析
    • 仓库
    • DevOps
  • 项目成员
  • Pages
M
models
  • 项目概览
    • 项目概览
    • 详情
    • 发布
  • 仓库
    • 仓库
    • 文件
    • 提交
    • 分支
    • 标签
    • 贡献者
    • 分支图
    • 比较
  • Issue 602
    • Issue 602
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 255
    • 合并请求 255
  • Pages
  • 分析
    • 分析
    • 仓库分析
    • DevOps
  • Wiki 0
    • Wiki
  • 成员
    • 成员
  • 收起侧边栏
  • 动态
  • 分支图
  • 创建新Issue
  • 提交
  • Issue看板
已关闭
开放中
Opened 4月 10, 2020 by saxon_zh@saxon_zhGuest

tagspace中text2paddle.py代码错误

Created by: edencfc

PaddleRec/tagspace/text2paddle.py中代码有错,返回值比文档说明的要少一个,而且生成的csv文件格式也不对。 改回python2.7时的版本text2paddle.py可以正常训练。 python2.7版本:

import sys
import six
import collections
import os
import csv 
import re

def word_count(column_num, input_file, word_freq=None):
    """
    compute word count from corpus
    """
    if word_freq is None:
        word_freq = collections.defaultdict(int)
    data_file = csv.reader(input_file)
    for row in data_file:
        for w in re.split(r'\W+',row[column_num].strip()):
            word_freq[w]+= 1
    return word_freq

def build_dict(column_num=2, min_word_freq=0, train_dir="", test_dir=""):
    """
    Build a word dictionary from the corpus,  Keys of the dictionary are words,
    and values are zero-based IDs of these words.
    """
    word_freq = collections.defaultdict(int)
    files = os.listdir(train_dir)
    for fi in files:
        with open(train_dir + '/' + fi, "r") as f:
            word_freq = word_count(column_num, f, word_freq)
    files = os.listdir(test_dir)
    for fi in files:
        with open(test_dir + '/' + fi, "r") as f:
            word_freq = word_count(column_num, f, word_freq)

    word_freq = [x for x in six.iteritems(word_freq) if x[1] > min_word_freq]
    word_freq_sorted = sorted(word_freq, key=lambda x: (-x[1], x[0]))
    words, _ = list(zip(*word_freq_sorted))
    word_idx = dict(list(zip(words, six.moves.range(len(words)))))
    return word_idx


def write_paddle(text_idx, tag_idx, train_dir, test_dir, output_train_dir, output_test_dir):
    files = os.listdir(train_dir)
    if not os.path.exists(output_train_dir):
        os.mkdir(output_train_dir)
    for fi in files:
        with open(train_dir + '/' + fi, "r") as f:
            with open(output_train_dir + '/' + fi, "w") as wf:
                data_file = csv.reader(f)
                for row in data_file:
                    tag_raw = re.split(r'\W+', row[0].strip())
                    pos_index = tag_idx.get(tag_raw[0])
                    wf.write(str(pos_index) + ",")
                    text_raw = re.split(r'\W+', row[2].strip())
                    l = [text_idx.get(w) for w in text_raw]
                    for w in l:
                        wf.write(str(w) + " ")
                    wf.write("\n")

    files = os.listdir(test_dir)
    if not os.path.exists(output_test_dir):
        os.mkdir(output_test_dir)
    for fi in files:
        with open(test_dir + '/' + fi, "r") as f:
            with open(output_test_dir + '/' + fi, "w") as wf:
                data_file = csv.reader(f)
                for row in data_file:
                    tag_raw = re.split(r'\W+', row[0].strip())
                    pos_index = tag_idx.get(tag_raw[0])
                    wf.write(str(pos_index) + ",")
                    text_raw = re.split(r'\W+', row[2].strip())
                    l = [text_idx.get(w) for w in text_raw]
                    for w in l:
                        wf.write(str(w) + " ")
                    wf.write("\n")

def text2paddle(train_dir, test_dir, output_train_dir, output_test_dir, output_vocab_text, output_vocab_tag):
    print("start constuct word dict")
    vocab_text = build_dict(2, 0, train_dir, test_dir)
    with open(output_vocab_text, "w") as wf:
        wf.write(str(len(vocab_text)) + "\n")

    vocab_tag = build_dict(0, 0, train_dir, test_dir)
    with open(output_vocab_tag, "w") as wf:
        wf.write(str(len(vocab_tag)) + "\n")

    print("construct word dict done\n")
    write_paddle(vocab_text, vocab_tag, train_dir, test_dir, output_train_dir, output_test_dir)


train_dir = sys.argv[1]
test_dir = sys.argv[2]
output_train_dir = sys.argv[3]
output_test_dir = sys.argv[4]
output_vocab_text = sys.argv[5]
output_vocab_tag = sys.argv[6]
text2paddle(train_dir, test_dir, output_train_dir, output_test_dir, output_vocab_text, output_vocab_tag)
指派人
分配到
无
里程碑
无
分配里程碑
工时统计
无
截止日期
无
标识: paddlepaddle/models#4524
渝ICP备2023009037号

京公网安备11010502055752号

网络110报警服务 Powered by GitLab CE v13.7
开源知识
Git 入门 Pro Git 电子书 在线学 Git
Markdown 基础入门 IT 技术知识开源图谱
帮助
使用手册 反馈建议 博客
《GitCode 隐私声明》 《GitCode 服务条款》 关于GitCode
Powered by GitLab CE v13.7