Skip to content

  • 体验新版
    • 正在加载...
  • 登录
  • PaddlePaddle
  • models
  • Issue
  • #4523

M
models
  • 项目概览

PaddlePaddle / models
大约 2 年 前同步成功

通知 232
Star 6828
Fork 2962
  • 代码
    • 文件
    • 提交
    • 分支
    • Tags
    • 贡献者
    • 分支图
    • Diff
  • Issue 602
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 255
  • Wiki 0
    • Wiki
  • 分析
    • 仓库
    • DevOps
  • 项目成员
  • Pages
M
models
  • 项目概览
    • 项目概览
    • 详情
    • 发布
  • 仓库
    • 仓库
    • 文件
    • 提交
    • 分支
    • 标签
    • 贡献者
    • 分支图
    • 比较
  • Issue 602
    • Issue 602
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 255
    • 合并请求 255
  • Pages
  • 分析
    • 分析
    • 仓库分析
    • DevOps
  • Wiki 0
    • Wiki
  • 成员
    • 成员
  • 收起侧边栏
  • 动态
  • 分支图
  • 创建新Issue
  • 提交
  • Issue看板
已关闭
开放中
Opened 4月 09, 2020 by saxon_zh@saxon_zhGuest

Parakeet model does not work

Created by: qo4on

PaddlePaddle official pretrained model can't generate sound. This pre-trained WaveFlow model should convert a mel spectrogram of a sound to wav file, but it generates only noise. You can reproduce it by copypasting this code to Colab:

!wget -qqq https://paddlespeech.bj.bcebos.com/Parakeet/waveflow_res128_ljspeech_ckpt_1.0.zip > /dev/null
!mkdir -p /content/downloads
!unzip -qqq /content/waveflow_res128_ljspeech_ckpt_1.0.zip -d /content/downloads > /dev/null
!rm -rf /content/sample_data /content/waveflow_res128_ljspeech_ckpt_1.0.zip
!sudo apt-get update -y -qqq --fix-missing && apt-get install -y -qqq libsndfile1 > /dev/null
!pip install -U -qqq imgaug scipy albumentations paddlepaddle-gpu > /dev/null
!git clone -qqq https://github.com/PaddlePaddle/Parakeet > /dev/null
%cd /content/Parakeet
!pip install -qqq -e . > /dev/null

import os, pathlib, nltk, sys
import numpy as np
import matplotlib.pyplot as plt
nltk.download("punkt")
nltk.download("cmudict")

pth_1 = "/content/Parakeet"
if pth_1 not in sys.path: sys.path.insert(0, pth_1)

pth_2 = "/content/Parakeet/examples/waveflow"
if pth_2 not in sys.path: sys.path.insert(0, pth_2)

%cd /content/downloads

!curl -Ls https://dl.dropboxusercontent.com/s/jj78665lrhiod97/LJ001-0001.wav -o LJ001-0001.wav
audio_pth = "/content/downloads/LJ001-0001.wav"

!export CUDA_VISIBLE_DEVICES=0
from parakeet.models.waveflow import waveflow_modules
from parakeet.modules import weight_norm
from parakeet.utils import io
import paddle.fluid.dygraph as dg
from paddle import fluid
from scipy.io.wavfile import read
from scipy.io.wavfile import write
from ruamel import yaml
import random, librosa

class Config():
  def __init__(self, **entries):
    self.__dict__.update(entries)

class WaveFlow():
  def __init__(self,
               config,
               parallel=False,
               rank=0,
               nranks=1,
               tb_logger=None):
    self.config = config
    self.checkpoint_dir = config.checkpoint_dir
    self.parallel = parallel
    self.rank = rank
    self.nranks = nranks
    self.tb_logger = tb_logger
    self.dtype = "float16" if config.use_fp16 else "float32"

  def build(self):
    config = self.config

    waveflow = waveflow_modules.WaveFlowModule(config)

    # Dry run once to create and initalize all necessary parameters.
    audio = dg.to_variable(np.random.randn(1, 16000).astype(self.dtype))
    mel = dg.to_variable(
        np.random.randn(1, config.mel_bands, 63).astype(self.dtype))
    waveflow(audio, mel)

    iteration = io.load_parameters(waveflow, checkpoint_dir=self.checkpoint_dir)

    for layer in waveflow.sublayers():
      if isinstance(layer, weight_norm.WeightNormWrapper):
        layer.remove_weight_norm()    
    self.waveflow = waveflow
    
    return iteration

  @dg.no_grad
  def infer(self, mel):
    self.waveflow.eval()
    config = self.config
    print(mel.shape, 'mel.shape')
    audio = self.waveflow.synthesize(mel, sigma=self.config.sigma)
    audio = audio[0]

    # Denormalize audio from [-1, 1] to [-32768, 32768] int16 range.
    audio = audio.numpy().astype("float32") * 32768.0
    audio = audio.astype('int16')
    filename = 'test.wav'
    print(audio.shape, 'audio.shape')
    write(filename, config.sample_rate, audio)

def get_mel(audio):
  spectrogram = librosa.core.stft(
      audio,
      n_fft=config.fft_size,
      hop_length=config.fft_window_shift,
      win_length=config.fft_window_size)
  spectrogram_magnitude = np.abs(spectrogram)

  # mel_filter_bank shape: [n_mels, 1 + n_fft/2]
  mel_filter_bank = librosa.filters.mel(sr=config.sample_rate,
                                        n_fft=config.fft_size,
                                        n_mels=config.mel_bands,
                                        fmin=config.mel_fmin,
                                        fmax=config.mel_fmax)
  # mel shape: [n_mels, num_frames]
  mel = np.dot(mel_filter_bank, spectrogram_magnitude)

  # Normalize mel.
  clip_val = 1e-5
  ref_constant = 1
  mel = np.log(np.clip(mel, a_min=clip_val, a_max=None) * ref_constant)

  return mel

def get_config(pth="/content/Parakeet/examples/waveflow/configs/waveflow_ljspeech.yaml"):
  with open(pth) as f:
    config = yaml.load(f, Loader=yaml.Loader)

  config['checkpoint'] = None
  config['checkpoint_dir'] = "/content/downloads/waveflow_res128_ljspeech_ckpt_1.0"
  config['iteration'] = None
  config['name'] = ''
  config['output'] = './syn_audios'
  config['sample'] = 0
  config['use_fp16'] = True
  config['use_gpu'] = True
  return Config(**config)

config = get_config()
print(config.__dict__)

place = fluid.CUDAPlace(0) if config.use_gpu else fluid.CPUPlace()
with dg.guard(place):
  # Fix random seed.
  seed = config.seed
  random.seed(seed)
  np.random.seed(seed)
  fluid.default_startup_program().random_seed = seed
  fluid.default_main_program().random_seed = seed

  # Build model.
  model = WaveFlow(config)
  iteration = model.build()
  print(iteration, "iteration")
  # Obtain the current iteration.
  if config.checkpoint is None:
    if config.iteration is None:
      print("_load_latest_checkpoint")
      iteration = io._load_latest_checkpoint(config.checkpoint_dir)
    else:
      iteration = config.iteration
  else:
    iteration = int(config.checkpoint.split('/')[-1].split('-')[-1])
  print(config.checkpoint_dir, iteration)
  loaded_sr, audio = read(audio_pth)
  mel = dg.to_variable(np.expand_dims(get_mel(np.asarray(audio, dtype=np.float32)), axis=0))
  model.infer(mel)

{'valid_size': 16, 'segment_length': 16000, 'sample_rate': 22050, 'fft_window_shift': 256, 'fft_window_size': 1024, 'fft_size': 1024, 'mel_bands': 80, 'mel_fmin': 0.0, 'mel_fmax': 8000.0, 'seed': 1234, 'learning_rate': 0.0002, 'batch_size': 8, 'test_every': 2000, 'save_every': 10000, 'max_iterations': 3000000, 'sigma': 1.0, 'n_flows': 8, 'n_group': 16, 'n_layers': 8, 'n_channels': 64, 'kernel_h': 3, 'kernel_w': 3, 'checkpoint': None, 'checkpoint_dir': '/content/downloads/waveflow_res128_ljspeech_ckpt_1.0', 'iteration': None, 'name': '', 'output': './syn_audios', 'sample': 0, 'use_fp16': True, 'use_gpu': True}
/usr/local/lib/python3.6/dist-packages/paddle/fluid/data_feeder.py:93: UserWarning: The data type of 'input' in assign only support float16 in GPU now. (When the type of input in assign is Variable.)
  (input_name, op_name, extra_message))
/usr/local/lib/python3.6/dist-packages/paddle/fluid/data_feeder.py:93: UserWarning: The data type of 'x' in cast only support float16 in GPU now. 
  (input_name, op_name, extra_message))
/usr/local/lib/python3.6/dist-packages/paddle/fluid/data_feeder.py:93: UserWarning: The data type of 'input' in squeeze only support float16 in GPU now. 
  (input_name, op_name, extra_message))
0 iteration
_load_latest_checkpoint
/content/downloads/waveflow_res128_ljspeech_ckpt_1.0 0
[1, 80, 832] mel.shape
(212720,) audio.shape
指派人
分配到
无
里程碑
无
分配里程碑
工时统计
无
截止日期
无
标识: paddlepaddle/models#4523
渝ICP备2023009037号

京公网安备11010502055752号

网络110报警服务 Powered by GitLab CE v13.7
开源知识
Git 入门 Pro Git 电子书 在线学 Git
Markdown 基础入门 IT 技术知识开源图谱
帮助
使用手册 反馈建议 博客
《GitCode 隐私声明》 《GitCode 服务条款》 关于GitCode
Powered by GitLab CE v13.7